metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ3-chlorido-tetra-μ2-chlorido-di­chloridobis(di­methyl­formamide-κO)hexa­kis­(1H-imidazole-κN3)tetra­cadmium

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 21 August 2011; accepted 16 September 2011; online 30 September 2011)

The centrosymmetric mol­ecule of the title complex, [Cd4Cl8(C3H4N2)6(C3H7NO)2], contains four CdII atoms, six imidazole, two dimethyl­formamide and eight chloride ligands. The structure shows a novel chloride-bridged tetra­nuclear cadmium quasi-cubane cluster. The coordination geometry of all CdII atoms is distorted octa­hedral, with the two metal atoms in the asymmetric unit in different coordination environments. One of the Cd2+ ions is coordinated by five Cl ions and by one N atom from an imidazole ligand, while the second is coordinated by three chloride ligands, two N atoms from two imidazole ligands and one O atom from a dimethyl­formamide mol­ecule. Inter­molecular N—H⋯Cl hydrogen bonds link the mol­ecules into a two-dimensional polymeric structure parallel to the ab plane.

Related literature

For general background to ferroelectric compounds with metal-organic frameworks, see: Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd4Cl8(C3H4N2)6(C3H7NO)2]

  • Mr = 1287.92

  • Monoclinic, P 21 /c

  • a = 8.2540 (17) Å

  • b = 12.290 (3) Å

  • c = 21.119 (4) Å

  • β = 99.23 (3)°

  • V = 2114.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.472, Tmax = 0.603

  • 21502 measured reflections

  • 4833 independent reflections

  • 4241 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.05

  • 4833 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl2i 0.86 2.44 3.226 (3) 152
N4—H4A⋯Cl1ii 0.86 2.45 3.212 (3) 148
N6—H6A⋯Cl2iii 0.86 2.63 3.314 (3) 137
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was prepared from imidazole and cadmium(II) chloride in DMF. The solid state structure of (I) at 298 K shows a novel centrosymmetric tetranuclear cadmium quasi-cubane cluster with a Cd4(Cl)2(µ-Cl)43-Cl)2 core structure surrounded by six imidazole and two DMF molecules (Fig. 1). There are two different coordination environments about the Cd centers: Cd(1) is coordinated by one imidazole ligand, four bridging and one terminal Cl ions, and Cd(2) is coordinated by one O atom from DMF, two N atoms from two imidazole ligands and three bridging Cl ions. The shortest intra-molecular Cd(1)—Cd(1 A) separation is 4.103 (5) Å.

In the tetranuclear cluster, the cadmium atoms are connected by six Cl atoms among which the Cl1 and Cl3 atoms act as bridges between Cd(1) and Cd(2) centers, and the Cl(4) atom is a node to connect two Cd1 and one Cd2 together. The bond length Cd1–Cl2 to the terminal Cl ligand of 2.5475 (10) Å is shorter than the mean values of Cd–Cl(µ) [2.654 (2) Å] and Cd—Cl(µ3) [2.729 (2) Å] bond lengths.

In order to check a possibility of a structural phase transitions in compound (I), we measured its temperature-dependent dielectric constant. Large dielectric anomalies usually indicate structural changes such as paraelectric-to-ferroelectric phase transitions. Unfortunately, the dielectric constant of compound (I) goes smoothly in the temperature range 93–273 K, suggesting no distinct phase transitions occurring in this temperature range (Ye et al., 2009; Zhang et al., 2009).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2009); Zhang et al. (2009).

Experimental top

The mixture of CdCl2 (2.27 g, 10 mmol) and imidazole (2.76 g, 40 mmol) in DMF was stirred for several days at room temperature. Colourless needle-like crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement top

Positional parameters of all H atoms were calculated geometrically and the H atoms were set to ride on the C atoms and N atoms to which they were bonded, with Uiso(H)= 1.2 Uiso(C, N) and 1.5Uiso(C) for methyl H atoms. C—H atoms were included with bond distances ranging from 0.98 to 1.00 Å and N—H hydrogen atoms were included with the N–H distance set to 0.84 Å.

Structure description top

The title compound (I) was prepared from imidazole and cadmium(II) chloride in DMF. The solid state structure of (I) at 298 K shows a novel centrosymmetric tetranuclear cadmium quasi-cubane cluster with a Cd4(Cl)2(µ-Cl)43-Cl)2 core structure surrounded by six imidazole and two DMF molecules (Fig. 1). There are two different coordination environments about the Cd centers: Cd(1) is coordinated by one imidazole ligand, four bridging and one terminal Cl ions, and Cd(2) is coordinated by one O atom from DMF, two N atoms from two imidazole ligands and three bridging Cl ions. The shortest intra-molecular Cd(1)—Cd(1 A) separation is 4.103 (5) Å.

In the tetranuclear cluster, the cadmium atoms are connected by six Cl atoms among which the Cl1 and Cl3 atoms act as bridges between Cd(1) and Cd(2) centers, and the Cl(4) atom is a node to connect two Cd1 and one Cd2 together. The bond length Cd1–Cl2 to the terminal Cl ligand of 2.5475 (10) Å is shorter than the mean values of Cd–Cl(µ) [2.654 (2) Å] and Cd—Cl(µ3) [2.729 (2) Å] bond lengths.

In order to check a possibility of a structural phase transitions in compound (I), we measured its temperature-dependent dielectric constant. Large dielectric anomalies usually indicate structural changes such as paraelectric-to-ferroelectric phase transitions. Unfortunately, the dielectric constant of compound (I) goes smoothly in the temperature range 93–273 K, suggesting no distinct phase transitions occurring in this temperature range (Ye et al., 2009; Zhang et al., 2009).

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2009); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids shown at the 50% probability level. Symmetry codes for the atoms with the A label: -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound projected along the a axis. Hydrogen bonds are shown as dashed lines.
Di-µ3-chlorido-tetra-µ2-chlorido-dichloridobis(dimethylformamide- κO)hexakis(1H-imidazole-κN3)tetracadmium top
Crystal data top
[Cd4Cl8(C3H4N2)6(C3H7NO)2]F(000) = 1248
Mr = 1287.92Dx = 2.023 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4835 reflections
a = 8.2540 (17) Åθ = 2.5–27.5°
b = 12.290 (3) ŵ = 2.53 mm1
c = 21.119 (4) ÅT = 293 K
β = 99.23 (3)°Prism, colourless
V = 2114.6 (8) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
4833 independent reflections
Radiation source: fine-focus sealed tube4241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.472, Tmax = 0.603k = 1515
21502 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.0319P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4833 reflectionsΔρmax = 0.34 e Å3
237 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
[Cd4Cl8(C3H4N2)6(C3H7NO)2]V = 2114.6 (8) Å3
Mr = 1287.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.2540 (17) ŵ = 2.53 mm1
b = 12.290 (3) ÅT = 293 K
c = 21.119 (4) Å0.30 × 0.25 × 0.20 mm
β = 99.23 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4833 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4241 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.603Rint = 0.037
21502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
4833 reflectionsΔρmin = 0.66 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1022 (4)0.0007 (3)0.59318 (17)0.0415 (8)
H10.13090.02050.55420.050*
C20.0277 (4)0.0083 (3)0.68722 (18)0.0457 (9)
H20.00360.03480.72470.055*
C30.0450 (4)0.0970 (3)0.67154 (16)0.0380 (8)
H30.02750.15630.69690.046*
C40.5413 (4)0.2881 (3)0.57582 (18)0.0416 (8)
H40.53890.28910.53160.050*
C50.6345 (5)0.2923 (4)0.6781 (2)0.0559 (10)
H50.70430.29640.71720.067*
C60.4692 (4)0.2792 (3)0.66852 (18)0.0484 (9)
H60.40530.27300.70080.058*
C70.5008 (4)0.4395 (3)0.38982 (19)0.0429 (8)
H70.50520.44780.43330.051*
C80.5764 (5)0.4230 (3)0.2874 (2)0.0582 (11)
H80.64020.41780.24700.070*
C90.4130 (5)0.4196 (3)0.30070 (17)0.0457 (9)
H90.34280.41140.27070.055*
C100.3020 (4)0.1635 (3)0.43669 (16)0.0384 (8)
H100.29580.23630.42450.046*
C110.3797 (6)0.0201 (3)0.4151 (2)0.0638 (12)
H11A0.32840.03470.45190.096*
H11B0.49300.04150.42390.096*
H11C0.32490.06050.37900.096*
C120.4289 (8)0.1321 (5)0.3439 (3)0.096 (2)
H12A0.37400.09320.30720.144*
H12B0.54490.11920.34850.144*
H12C0.40780.20860.33820.144*
Cd10.10174 (3)0.428101 (17)0.415237 (10)0.02728 (7)
Cd20.14449 (3)0.254846 (17)0.557490 (11)0.02742 (7)
N10.0926 (3)0.1030 (2)0.61219 (12)0.0322 (6)
N20.0649 (4)0.0674 (2)0.63767 (16)0.0480 (8)
H2A0.06470.13730.63530.058*
N30.4108 (3)0.2763 (2)0.60408 (13)0.0319 (6)
N40.6769 (4)0.2984 (3)0.61908 (17)0.0502 (8)
H4A0.77470.30730.61080.060*
N50.3653 (3)0.4301 (2)0.36550 (13)0.0318 (6)
N60.6315 (4)0.4356 (3)0.34380 (19)0.0549 (9)
H6A0.73250.44020.34900.066*
N70.3690 (4)0.0952 (2)0.40063 (15)0.0433 (7)
O10.2472 (3)0.13812 (19)0.48519 (11)0.0423 (6)
Cl10.04823 (9)0.61386 (6)0.35684 (4)0.02980 (16)
Cl20.00339 (10)0.31740 (6)0.32819 (4)0.03436 (17)
Cl30.14308 (9)0.25405 (6)0.48437 (4)0.03149 (17)
Cl40.19278 (8)0.44090 (6)0.48833 (3)0.02730 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.0290 (17)0.042 (2)0.0073 (16)0.0058 (16)0.0043 (15)
C20.045 (2)0.052 (2)0.038 (2)0.0087 (17)0.0011 (16)0.0146 (17)
C30.0392 (18)0.0418 (19)0.0326 (18)0.0001 (15)0.0045 (14)0.0006 (15)
C40.0326 (18)0.046 (2)0.048 (2)0.0014 (16)0.0132 (15)0.0057 (17)
C50.043 (2)0.066 (3)0.054 (3)0.002 (2)0.0067 (18)0.003 (2)
C60.041 (2)0.065 (3)0.040 (2)0.0048 (18)0.0077 (16)0.0007 (18)
C70.0342 (18)0.044 (2)0.052 (2)0.0048 (15)0.0136 (16)0.0018 (16)
C80.040 (2)0.067 (3)0.059 (3)0.001 (2)0.0162 (19)0.002 (2)
C90.042 (2)0.062 (2)0.0334 (19)0.0014 (18)0.0045 (15)0.0018 (17)
C100.047 (2)0.0311 (17)0.0377 (19)0.0053 (15)0.0091 (15)0.0054 (14)
C110.078 (3)0.042 (2)0.072 (3)0.019 (2)0.014 (2)0.007 (2)
C120.143 (5)0.082 (4)0.080 (4)0.007 (4)0.071 (4)0.001 (3)
Cd10.02655 (12)0.02762 (12)0.02745 (13)0.00098 (9)0.00362 (9)0.00129 (9)
Cd20.02759 (12)0.02543 (12)0.03022 (13)0.00193 (9)0.00767 (9)0.00044 (9)
N10.0365 (14)0.0279 (13)0.0323 (15)0.0019 (11)0.0058 (11)0.0029 (11)
N20.0547 (19)0.0268 (15)0.060 (2)0.0064 (14)0.0004 (16)0.0056 (14)
N30.0283 (13)0.0317 (14)0.0369 (15)0.0022 (11)0.0090 (11)0.0024 (11)
N40.0294 (16)0.0476 (19)0.074 (2)0.0023 (14)0.0098 (15)0.0005 (17)
N50.0266 (13)0.0353 (14)0.0334 (15)0.0027 (11)0.0047 (11)0.0015 (11)
N60.0235 (15)0.053 (2)0.088 (3)0.0017 (14)0.0089 (16)0.0052 (18)
N70.0524 (18)0.0368 (16)0.0440 (17)0.0076 (14)0.0178 (14)0.0062 (13)
O10.0542 (15)0.0369 (13)0.0385 (14)0.0081 (11)0.0156 (11)0.0038 (10)
Cl10.0327 (4)0.0265 (4)0.0323 (4)0.0034 (3)0.0117 (3)0.0020 (3)
Cl20.0418 (4)0.0305 (4)0.0335 (4)0.0011 (3)0.0144 (3)0.0021 (3)
Cl30.0327 (4)0.0306 (4)0.0313 (4)0.0037 (3)0.0057 (3)0.0020 (3)
Cl40.0249 (3)0.0298 (4)0.0277 (4)0.0005 (3)0.0058 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—N11.326 (4)C10—H100.9300
C1—N21.330 (5)C11—N71.450 (5)
C1—H10.9300C11—H11A0.9600
C2—C31.349 (5)C11—H11B0.9600
C2—N21.350 (5)C11—H11C0.9600
C2—H20.9300C12—N71.440 (5)
C3—N11.374 (4)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—N31.320 (4)C12—H12C0.9600
C4—N41.332 (5)Cd1—N52.259 (3)
C4—H40.9300Cd1—Cl22.5486 (9)
C5—N41.349 (5)Cd1—Cl32.6426 (9)
C5—C61.357 (5)Cd1—Cl12.6651 (9)
C5—H50.9300Cd1—Cl42.6671 (11)
C6—N31.369 (4)Cd1—Cl4i2.7920 (9)
C6—H60.9300Cd2—N12.272 (3)
C7—N51.308 (4)Cd2—N32.275 (3)
C7—N61.332 (5)Cd2—O12.350 (2)
C7—H70.9300Cd2—Cl32.6158 (12)
C8—C91.333 (5)Cd2—Cl1i2.6400 (9)
C8—N61.350 (6)Cd2—Cl42.7762 (9)
C8—H80.9300N2—H2A0.8600
C9—N51.368 (4)N4—H4A0.8600
C9—H90.9300N6—H6A0.8600
C10—O11.225 (4)Cl1—Cd2i2.6400 (9)
C10—N71.313 (4)Cl4—Cd1i2.7920 (9)
N1—C1—N2110.5 (3)Cl3—Cd1—Cl485.09 (3)
N1—C1—H1124.7Cl1—Cd1—Cl490.80 (3)
N2—C1—H1124.7N5—Cd1—Cl4i88.92 (7)
C3—C2—N2106.3 (3)Cl2—Cd1—Cl4i175.27 (2)
C3—C2—H2126.9Cl3—Cd1—Cl4i89.43 (3)
N2—C2—H2126.9Cl1—Cd1—Cl4i85.84 (3)
C2—C3—N1109.4 (3)Cl4—Cd1—Cl4i82.58 (3)
C2—C3—H3125.3N1—Cd2—N397.08 (9)
N1—C3—H3125.3N1—Cd2—O186.90 (9)
N3—C4—N4110.9 (3)N3—Cd2—O185.85 (9)
N3—C4—H4124.6N1—Cd2—Cl394.01 (7)
N4—C4—H4124.6N3—Cd2—Cl3167.97 (7)
N4—C5—C6105.8 (3)O1—Cd2—Cl390.10 (7)
N4—C5—H5127.1N1—Cd2—Cl1i92.97 (7)
C6—C5—H5127.1N3—Cd2—Cl1i90.51 (7)
C5—C6—N3109.6 (3)O1—Cd2—Cl1i176.31 (6)
C5—C6—H6125.2Cl3—Cd2—Cl1i93.58 (3)
N3—C6—H6125.2N1—Cd2—Cl4177.38 (7)
N5—C7—N6110.7 (3)N3—Cd2—Cl485.51 (7)
N5—C7—H7124.6O1—Cd2—Cl493.66 (6)
N6—C7—H7124.6Cl3—Cd2—Cl483.44 (3)
C9—C8—N6106.9 (4)Cl1i—Cd2—Cl486.65 (3)
C9—C8—H8126.5C1—N1—C3105.4 (3)
N6—C8—H8126.5C1—N1—Cd2126.9 (2)
C8—C9—N5109.0 (4)C3—N1—Cd2127.7 (2)
C8—C9—H9125.5C1—N2—C2108.4 (3)
N5—C9—H9125.5C1—N2—H2A125.8
O1—C10—N7124.7 (3)C2—N2—H2A125.8
O1—C10—H10117.7C4—N3—C6105.3 (3)
N7—C10—H10117.7C4—N3—Cd2128.2 (2)
N7—C11—H11A109.5C6—N3—Cd2126.5 (2)
N7—C11—H11B109.5C4—N4—C5108.3 (3)
H11A—C11—H11B109.5C4—N4—H4A125.8
N7—C11—H11C109.5C5—N4—H4A125.8
H11A—C11—H11C109.5C7—N5—C9105.9 (3)
H11B—C11—H11C109.5C7—N5—Cd1129.7 (2)
N7—C12—H12A109.5C9—N5—Cd1124.4 (2)
N7—C12—H12B109.5C7—N6—C8107.4 (3)
H12A—C12—H12B109.5C7—N6—H6A126.3
N7—C12—H12C109.5C8—N6—H6A126.3
H12A—C12—H12C109.5C10—N7—C12120.9 (4)
H12B—C12—H12C109.5C10—N7—C11121.3 (3)
N5—Cd1—Cl294.83 (7)C12—N7—C11117.7 (3)
N5—Cd1—Cl393.76 (7)C10—O1—Cd2127.5 (2)
Cl2—Cd1—Cl393.18 (3)Cd2i—Cl1—Cd196.66 (3)
N5—Cd1—Cl189.68 (7)Cd2—Cl3—Cd197.92 (3)
Cl2—Cd1—Cl191.30 (3)Cd1—Cl4—Cd293.53 (3)
Cl3—Cd1—Cl1174.11 (2)Cd1—Cl4—Cd1i97.42 (3)
N5—Cd1—Cl4171.43 (7)Cd2—Cl4—Cd1i90.75 (3)
Cl2—Cd1—Cl493.71 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2ii0.862.443.226 (3)152
N4—H4A···Cl1iii0.862.453.212 (3)148
N6—H6A···Cl2iv0.862.633.314 (3)137
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd4Cl8(C3H4N2)6(C3H7NO)2]
Mr1287.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2540 (17), 12.290 (3), 21.119 (4)
β (°) 99.23 (3)
V3)2114.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.472, 0.603
No. of measured, independent and
observed [I > 2σ(I)] reflections
21502, 4833, 4241
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.05
No. of reflections4833
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.66

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2i0.862.443.226 (3)152.3
N4—H4A···Cl1ii0.862.453.212 (3)147.8
N6—H6A···Cl2iii0.862.633.314 (3)137.3
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The author is are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds