inorganic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Thorium divanadate dihydrate, $Th(V_2O_7)(H_2O)_2$

Said Yagoubi,^a Lahcen El Ammari,^b Abderrazzak Assani^{b*} and Mohamed Saadi^b

^aGroupe de Radiochimie, Institut de Physique Nucléaire d'Orsay UMR 8608, Université de Paris-Sud-11, Bât. 100, 91406 Orsay, France, and ^bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: abder_assani@yahoo.fr

Received 19 September 2011; accepted 26 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (Th–O) = 0.002 Å; R factor = 0.014; wR factor = 0.033; data-to-parameter ratio = 32.5.

The title compound, $Th(V_2O_7)(H_2O)_2$, was synthesized by a hydrothermal reaction. The crystal structure consists of $ThO_7(OH_2)_2$ tricapped trigonal prisms that share edges, forming $[ThO_5(OH_2)_2]_n$ chains along [010]. The edge-sharing $ThO_7(OH_2)_2$ polyhedra share one edge and five vertices with the V_2O_7 divanadate anions having a nearly ecliptic conformation parallel to [001]. This results in an open framework with the water molecules located in channels. $O-H\cdots O$ hydrogen bonding between water molecules and framework O atoms is observed. Bond-valence-sum calculations are in good agreement with the chemical formula of the title compound.

Related literature

For thorium compounds with ninefold coordination of the metal, see: Matkovic *et al.* (1968); Boatner (2002); Sullens & Albrecht-Schmitt (2005); Sullens *et al.* (2006); Calestani & Andreetti (1984); Kojić-Prodić *et al.* (1982). For bond-valence sums, see: Brese & O'Keeffe (1991).

Experimental

Crystal data

$Th(V_2O_7)(H_2O)_2$	$\alpha = 77.849 (2)^{\circ}$
$M_r = 481.95$	$\beta = 74.831 \ (2)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 85.934 \ (2)^{\circ}$
a = 7.0432 (4) Å	$V = 378.08 \text{ (4) } \text{Å}^3$
b = 7.3702 (4) Å	Z = 2
c = 7.7204 (4) Å	Mo $K\alpha$ radiation

 $\mu = 22.06 \text{ mm}^{-1}$ T = 296 K

 $0.19 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.052$, $T_{\max} = 0.110$

15216 measured reflections 3576 independent reflections 3506 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.033$ S = 1.153576 reflections

110 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.60$ e Å $^{-3}$ $\Delta \rho_{\rm min} = -1.26$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O8-H8A\cdots O4^{i}$ $O8-H8B\cdots O5^{ii}$	0.86 0.86	2.47 1.92	3.114 (3) 2.779 (3)	133 175
$O9-H9A\cdots O1^{iii}$	0.86	1.77	2.594 (3)	160
$O9-H9B\cdots O5^{iv}$	0.86	1.90	2.741 (3)	166

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, y, z + 1; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2454).

References

Boatner, L. A. (2002). Rev. Mineral. Geochem. 48, 87-121.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brese, N. E. & O'Keeffe, M. (1991). *Acta Cryst.* B47, 192–197.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Calestani, G. & Andreetti, G. D. (1984). Z. Kristallogr. 168, 41-51.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Kojić-Prodić, B., Śljukić, M. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 67–71. Matkovic, B., Prodic, B. & Sljukic, M. (1968). Croat. Chem. Acta, 40, 147–161. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sullens, T. A. & Albrecht-Schmitt, T. E. (2005). *Inorg. Chem.* 44, 2282–2286.
Sullens, T. A., Almond, P. M., Byrd, J. A., Beitz, J. V., Bray, T. H. & Albrecht-Schmitt, T. E. (2006). *J. Solid State Chem.* 179, 1192–1201.

supporting information

Acta Cryst. (2011). E67, i60 [https://doi.org/10.1107/S1600536811039584]

Thorium divanadate dihydrate, Th(V₂O₇)(H₂O)₂

Said Yagoubi, Lahcen El Ammari, Abderrazzak Assani and Mohamed Saadi

S1. Comment

As reported in the literature, a few structures with ninefold coordination of thorium have been observed. In the case of orthophosphates and orthoarsenates, only two structure-types exist: the monoclinic KTh₂(PO₄)₃ (space group C2/c) (Matkovic et al. 1968) and the monazite CePO₄ (space group P21/n) structures (Boatner, 2002). The KTh₂(PO₄)₃ structure is built from corrugated sheets parallel to (100) face of thorium polyhedra ThO₉ sharing edges. Phosphate tetrahedral share vertices and edges with the thorium polyhedra to define a framework with channels occupied by K atoms. For the monazite compound, the structure shows a parallel chains to [010] direction, formed by CeO₉ polyhedra that share edges. These infinite chains are connected together by edge-sharing with phosphate tetrahedra to form sheets parallel to the (100) face. The stacking of these layers along [100] direction by further edge-sharing of the CeO₉ polyhedra forms a three-dimensional framework. These two structure-types (KTh₂(PO₄)₃ and CePO₄) are amongst the most important as they show the widest range of chemical composition. Dimers of edges-shared ThO₉ are found in Na₆[Th(PO₄)(P₂O₇)]₂ (space group P-1) (Kojić-Prodić, et al., 1982). These dimmers are connected together by sharing edges with phosphate tetrahedral into double chains along [100] direction. Pyrophosphate groups share vertices with the double chains and define a framework with channels occupied by Na atoms. Five other Th(IV) compounds with ninefold coordination and heavy oxoanions were cited in the literature: four structures containing mixed geometry anions were published by Sullens & Albrecht-Schmitt (2005); Sullens et al. (2006), Th(VO₂)₂(TeO₆)(H₂O)₂, Th(SeO₃)(SeO₄), Th(IO₃)₂(SeO₄)(H₂O)₃ H₂O and Th(CrO₄)(IO₃)₂ and one compound with mixed site Pb_{0.5}Th_{0.5}VO₄ was published by Calestani & Andreetti (1984). For all these compounds, each ThO₉ (or ThPbO₉) polyhedra is bounded by the oxoanions groups.

In an effort to understand the structural chemistry of vanadate with actinides, we obtained the following compound of formula $Th(V_2O_7)(H_2O)_2$ under mild hydrothermal conditions. The structure of this compound consists of $ThO_7(OH_2)_2$ tricapped trigonal prisms that share edges to form chains $[ThO_5(OH_2)_2] \infty$ along the [010] direction. The edge-sharing $ThO_7(OH_2)_2$ polyhedra share one edge and five vertices with the V_2O_7 divanadate anions parallel to [001] direction. That builds an open framework with water molecules pointing towards the tunnels. The bond-valence sums were calculated using the coordination-independent parameters given by Brese and O'Keeffe (1991). The obtained value are as follows: Th1, 4.06; V1, 5.10 and V2, 5.18. The two oxygen atoms (O8 and O9) are concluded to be water molecules on the basis of their high isotropic displacement parameters, their bond valence sums of 0.34 (O8) and 0.47(O9), charge balance requirements. That gives the structural formula $Th(V_2O_7)(H_2O)_2$ for the studied compound.

S2. Experimental

Crystals of $Th(V_2O_7)(H_2O)_2$, were hydrothermally synthesized in a 25 ml Teflon-lined steel autoclave from two mixtures: $Th(NO_3)_4(H_2O)_4$, NH_4VO_3 and V_2O_5 in the equimolar ratio or $Th(NO_3)_4(H_2O)_4$ and V_2O_5 in the molar ratio 4:3. Ten ml of distilled water was added in each mixture with pH = 4.5. The autoclaves were heated 7 days at 403 K then 2 days at 483 K followed by slow cooling to room temperature. The resulting product was recovered by filtration, washed with

deionized water and finally air dried. The reaction product consists of orange powder and some yellow-colored crystals corresponding to the title compound which they can be isolated using ultrasonic.

S3. Refinement

The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle they were refined in the riding model approximation with $U_{\rm iso}({\rm H})$ set to $1.2 U_{\rm eq}({\rm O})$. The highest and deepest hole residual peak in the final difference Fourier map are located at 0.67 Å and 0.88 Å, from Th1. The non significant distances and angles are removed from the cif file.

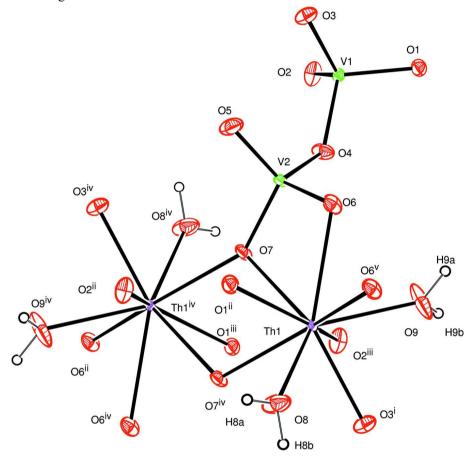


Figure 1
Partial plot of Th(V_2O_7)(H₂O)₂ crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x - 1, y, z + 1; (ii) x, y, z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 2; (v) -x + 1, -y, -z + 2; (vi) -x + 1, -y, -z + 1; (vii) x - 1, y, z.

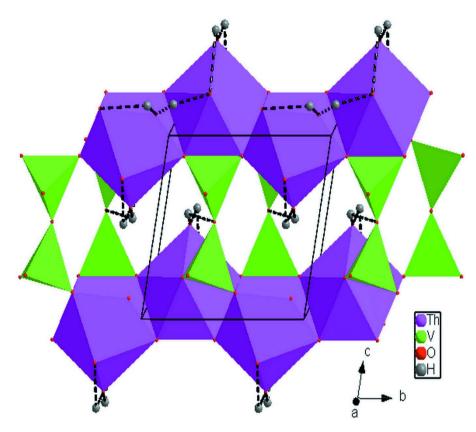


Figure 2 A three-dimensional polyhedral view of the crystal structure of the $Th(V_2O_7)(H_2O)_2$ showing polyhedra linkage.

Thorium divanadate dihydrate

Cr	vstal	data
cr	vsiai	aaia

Th(V₂O₇)(H₂O)₂ $M_r = 481.95$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.0432 (4) Å b = 7.3702 (4) Å c = 7.7204 (4) Å $\alpha = 77.849$ (2)° $\beta = 74.831$ (2)° $\gamma = 85.934$ (2)° V = 378.08 (4) Å³

Data collection

Bruker X8 APEXII diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.052$, $T_{\max} = 0.110$

Z=2 F(000)=424 $D_x=4.233~{\rm Mg~m^{-3}}$ Mo $K\alpha$ radiation, $\lambda=0.71073~{\rm Å}$ Cell parameters from 3576 reflections $\theta=2.8-36.0^\circ$ $\mu=22.06~{\rm mm^{-1}}$ $T=296~{\rm K}$ Prism, yellow $0.19\times0.12\times0.10~{\rm mm}$

15216 measured reflections 3576 independent reflections 3506 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ $\theta_{\text{max}} = 36.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.014$

 $WR(F^2) = 0.033$

S = 1.15

3576 reflections

110 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

nap

Hydrogen site location: difference Fourier map

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0019P)^2 + 0.3878P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.003$

 $\Delta \rho_{\text{max}} = 1.60 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -1.26 \text{ e Å}^{-3}$

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*= $kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0083 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Th1	0.358260 (9)	0.244262 (9)	1.084559 (8)	0.00611 (3)
V1	0.79469 (5)	0.33646 (5)	0.25516 (4)	0.00702 (6)
V2	0.72488 (5)	0.29521 (5)	0.70555 (4)	0.00705 (6)
O7	0.6164(2)	0.4536 (2)	0.8411 (2)	0.0112 (3)
O1	0.6561 (2)	0.2001 (2)	0.1850(2)	0.0122 (3)
O6	0.6084(3)	0.0958 (2)	0.8397 (2)	0.0137 (3)
O3	1.0237 (2)	0.2469 (2)	0.2411 (2)	0.0153 (3)
O2	0.7983 (3)	0.5430(2)	0.1207 (2)	0.0162 (3)
O4	0.6682 (3)	0.3462 (2)	0.4897 (2)	0.0151 (3)
O5	0.9622(3)	0.2782 (3)	0.6782 (2)	0.0191 (3)
O8	0.2995 (3)	0.1801 (3)	1.4332 (2)	0.0250 (4)
H8A	0.3836	0.1644	1.4984	0.030*
H8B	0.1908	0.2063	1.5061	0.030*
O9	0.1870 (4)	0.1056(3)	0.9082 (4)	0.0366 (6)
H9A	0.2211	0.0097	0.8594	0.044*
Н9В	0.1036	0.1642	0.8519	0.044*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Th1	0.00668 (4)	0.00456(3)	0.00738 (3)	0.00008 (2)	-0.00182 (2)	-0.00181 (2)
V1	0.00677 (13)	0.00767 (13)	0.00671 (12)	-0.00029 (10)	-0.00215 (10)	-0.00106 (10)
V2	0.00842 (13)	0.00610 (13)	0.00644 (12)	0.00028 (10)	-0.00092 (10)	-0.00219 (10)

supporting information

O7 O1 O6 O3 O2 O4 O5 O8	0.0146 (7) 0.0109 (6) 0.0204 (8) 0.0097 (6) 0.0186 (8) 0.0159 (7) 0.0100 (7) 0.0151 (8)	0.0082 (6) 0.0117 (7) 0.0070 (6) 0.0200 (8) 0.0122 (7) 0.0211 (8) 0.0303 (10) 0.0467 (13)	0.0112 (6) 0.0160 (6) 0.0129 (6) 0.0139 (6) 0.0176 (7) 0.0084 (6) 0.0163 (7) 0.0123 (7)	0.0006 (5) 0.0013 (5) -0.0018 (6) 0.0018 (6) -0.0045 (6) 0.0043 (6) 0.0025 (7) 0.0038 (8)	-0.0021 (5) -0.0050 (5) -0.0026 (6) -0.0020 (5) -0.0092 (6) -0.0033 (5) -0.0016 (6) -0.0024 (6)	-0.0050 (5) -0.0054 (5) -0.0016 (5) -0.0006 (6) 0.0049 (6) -0.0046 (5) -0.0066 (7)
O8	0.0151 (8) 0.0460 (13)	0.0467 (13) 0.0252 (10)	0.0123 (7) 0.0645 (15)	0.0038 (8) 0.0236 (10)	-0.0024 (6) -0.0464 (13)	-0.0066 (7) -0.0327 (11)

Geometric parameters (Å, °)

I			
Th1—O3i	2.3508 (16)	V1—O1	1.7037 (16)
Th1—O1 ⁱⁱ	2.3988 (15)	V1—O4	1.8109 (16)
Th1—O2 ⁱⁱⁱ	2.4104 (15)	V2—O5	1.6285 (17)
Th1—O7 ^{iv}	2.4430 (16)	V2—O6	1.7296 (16)
Th1—O9	2.4440 (19)	V2—O7	1.7351 (16)
Th1—O6°	2.4598 (16)	V2—O4	1.7722 (15)
Th1—O8	2.5593 (17)	O8—H8A	0.8599
Th1—O7	2.5706 (16)	O8—H8B	0.8599
Th1—O6	2.5937 (17)	O9—H9A	0.8600
V1—O2	1.6498 (16)	O9—H9B	0.8600
V1—O3	1.6845 (16)		
O3 ⁱ —Th1—O1 ⁱⁱ	133.04 (5)	O6 ^v —Th1—O7	123.52 (5)
O3 ⁱ —Th1—O2 ⁱⁱⁱ	74.96 (6)	O8—Th1—O7	128.58 (6)
O1 ⁱⁱ —Th1—O2 ⁱⁱⁱ	141.47 (6)	O3 ⁱ —Th1—O6	142.46 (6)
$O3^{i}$ — $Th1$ — $O7^{iv}$	87.85 (6)	O1 ⁱⁱ —Th1—O6	74.59 (5)
O1 ⁱⁱ —Th1—O7 ^{iv}	79.21 (5)	O2 ⁱⁱⁱ —Th1—O6	97.58 (6)
$O2^{iii}$ — $Th1$ — $O7^{iv}$	75.88 (6)	O7 ^{iv} —Th1—O6	126.68 (5)
O3 ⁱ —Th1—O9	74.46 (8)	O9—Th1—O6	69.48 (7)
O1 ⁱⁱ —Th1—O9	139.27 (6)	O6 ^v —Th1—O6	64.61 (6)
O2 ⁱⁱⁱ —Th1—O9	63.63 (7)	O8—Th1—O6	130.52 (6)
O7 ^{iv} —Th1—O9	138.65 (6)	O7—Th1—O6	61.59 (5)
$O3^{i}$ — $Th1$ — $O6^{v}$	93.95 (6)	O2—V1—O3	111.26 (9)
$O1^{ii}$ — $Th1$ — $O6^{v}$	77.24 (6)	O2—V1—O1	106.38 (8)
$O2^{iii}$ — $Th1$ — $O6^v$	134.16 (6)	O3—V1—O1	110.92 (8)
$O7^{iv}$ — $Th1$ — $O6^v$	149.25 (5)	O2—V1—O4	110.99 (9)
O9—Th1—O6 ^v	70.53 (6)	O3—V1—O4	111.03 (8)
O3i—Th1—O8	66.51 (6)	O1—V1—O4	106.04 (8)
O1 ⁱⁱ —Th1—O8	66.54 (6)	O5—V2—O6	111.61 (9)
O2 ⁱⁱⁱ —Th1—O8	131.90 (7)	O5—V2—O7	112.45 (9)
O7 ^{iv} —Th1—O8	75.03 (6)	O6—V2—O7	99.47 (8)
O9—Th1—O8	126.93 (8)	O5—V2—O4	110.14 (8)
O6 ^v —Th1—O8	77.61 (6)	O6—V2—O4	110.71 (8)
O3 ⁱ —Th1—O7	140.50 (5)	O7—V2—O4	112.08 (8)
O1 ⁱⁱ —Th1—O7	73.42 (5)	V2—O4—V1	136.90 (10)
O2 ⁱⁱⁱ —Th1—O7	69.92 (5)	H8A—O8—H8B	104.5

supporting information

O7 ^{iv} —Th1—O7	66.76 (6)	H9A—O9—H9B	104.5
O9—Th1—O7	104.44 (8)		

Symmetry codes: (i) x-1, y, z+1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y, -z+2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	H <i>A</i>	D··· A	<i>D</i> —H··· <i>A</i>
O8—H8 <i>A</i> ···O4 ⁱⁱ	0.86	2.47	3.114 (3)	133
O8—H8 <i>B</i> ···O5 ⁱ	0.86	1.92	2.779 (3)	175
O9—H9 <i>A</i> ···O1 ^{vi}	0.86	1.77	2.594(3)	160
O9—H9 <i>B</i> ⋯O5 ^{vii}	0.86	1.90	2.741 (3)	166

Symmetry codes: (i) x-1, y, z+1; (ii) x, y, z+1; (vi) -x+1, -y, -z+1; (vii) x-1, y, z.