metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­chlorido(1-{(di­phenyl­phosphan­yl)[2-(di­phenyl­phosphan­yl)phen­yl]meth­yl}ferrocene-κ2P,P′)palladium(II) di­methyl sulfoxide disolvate

aInstitute of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 24 August 2011; accepted 5 September 2011; online 14 September 2011)

The racemic title compound, [FePdCl2(C5H5)(C36H29P2)]·2(CH3)2SO, features a Pd-chelating 1,3-diphosphine, which is substituted at a P-bearing asymmetric C atom by a ferrocenyl group. The PdII atom is in a distorted quadratic coordination by two P and two Cl atoms with bond lengths of 2.2414 (3) and 2.2438 (3) Å for Pd—P, and 2.3452 (3) and 2.3565 (3) Å for Pd—Cl. The conformation of the Pd complex is controlled by an intra­molecular slipped ππ stacking inter­action between a phenyl and a cyclo­penta­dienyl ring with corresponding C⋯C distances starting at 3.300 (2) Å and the distance between ring centroids being 3.674 (2) Å. The crystal structure is stabilized by C—H⋯Cl and C—H⋯O hydrogen bonds. The (CH3)2SO solvent mol­ecules are arranged in layers parallel to (101) and are linked in pairs by C—H⋯O inter­actions. One (CH3)2SO mol­ecule is orientationally disordered [occupancy ratio 0.8766 (17):0.1234 (17)] with sulfur in two positions at both sides of its C2O triangle.

Related literature

For general information on ferrocene-based diphosphines and their applications in asymmetric catalysis, see: Togni (1996[Togni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475-1477.]); Blaser et al. (2007[Blaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240-1250.]); Dai & Hou (2010[Dai, L.-X. & Hou, X.-L. (2010). Chiral Ferrocenes in Asymmetric Catalysis. Weinheim: Wiley-VCH.]). For the synthesis, coordination behavior, and use in asymmetric catalysis of ligands based on [diphenyl­phosphanyl-(2-diphenyl­phos­phan­yl­phen­yl)meth­yl]-ferrocene, see: Schuecker et al. (2010[Schuecker, R., Weissensteiner, W., Mereiter, K., Lotz, M. & Knochel, P. (2010). Organometallics, 29, 6443-6458.]); Lotz et al. (2010[Lotz, M., Schuecker, R., Mereiter, K. & Knochel, P. (2010). Organometallics, 29, 6503-6508.]).

[Scheme 1]

Experimental

Crystal data
  • [FePdCl2(C5H5)(C36H29P2)]·2C2H6OS

  • Mr = 978.03

  • Triclinic, [P \overline 1]

  • a = 10.9878 (8) Å

  • b = 11.5275 (8) Å

  • c = 17.1405 (12) Å

  • α = 78.720 (2)°

  • β = 81.796 (2)°

  • γ = 78.143 (2)°

  • V = 2071.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100 K

  • 0.59 × 0.45 × 0.36 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.58, Tmax = 0.67

  • 37987 measured reflections

  • 11991 independent reflections

  • 11375 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.02

  • 11991 reflections

  • 502 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 1.00 2.40 3.3365 (17) 156
C15—H15⋯Cl1ii 0.95 2.70 3.4262 (12) 133
C19—H19⋯Cl1 0.95 2.66 3.2410 (12) 120
C23—H23⋯O1i 0.95 2.47 3.3239 (16) 149
C25—H25⋯Cl1 0.95 2.70 3.5075 (13) 143
C29—H29⋯O1i 0.95 2.45 3.3201 (16) 152
C31—H31⋯Cl2 0.95 2.76 3.3893 (13) 125
C42—H42A⋯O2 0.98 2.42 3.368 (2) 163
C45—H45A⋯Cl1iii 0.98 2.83 3.6881 (16) 147
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chiral ferrocenyldiphosphines are widely used as ligands for enantioselective PGM catalysts (PGM = platinum group metals) because they give excellent results in asymmetric hydrogenations and other transformations (Togni, 1996; Blaser et al., 2007; Dai & Hou, 2010). Most of these ferrocenyldiphosphines are based on a planar chiral 1,2-disubstituted ferrocene backbone. Recently, it was found that chiral diphosphines lacking this planar-chiral backbone but employing ferrocene merely as a bulky substituent of an asymmetric sp3-carbon atom within a ferrocene-free 1,3-diphosphine system are also showing promising enantioselectivities for their PGM catalyst complexes (Schuecker et al., 2010; Lotz et al., 2010). Within the frame of a corresponding project the racemic title compound, (I), was synthesized and studied by X-ray diffraction before turning to the synthesis of the enantiopure equivalent recently reported by Lotz et al. (2010).

(I) is a dimethylsulfoxide (DMSO) solvate of the PdCl2 complex of racemic 2-[diphenylphosphanyl-(2-diphenylphosphanyl-phenyl)-methyl]-ferrocene and crystallizes in the centrosymmetric space group P1 with a cell content of two formula units. The asymmetric unit including the two DMSO molecules is shown in Fig. 1. Palladium has a distorted square planar coordination by two Cl atoms in terminal positions and by the two P atoms of the chelating 1,3-diphosphine ligand. The r.m.s. deviation from planarity of the PdCl2P2 fragment is 0.191 Å. Bond lengths in the Pd-complex of (I) show normal values and agree very well with those found in the crystal structure of its enantiopure chiral equivalent (Lotz et al., 2010), which crystallizes as a chloroform trisolvate in the non-centrosymmetric space group P21 and will be subsequently desgnated as (II). Disregarding a librating cyclopentadienyl ring in (II), the bond lengths in the Pd-complexes of (I) and (II) agree on the average within 0.006 Å with a maximum difference of 0.024 Å. With respect to bond angles and torsion angles the Pd-complexes in (I) and (II) show larger differences. Excluding ring bond angles the mean difference in bond angles is 2.3° with maximum differences of 7.6° for C24—P1—Pd1 and 5.6° for C18—P1—Pd1. The differences in torsion angles between (I) and (II) are even larger and lead to significantly differing conformations of both Pd-complexes, as demonstrated by Fig. 2. As result there is in (I) a distinct intramolecular π-π-stacking interaction between the phenyl ring C30—C35 and the monosubstituted cyclopentadienyl ring C1—C5 of the ferrocenyl moiety, which is entirely absent in the solid state structure of (II). Moreover are the phenyl rings of both complexes showing notably different orientations (Fig. 2). The intramolecular π-π-stacking interaction in (I) is characterized by C···C distances starting with 3.300 (2) Å (C3···C31) and a distance between ring centroids of 3.674 (2) Å (Fig. 1). The dihedral angle between the rings C1—C5 and C30—C35 is 10.85 (7)°. The torsion angles P1—C11—C1—C5 and C13—P2—C30—C35 are 160.05 (9)° and -38.11 (11)° in (I), and 104.8 (3)° and -71.1 (3)° in (II) (Lotz et al., 2010), respectively.

A packing diagram of the structure of (I) is depicted in Fig. 3. The structure is stabilized by three intramolecular and two intermolecular C—H···Cl and four intermolecular C—H···O interactions listed in Table 1. The DMSO solvent molecules are arranged in layers parallel to (101). Their mutual interaction is limited to one C42—H···O2 bond.

Related literature top

For general information on ferrocene-based diphosphines and their applications in asymmetric catalysis, see: Togni (1996); Blaser et al. (2007); Dai & Hou (2010). For the synthesis, coordination behavior, and use in asymmetric catalysis of ligands based on [diphenylphosphanyl-(2-diphenylphosphanylphenyl)methyl]-ferrocene, see: Schuecker et al. (2010); Lotz et al. (2010).

Experimental top

A solution of racemic [diphenylphosphanyl-(2-diphenylphosphanylphenyl)methyl]-ferrocene (65 mg, 100 µmol; for synthesis, see: Lotz et al., 2010) in benzene (2 ml) was added to a suspension of dichlorobis(acetonitrile) palladium(II) (26 mg, 100 µmol) in benzene (1 ml) and the resulting mixture was stirred at r.t. for 16 h. After filtration, the beige precipitate was washed with benzene and diethyl ether and was dried in vacuo. Crystals suitable for X-ray diffraction were obtained from a warm saturated solution of the complex in dimethylsulfoxide upon cooling to room temperature.

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95 – 1.00 Å. Uĩso(H) = 1.2Ueq(C) for CH groups; Uĩso(H) = 1.5Ueq(C) for CH3 groups. A torsional parameter was refined for the methyl groups of the first dimethylsulfoxide molecule. Due to disorder the sulfur atom of the second dimethylsulfoxide molecule was found in two positions, S2 and S2' at both sides of its C44—C45—O2 triangle with site occupancies of 0.877 (2) and 0.123 (2). This disorder was modelled by two DMSO molecules having C44, C45, O2 in common, whereas the methyl hydrogen atoms of C44 and C45 were calculated either with S2 or S2'.

Structure description top

Chiral ferrocenyldiphosphines are widely used as ligands for enantioselective PGM catalysts (PGM = platinum group metals) because they give excellent results in asymmetric hydrogenations and other transformations (Togni, 1996; Blaser et al., 2007; Dai & Hou, 2010). Most of these ferrocenyldiphosphines are based on a planar chiral 1,2-disubstituted ferrocene backbone. Recently, it was found that chiral diphosphines lacking this planar-chiral backbone but employing ferrocene merely as a bulky substituent of an asymmetric sp3-carbon atom within a ferrocene-free 1,3-diphosphine system are also showing promising enantioselectivities for their PGM catalyst complexes (Schuecker et al., 2010; Lotz et al., 2010). Within the frame of a corresponding project the racemic title compound, (I), was synthesized and studied by X-ray diffraction before turning to the synthesis of the enantiopure equivalent recently reported by Lotz et al. (2010).

(I) is a dimethylsulfoxide (DMSO) solvate of the PdCl2 complex of racemic 2-[diphenylphosphanyl-(2-diphenylphosphanyl-phenyl)-methyl]-ferrocene and crystallizes in the centrosymmetric space group P1 with a cell content of two formula units. The asymmetric unit including the two DMSO molecules is shown in Fig. 1. Palladium has a distorted square planar coordination by two Cl atoms in terminal positions and by the two P atoms of the chelating 1,3-diphosphine ligand. The r.m.s. deviation from planarity of the PdCl2P2 fragment is 0.191 Å. Bond lengths in the Pd-complex of (I) show normal values and agree very well with those found in the crystal structure of its enantiopure chiral equivalent (Lotz et al., 2010), which crystallizes as a chloroform trisolvate in the non-centrosymmetric space group P21 and will be subsequently desgnated as (II). Disregarding a librating cyclopentadienyl ring in (II), the bond lengths in the Pd-complexes of (I) and (II) agree on the average within 0.006 Å with a maximum difference of 0.024 Å. With respect to bond angles and torsion angles the Pd-complexes in (I) and (II) show larger differences. Excluding ring bond angles the mean difference in bond angles is 2.3° with maximum differences of 7.6° for C24—P1—Pd1 and 5.6° for C18—P1—Pd1. The differences in torsion angles between (I) and (II) are even larger and lead to significantly differing conformations of both Pd-complexes, as demonstrated by Fig. 2. As result there is in (I) a distinct intramolecular π-π-stacking interaction between the phenyl ring C30—C35 and the monosubstituted cyclopentadienyl ring C1—C5 of the ferrocenyl moiety, which is entirely absent in the solid state structure of (II). Moreover are the phenyl rings of both complexes showing notably different orientations (Fig. 2). The intramolecular π-π-stacking interaction in (I) is characterized by C···C distances starting with 3.300 (2) Å (C3···C31) and a distance between ring centroids of 3.674 (2) Å (Fig. 1). The dihedral angle between the rings C1—C5 and C30—C35 is 10.85 (7)°. The torsion angles P1—C11—C1—C5 and C13—P2—C30—C35 are 160.05 (9)° and -38.11 (11)° in (I), and 104.8 (3)° and -71.1 (3)° in (II) (Lotz et al., 2010), respectively.

A packing diagram of the structure of (I) is depicted in Fig. 3. The structure is stabilized by three intramolecular and two intermolecular C—H···Cl and four intermolecular C—H···O interactions listed in Table 1. The DMSO solvent molecules are arranged in layers parallel to (101). Their mutual interaction is limited to one C42—H···O2 bond.

For general information on ferrocene-based diphosphines and their applications in asymmetric catalysis, see: Togni (1996); Blaser et al. (2007); Dai & Hou (2010). For the synthesis, coordination behavior, and use in asymmetric catalysis of ligands based on [diphenylphosphanyl-(2-diphenylphosphanylphenyl)methyl]-ferrocene, see: Schuecker et al. (2010); Lotz et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The blue line on the left links the centroids of ring C1—C5 and ring C30—C35, Cg···Cg = 3.674 (2) Å, to emphasize their π-π-stacking interaction with C3···C31 = 3.300 (2) Å as the shortest corresponding distance.
[Figure 2] Fig. 2. Comparison of the chemically identical Pd-complexes in the title compound, (I), red, and in non-racemic chloroform trisolvate (II), green, after least-squares fit of their P1—C11—C12—C13—P2 fragments (r.m.s. deviation 0.099 Å). Further positional differences (red-green) between the two molecules are: Pd1 0.55 Å, Cl1 1.38 Å, Cl2 0.70 Å, Fe1 1.18 Å, C1 0.49 Å, C18 0.36 Å, C24 0.69 Å, C29 1.12 Å, C30 0.61 Å, C35 1.45 Å, C36 0.58 Å, C41 1.41 Å. H-atoms omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of (I) in a view along the b-axis showing the layer-like arrangement of the DMSO solvent molecules parallel to (101). S2' in this diagramm shows the location of the sulfur of the minor part of the orientation disordered 2nd DMSO molecule (C and O atoms identical for major and minor orienation). H-atoms omitted for clarity.
rac-Dichlorido({(diphenylphosphanyl)[2-(diphenylphosphanyl) phenyl]methyl}ferrocene-κ2P,P')palladium(II) dimethylsulfoxide disolvate top
Crystal data top
[FePdCl2(C5H5)(C36H29P2)]·2C2H6OSZ = 2
Mr = 978.03F(000) = 1000
Triclinic, P1Dx = 1.568 Mg m3
a = 10.9878 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5275 (8) ÅCell parameters from 9252 reflections
c = 17.1405 (12) Åθ = 2.4–30.0°
α = 78.720 (2)°µ = 1.13 mm1
β = 81.796 (2)°T = 100 K
γ = 78.143 (2)°Block, orange
V = 2071.8 (3) Å30.59 × 0.45 × 0.36 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
11991 independent reflections
Radiation source: fine-focus sealed tube11375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.58, Tmax = 0.67k = 1616
37987 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.0316P]
where P = (Fo2 + 2Fc2)/3
11991 reflections(Δ/σ)max = 0.002
502 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[FePdCl2(C5H5)(C36H29P2)]·2C2H6OSγ = 78.143 (2)°
Mr = 978.03V = 2071.8 (3) Å3
Triclinic, P1Z = 2
a = 10.9878 (8) ÅMo Kα radiation
b = 11.5275 (8) ŵ = 1.13 mm1
c = 17.1405 (12) ÅT = 100 K
α = 78.720 (2)°0.59 × 0.45 × 0.36 mm
β = 81.796 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
11991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
11375 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.67Rint = 0.018
37987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
11991 reflectionsΔρmin = 0.60 e Å3
502 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.391661 (7)0.309337 (7)0.293169 (5)0.01244 (3)
Fe10.232918 (16)0.590612 (15)0.012021 (10)0.01425 (4)
Cl10.53877 (3)0.36883 (3)0.356324 (17)0.01869 (5)
Cl20.51837 (3)0.11729 (3)0.29591 (2)0.02389 (6)
P10.27906 (3)0.49620 (2)0.273579 (16)0.01138 (5)
P20.23545 (3)0.23234 (3)0.263806 (17)0.01252 (5)
C10.21553 (10)0.48140 (10)0.12186 (6)0.01334 (19)
C20.34258 (11)0.46343 (10)0.08620 (7)0.0150 (2)
H20.41270.47480.10850.018*
C30.34579 (11)0.42547 (11)0.01137 (7)0.0171 (2)
H30.42210.40670.02670.021*
C40.22132 (12)0.41994 (11)0.00016 (7)0.0186 (2)
H40.19490.39650.04720.022*
C50.14085 (11)0.45439 (11)0.06794 (7)0.0169 (2)
H50.04810.45950.07630.020*
C60.17661 (14)0.76490 (11)0.03013 (8)0.0236 (3)
H60.14860.79150.08300.028*
C70.30156 (14)0.74733 (12)0.00721 (9)0.0263 (3)
H70.37680.75950.01470.032*
C80.30069 (16)0.70912 (13)0.08132 (9)0.0312 (3)
H80.37530.68950.12050.037*
C90.17567 (17)0.70275 (13)0.08939 (8)0.0318 (3)
H90.14800.67970.13320.038*
C100.09884 (14)0.73710 (13)0.02031 (9)0.0278 (3)
H100.00640.74100.00940.033*
C110.16067 (10)0.51763 (10)0.20224 (6)0.01247 (18)
H110.12310.60520.19210.015*
C120.05649 (10)0.44928 (10)0.23955 (6)0.01310 (19)
C130.07864 (10)0.32422 (10)0.26658 (7)0.01338 (19)
C140.02352 (11)0.26738 (11)0.29802 (7)0.0159 (2)
H140.00910.18310.31700.019*
C150.14507 (11)0.33164 (11)0.30205 (7)0.0182 (2)
H150.21320.29140.32240.022*
C160.16641 (11)0.45555 (11)0.27610 (7)0.0186 (2)
H160.24920.50050.27950.022*
C170.06631 (11)0.51349 (11)0.24516 (7)0.0165 (2)
H170.08160.59810.22750.020*
C180.37044 (10)0.61313 (10)0.22960 (6)0.01320 (19)
C190.49844 (11)0.58615 (10)0.20534 (7)0.0152 (2)
H190.54060.50480.21150.018*
C200.56427 (11)0.67840 (11)0.17209 (7)0.0177 (2)
H200.65150.65990.15630.021*
C210.50256 (12)0.79743 (11)0.16188 (7)0.0186 (2)
H210.54760.86030.13930.022*
C220.37503 (12)0.82434 (11)0.18481 (7)0.0192 (2)
H220.33270.90560.17690.023*
C230.30888 (11)0.73305 (10)0.21930 (7)0.0166 (2)
H230.22190.75220.23590.020*
C240.19163 (10)0.54361 (10)0.36379 (7)0.01424 (19)
C250.24006 (12)0.49419 (12)0.43681 (7)0.0208 (2)
H250.31440.43510.43830.025*
C260.17962 (13)0.53136 (14)0.50736 (8)0.0252 (3)
H260.21360.49880.55660.030*
C270.06960 (12)0.61611 (12)0.50555 (7)0.0215 (2)
H270.02880.64200.55350.026*
C280.01911 (12)0.66312 (11)0.43358 (7)0.0188 (2)
H280.05750.71920.43280.023*
C290.08018 (11)0.62839 (10)0.36261 (7)0.0161 (2)
H290.04630.66210.31340.019*
C300.25815 (11)0.17131 (10)0.17153 (7)0.0147 (2)
C310.37585 (12)0.15872 (10)0.12720 (7)0.0175 (2)
H310.44300.18450.14420.021*
C320.39411 (12)0.10819 (11)0.05810 (7)0.0206 (2)
H320.47360.10100.02740.025*
C330.29749 (13)0.06830 (11)0.03384 (7)0.0211 (2)
H330.31160.03160.01250.025*
C340.17970 (12)0.08172 (11)0.07699 (7)0.0202 (2)
H340.11330.05480.06000.024*
C350.15956 (11)0.13480 (11)0.14520 (7)0.0175 (2)
H350.07860.14620.17390.021*
C360.21476 (11)0.10941 (10)0.34618 (7)0.0150 (2)
C370.20314 (13)0.13400 (12)0.42372 (8)0.0221 (2)
H370.20960.21160.43180.027*
C380.18220 (16)0.04528 (14)0.48908 (8)0.0297 (3)
H380.17430.06240.54180.036*
C390.17279 (14)0.06868 (13)0.47762 (9)0.0285 (3)
H390.15710.12890.52240.034*
C400.18626 (13)0.09398 (12)0.40114 (9)0.0249 (3)
H400.18150.17220.39340.030*
C410.20692 (12)0.00531 (11)0.33513 (8)0.0200 (2)
H410.21560.02320.28260.024*
S10.08549 (3)0.05862 (3)0.80570 (2)0.02640 (7)
O10.00595 (10)0.17498 (11)0.80041 (7)0.0341 (2)
C420.13223 (15)0.03229 (15)0.70553 (9)0.0303 (3)
H42A0.16430.10190.67330.045*
H42B0.06010.02010.68250.045*
H42C0.19790.03960.70580.045*
C430.23073 (15)0.09373 (19)0.82039 (10)0.0391 (4)
H43A0.22190.12290.87130.059*
H43B0.25410.15620.77650.059*
H43C0.29580.02130.82150.059*
S20.42389 (4)0.21103 (4)0.62599 (2)0.02793 (12)0.8766 (17)
O20.28718 (13)0.25821 (14)0.62440 (12)0.0647 (5)0.8766 (17)
C440.47199 (17)0.12803 (14)0.54576 (9)0.0331 (3)0.8766 (17)
H44A0.43560.05490.55770.050*0.8766 (17)
H44B0.56340.10600.53930.050*0.8766 (17)
H44C0.44340.17760.49620.050*0.8766 (17)
C450.50322 (15)0.33240 (14)0.58599 (10)0.0319 (3)0.8766 (17)
H45A0.48740.38940.62350.048*0.8766 (17)
H45B0.47280.37330.53480.048*0.8766 (17)
H45C0.59330.30160.57760.048*0.8766 (17)
S2'0.3760 (3)0.2667 (3)0.56587 (17)0.02793 (12)0.12
O2'0.28718 (13)0.25821 (14)0.62440 (12)0.0647 (5)0.12
C44'0.47199 (17)0.12803 (14)0.54576 (9)0.0331 (3)0.12
H44D0.42260.06370.55980.050*0.1234 (17)
H44E0.54300.10800.57770.050*0.1234 (17)
H44F0.50290.13640.48880.050*0.1234 (17)
C45'0.50322 (15)0.33240 (14)0.58599 (10)0.0319 (3)0.12
H45D0.47120.38760.62410.048*0.1234 (17)
H45E0.53850.37670.53600.048*0.1234 (17)
H45F0.56840.26830.60870.048*0.1234 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01130 (4)0.01214 (4)0.01363 (4)0.00192 (3)0.00133 (3)0.00182 (3)
Fe10.01697 (8)0.01527 (8)0.01054 (7)0.00299 (6)0.00161 (6)0.00210 (6)
Cl10.01414 (11)0.02339 (13)0.01954 (13)0.00457 (10)0.00433 (9)0.00308 (10)
Cl20.02092 (13)0.01617 (13)0.03140 (16)0.00267 (10)0.00350 (11)0.00233 (11)
P10.01208 (12)0.01217 (12)0.01047 (12)0.00285 (9)0.00086 (9)0.00290 (9)
P20.01299 (12)0.01205 (12)0.01289 (12)0.00271 (9)0.00021 (9)0.00369 (10)
C10.0161 (5)0.0133 (5)0.0109 (4)0.0036 (4)0.0009 (4)0.0023 (4)
C20.0157 (5)0.0161 (5)0.0131 (5)0.0020 (4)0.0013 (4)0.0036 (4)
C30.0205 (5)0.0169 (5)0.0136 (5)0.0022 (4)0.0004 (4)0.0049 (4)
C40.0246 (6)0.0203 (5)0.0136 (5)0.0077 (4)0.0009 (4)0.0067 (4)
C50.0191 (5)0.0199 (5)0.0140 (5)0.0073 (4)0.0018 (4)0.0044 (4)
C60.0333 (7)0.0153 (5)0.0191 (6)0.0003 (5)0.0011 (5)0.0014 (4)
C70.0309 (7)0.0171 (6)0.0307 (7)0.0078 (5)0.0022 (5)0.0007 (5)
C80.0439 (8)0.0208 (6)0.0226 (6)0.0060 (6)0.0107 (6)0.0013 (5)
C90.0536 (9)0.0246 (7)0.0159 (6)0.0031 (6)0.0125 (6)0.0013 (5)
C100.0272 (7)0.0240 (6)0.0275 (7)0.0025 (5)0.0081 (5)0.0030 (5)
C110.0134 (5)0.0130 (4)0.0113 (4)0.0026 (4)0.0011 (4)0.0026 (4)
C120.0136 (5)0.0160 (5)0.0111 (4)0.0038 (4)0.0009 (4)0.0047 (4)
C130.0129 (5)0.0156 (5)0.0124 (5)0.0027 (4)0.0002 (4)0.0049 (4)
C140.0158 (5)0.0171 (5)0.0162 (5)0.0056 (4)0.0003 (4)0.0048 (4)
C150.0150 (5)0.0242 (6)0.0171 (5)0.0070 (4)0.0004 (4)0.0058 (4)
C160.0126 (5)0.0237 (6)0.0195 (5)0.0018 (4)0.0013 (4)0.0057 (4)
C170.0153 (5)0.0176 (5)0.0164 (5)0.0015 (4)0.0023 (4)0.0038 (4)
C180.0158 (5)0.0143 (5)0.0107 (4)0.0048 (4)0.0014 (4)0.0030 (4)
C190.0161 (5)0.0170 (5)0.0135 (5)0.0040 (4)0.0007 (4)0.0048 (4)
C200.0171 (5)0.0224 (6)0.0148 (5)0.0070 (4)0.0008 (4)0.0043 (4)
C210.0226 (6)0.0189 (5)0.0157 (5)0.0096 (4)0.0006 (4)0.0015 (4)
C220.0229 (6)0.0151 (5)0.0189 (5)0.0039 (4)0.0013 (4)0.0013 (4)
C230.0172 (5)0.0162 (5)0.0161 (5)0.0030 (4)0.0009 (4)0.0028 (4)
C240.0160 (5)0.0163 (5)0.0117 (5)0.0056 (4)0.0004 (4)0.0040 (4)
C250.0179 (5)0.0297 (6)0.0144 (5)0.0016 (5)0.0025 (4)0.0048 (5)
C260.0232 (6)0.0396 (8)0.0132 (5)0.0037 (5)0.0021 (4)0.0076 (5)
C270.0232 (6)0.0280 (6)0.0153 (5)0.0074 (5)0.0034 (4)0.0093 (5)
C280.0209 (5)0.0182 (5)0.0178 (5)0.0037 (4)0.0023 (4)0.0069 (4)
C290.0193 (5)0.0150 (5)0.0140 (5)0.0031 (4)0.0005 (4)0.0037 (4)
C300.0185 (5)0.0122 (5)0.0126 (5)0.0015 (4)0.0002 (4)0.0027 (4)
C310.0200 (5)0.0139 (5)0.0176 (5)0.0034 (4)0.0025 (4)0.0034 (4)
C320.0254 (6)0.0164 (5)0.0173 (5)0.0022 (4)0.0053 (4)0.0040 (4)
C330.0304 (6)0.0179 (5)0.0133 (5)0.0012 (5)0.0021 (4)0.0046 (4)
C340.0242 (6)0.0201 (5)0.0169 (5)0.0001 (4)0.0068 (4)0.0059 (4)
C350.0179 (5)0.0182 (5)0.0163 (5)0.0002 (4)0.0024 (4)0.0054 (4)
C360.0153 (5)0.0146 (5)0.0150 (5)0.0038 (4)0.0003 (4)0.0023 (4)
C370.0311 (7)0.0193 (5)0.0163 (5)0.0051 (5)0.0002 (5)0.0050 (4)
C380.0436 (8)0.0285 (7)0.0150 (6)0.0068 (6)0.0017 (5)0.0019 (5)
C390.0346 (7)0.0258 (6)0.0221 (6)0.0098 (6)0.0018 (5)0.0040 (5)
C400.0305 (7)0.0179 (6)0.0274 (7)0.0099 (5)0.0037 (5)0.0000 (5)
C410.0262 (6)0.0164 (5)0.0189 (5)0.0063 (4)0.0032 (4)0.0038 (4)
S10.02146 (14)0.02863 (16)0.02352 (15)0.00114 (12)0.00013 (12)0.00370 (12)
O10.0257 (5)0.0393 (6)0.0277 (5)0.0091 (4)0.0011 (4)0.0013 (4)
C420.0300 (7)0.0348 (7)0.0313 (7)0.0087 (6)0.0048 (6)0.0139 (6)
C430.0272 (7)0.0624 (11)0.0313 (8)0.0003 (7)0.0110 (6)0.0192 (8)
S20.0338 (2)0.02294 (19)0.02234 (19)0.00013 (15)0.00061 (15)0.00055 (14)
O20.0291 (7)0.0431 (8)0.1074 (14)0.0019 (6)0.0145 (8)0.0012 (8)
C440.0452 (9)0.0317 (7)0.0280 (7)0.0149 (7)0.0077 (6)0.0078 (6)
C450.0342 (8)0.0314 (7)0.0346 (8)0.0069 (6)0.0073 (6)0.0132 (6)
S2'0.0338 (2)0.02294 (19)0.02234 (19)0.00013 (15)0.00061 (15)0.00055 (14)
O2'0.0291 (7)0.0431 (8)0.1074 (14)0.0019 (6)0.0145 (8)0.0012 (8)
C44'0.0452 (9)0.0317 (7)0.0280 (7)0.0149 (7)0.0077 (6)0.0078 (6)
C45'0.0342 (8)0.0314 (7)0.0346 (8)0.0069 (6)0.0073 (6)0.0132 (6)
Geometric parameters (Å, º) top
Pd1—P12.2414 (3)C20—H200.9500
Pd1—P22.2438 (3)C21—C221.3878 (17)
Pd1—Cl12.3452 (3)C21—H210.9500
Pd1—Cl22.3565 (3)C22—C231.3905 (16)
Fe1—C102.0429 (13)C22—H220.9500
Fe1—C92.0463 (14)C23—H230.9500
Fe1—C62.0479 (13)C24—C251.4003 (16)
Fe1—C52.0481 (12)C24—C291.4010 (16)
Fe1—C42.0482 (12)C25—C261.3941 (17)
Fe1—C32.0485 (12)C25—H250.9500
Fe1—C72.0487 (14)C26—C271.3893 (19)
Fe1—C22.0494 (11)C26—H260.9500
Fe1—C82.0502 (14)C27—C281.3905 (18)
Fe1—C12.0579 (11)C27—H270.9500
P1—C241.8175 (11)C28—C291.3919 (16)
P1—C181.8265 (11)C28—H280.9500
P1—C111.8580 (11)C29—H290.9500
P2—C301.8192 (12)C30—C351.3984 (17)
P2—C361.8197 (12)C30—C311.3987 (16)
P2—C131.8273 (11)C31—C321.3914 (17)
C1—C21.4327 (15)C31—H310.9500
C1—C51.4347 (16)C32—C331.3831 (19)
C1—C111.5233 (15)C32—H320.9500
C2—C31.4277 (16)C33—C341.3912 (18)
C2—H20.9500C33—H330.9500
C3—C41.4237 (17)C34—C351.3931 (16)
C3—H31.0000C34—H340.9500
C4—C51.4255 (16)C35—H350.9500
C4—H41.0000C36—C411.3935 (16)
C5—H51.0000C36—C371.3953 (17)
C6—C101.419 (2)C37—C381.3889 (18)
C6—C71.422 (2)C37—H370.9500
C6—H61.0000C38—C391.392 (2)
C7—C81.425 (2)C38—H380.9500
C7—H71.0000C39—C401.379 (2)
C8—C91.418 (2)C39—H390.9500
C8—H81.0000C40—C411.3951 (18)
C9—C101.426 (2)C40—H400.9500
C9—H90.9500C41—H410.9500
C10—H101.0000S1—O11.4971 (11)
C11—C121.5181 (15)S1—C421.7867 (16)
C11—H111.0000S1—C431.7872 (17)
C12—C171.3993 (15)C42—H42A0.9800
C12—C131.4068 (15)C42—H42B0.9800
C13—C141.4040 (15)C42—H42C0.9800
C14—C151.3873 (16)C43—H43A0.9800
C14—H140.9500C43—H43B0.9800
C15—C161.3916 (18)C43—H43C0.9800
C15—H150.9500S2—O21.4909 (15)
C16—C171.3907 (17)S2—C451.7727 (17)
C16—H160.9500S2—C441.7849 (16)
C17—H170.9500C44—H44A0.9800
C18—C191.3970 (16)C44—H44B0.9800
C18—C231.3979 (16)C44—H44C0.9800
C19—C201.3930 (16)C45—H45A0.9800
C19—H190.9500C45—H45B0.9800
C20—C211.3894 (17)C45—H45C0.9800
P1—Pd1—P291.550 (12)C1—C11—P1113.39 (8)
P1—Pd1—Cl192.209 (11)C12—C11—H11107.6
P2—Pd1—Cl1165.791 (11)C1—C11—H11107.6
P1—Pd1—Cl2172.603 (11)P1—C11—H11107.6
P2—Pd1—Cl288.084 (12)C17—C12—C13119.19 (10)
Cl1—Pd1—Cl289.922 (12)C17—C12—C11118.27 (10)
C10—Fe1—C940.80 (6)C13—C12—C11122.52 (10)
C10—Fe1—C640.58 (6)C14—C13—C12118.88 (10)
C9—Fe1—C668.38 (6)C14—C13—P2118.37 (9)
C10—Fe1—C5106.71 (6)C12—C13—P2122.75 (8)
C9—Fe1—C5121.41 (6)C15—C14—C13121.43 (11)
C6—Fe1—C5123.21 (5)C15—C14—H14119.3
C10—Fe1—C4122.88 (6)C13—C14—H14119.3
C9—Fe1—C4106.95 (6)C14—C15—C16119.48 (11)
C6—Fe1—C4159.41 (6)C14—C15—H15120.3
C5—Fe1—C440.73 (5)C16—C15—H15120.3
C10—Fe1—C3159.58 (6)C17—C16—C15119.89 (11)
C9—Fe1—C3123.41 (6)C17—C16—H16120.1
C6—Fe1—C3158.59 (5)C15—C16—H16120.1
C5—Fe1—C368.51 (5)C16—C17—C12121.12 (11)
C4—Fe1—C340.67 (5)C16—C17—H17119.4
C10—Fe1—C768.38 (6)C12—C17—H17119.4
C9—Fe1—C768.36 (6)C19—C18—C23119.52 (10)
C6—Fe1—C740.61 (6)C19—C18—P1122.13 (9)
C5—Fe1—C7160.03 (5)C23—C18—P1118.35 (9)
C4—Fe1—C7158.21 (6)C20—C19—C18120.09 (11)
C3—Fe1—C7122.83 (5)C20—C19—H19120.0
C10—Fe1—C2157.83 (5)C18—C19—H19120.0
C9—Fe1—C2160.25 (6)C21—C20—C19120.14 (11)
C6—Fe1—C2122.59 (5)C21—C20—H20119.9
C5—Fe1—C268.57 (5)C19—C20—H20119.9
C4—Fe1—C268.56 (5)C22—C21—C20119.88 (11)
C3—Fe1—C240.78 (4)C22—C21—H21120.1
C7—Fe1—C2108.25 (5)C20—C21—H21120.1
C10—Fe1—C868.39 (6)C21—C22—C23120.42 (11)
C9—Fe1—C840.51 (7)C21—C22—H22119.8
C6—Fe1—C868.34 (6)C23—C22—H22119.8
C5—Fe1—C8157.36 (6)C22—C23—C18119.94 (11)
C4—Fe1—C8122.00 (6)C22—C23—H23120.0
C3—Fe1—C8107.94 (5)C18—C23—H23120.0
C7—Fe1—C840.70 (6)C25—C24—C29119.37 (11)
C2—Fe1—C8124.29 (6)C25—C24—P1117.94 (9)
C10—Fe1—C1121.48 (5)C29—C24—P1122.68 (9)
C9—Fe1—C1157.32 (6)C26—C25—C24120.27 (12)
C6—Fe1—C1107.35 (5)C26—C25—H25119.9
C5—Fe1—C140.90 (4)C24—C25—H25119.9
C4—Fe1—C168.78 (5)C27—C26—C25119.95 (12)
C3—Fe1—C168.75 (5)C27—C26—H26120.0
C7—Fe1—C1123.83 (5)C25—C26—H26120.0
C2—Fe1—C140.83 (4)C26—C27—C28120.10 (11)
C8—Fe1—C1160.61 (6)C26—C27—H27120.0
C24—P1—C18105.64 (5)C28—C27—H27120.0
C24—P1—C11105.04 (5)C27—C28—C29120.33 (12)
C18—P1—C11102.85 (5)C27—C28—H28119.8
C24—P1—Pd1114.22 (4)C29—C28—H28119.8
C18—P1—Pd1114.46 (4)C28—C29—C24119.94 (11)
C11—P1—Pd1113.50 (4)C28—C29—H29120.0
C30—P2—C36107.35 (5)C24—C29—H29120.0
C30—P2—C13105.54 (5)C35—C30—C31119.63 (11)
C36—P2—C13101.44 (5)C35—C30—P2120.61 (9)
C30—P2—Pd1117.87 (4)C31—C30—P2119.75 (9)
C36—P2—Pd1104.80 (4)C32—C31—C30119.66 (12)
C13—P2—Pd1118.14 (4)C32—C31—H31120.2
C2—C1—C5107.21 (10)C30—C31—H31120.2
C2—C1—C11130.02 (10)C33—C32—C31120.50 (12)
C5—C1—C11122.74 (10)C33—C32—H32119.7
C2—C1—Fe169.26 (6)C31—C32—H32119.7
C5—C1—Fe169.18 (6)C32—C33—C34120.25 (11)
C11—C1—Fe1128.18 (8)C32—C33—H33119.9
C3—C2—C1108.31 (10)C34—C33—H33119.9
C3—C2—Fe169.58 (7)C33—C34—C35119.71 (12)
C1—C2—Fe169.91 (6)C33—C34—H34120.1
C3—C2—H2125.8C35—C34—H34120.1
C1—C2—H2125.8C34—C35—C30120.18 (11)
Fe1—C2—H2126.2C34—C35—H35119.9
C4—C3—C2108.07 (10)C30—C35—H35119.9
C4—C3—Fe169.65 (7)C41—C36—C37119.36 (11)
C2—C3—Fe169.65 (7)C41—C36—P2123.21 (9)
C4—C3—H3126.0C37—C36—P2117.41 (9)
C2—C3—H3126.0C38—C37—C36120.17 (12)
Fe1—C3—H3126.0C38—C37—H37119.9
C3—C4—C5108.05 (10)C36—C37—H37119.9
C3—C4—Fe169.67 (7)C37—C38—C39120.20 (13)
C5—C4—Fe169.63 (7)C37—C38—H38119.9
C3—C4—H4126.0C39—C38—H38119.9
C5—C4—H4126.0C40—C39—C38119.83 (12)
Fe1—C4—H4126.0C40—C39—H39120.1
C4—C5—C1108.36 (10)C38—C39—H39120.1
C4—C5—Fe169.64 (7)C39—C40—C41120.36 (12)
C1—C5—Fe169.92 (6)C39—C40—H40119.8
C4—C5—H5125.8C41—C40—H40119.8
C1—C5—H5125.8C36—C41—C40120.07 (12)
Fe1—C5—H5125.8C36—C41—H41120.0
C10—C6—C7108.11 (12)C40—C41—H41120.0
C10—C6—Fe169.52 (8)O1—S1—C42106.70 (7)
C7—C6—Fe169.73 (8)O1—S1—C43105.72 (8)
C10—C6—H6125.9C42—S1—C4395.67 (7)
C7—C6—H6125.9S1—C42—H42A109.5
Fe1—C6—H6125.9S1—C42—H42B109.5
C6—C7—C8107.89 (13)H42A—C42—H42B109.5
C6—C7—Fe169.66 (8)S1—C42—H42C109.5
C8—C7—Fe169.71 (8)H42A—C42—H42C109.5
C6—C7—H7126.1H42B—C42—H42C109.5
C8—C7—H7126.1S1—C43—H43A109.5
Fe1—C7—H7126.1S1—C43—H43B109.5
C9—C8—C7108.01 (13)H43A—C43—H43B109.5
C9—C8—Fe169.60 (8)S1—C43—H43C109.5
C7—C8—Fe169.59 (8)H43A—C43—H43C109.5
C9—C8—H8126.0H43B—C43—H43C109.5
C7—C8—H8126.0O2—S2—C45107.64 (8)
Fe1—C8—H8126.0O2—S2—C44106.84 (10)
C8—C9—C10108.00 (13)C45—S2—C4497.72 (8)
C8—C9—Fe169.90 (8)S2—C44—H44A109.5
C10—C9—Fe169.47 (8)S2—C44—H44B109.5
C8—C9—H9126.0H44A—C44—H44B109.5
C10—C9—H9126.0S2—C44—H44C109.5
Fe1—C9—H9126.2H44A—C44—H44C109.5
C6—C10—C9107.99 (13)H44B—C44—H44C109.5
C6—C10—Fe169.90 (8)S2—C45—H45A109.5
C9—C10—Fe169.72 (8)S2—C45—H45B109.5
C6—C10—H10126.0H45A—C45—H45B109.5
C9—C10—H10126.0S2—C45—H45C109.5
Fe1—C10—H10126.0H45A—C45—H45C109.5
C12—C11—C1110.27 (9)H45B—C45—H45C109.5
C12—C11—P1110.01 (7)
P2—Pd1—P1—C2493.37 (4)C4—Fe1—C7—C844.01 (19)
Cl1—Pd1—P1—C2472.92 (4)C3—Fe1—C7—C879.17 (10)
P2—Pd1—P1—C18144.67 (4)C2—Fe1—C7—C8121.76 (9)
Cl1—Pd1—P1—C1849.04 (4)C1—Fe1—C7—C8164.19 (9)
P2—Pd1—P1—C1127.02 (4)C6—C7—C8—C90.22 (15)
Cl1—Pd1—P1—C11166.69 (4)Fe1—C7—C8—C959.19 (10)
P1—Pd1—P2—C30111.23 (4)C6—C7—C8—Fe159.42 (9)
Cl1—Pd1—P2—C30143.47 (5)C10—Fe1—C8—C937.83 (9)
Cl2—Pd1—P2—C3061.37 (4)C6—Fe1—C8—C981.64 (9)
P1—Pd1—P2—C36129.51 (4)C5—Fe1—C8—C943.75 (18)
Cl1—Pd1—P2—C3624.21 (6)C4—Fe1—C8—C978.34 (10)
Cl2—Pd1—P2—C3657.88 (4)C3—Fe1—C8—C9120.80 (9)
P1—Pd1—P2—C1317.55 (4)C7—Fe1—C8—C9119.36 (13)
Cl1—Pd1—P2—C1387.75 (6)C2—Fe1—C8—C9162.85 (8)
Cl2—Pd1—P2—C13169.84 (4)C1—Fe1—C8—C9162.33 (14)
C10—Fe1—C1—C2162.23 (8)C10—Fe1—C8—C781.54 (9)
C9—Fe1—C1—C2164.57 (13)C9—Fe1—C8—C7119.36 (13)
C6—Fe1—C1—C2120.11 (7)C6—Fe1—C8—C737.73 (9)
C5—Fe1—C1—C2118.84 (9)C5—Fe1—C8—C7163.11 (13)
C4—Fe1—C1—C281.34 (7)C4—Fe1—C8—C7162.30 (8)
C3—Fe1—C1—C237.56 (7)C3—Fe1—C8—C7119.83 (9)
C7—Fe1—C1—C278.53 (8)C2—Fe1—C8—C777.79 (10)
C8—Fe1—C1—C246.18 (18)C1—Fe1—C8—C743.0 (2)
C10—Fe1—C1—C578.93 (9)C7—C8—C9—C100.04 (16)
C9—Fe1—C1—C545.73 (16)Fe1—C8—C9—C1059.23 (10)
C6—Fe1—C1—C5121.05 (8)C7—C8—C9—Fe159.19 (10)
C4—Fe1—C1—C537.50 (7)C10—Fe1—C9—C8119.24 (13)
C3—Fe1—C1—C581.28 (7)C6—Fe1—C9—C881.53 (9)
C7—Fe1—C1—C5162.63 (8)C5—Fe1—C9—C8161.83 (8)
C2—Fe1—C1—C5118.84 (9)C4—Fe1—C9—C8119.74 (9)
C8—Fe1—C1—C5165.02 (15)C3—Fe1—C9—C878.23 (10)
C10—Fe1—C1—C1136.99 (12)C7—Fe1—C9—C837.69 (9)
C9—Fe1—C1—C1170.19 (18)C2—Fe1—C9—C846.1 (2)
C6—Fe1—C1—C115.13 (11)C1—Fe1—C9—C8164.85 (12)
C5—Fe1—C1—C11115.92 (12)C6—Fe1—C9—C1037.71 (9)
C4—Fe1—C1—C11153.42 (11)C5—Fe1—C9—C1078.93 (10)
C3—Fe1—C1—C11162.80 (11)C4—Fe1—C9—C10121.02 (9)
C7—Fe1—C1—C1146.71 (12)C3—Fe1—C9—C10162.53 (8)
C2—Fe1—C1—C11125.24 (12)C7—Fe1—C9—C1081.55 (10)
C8—Fe1—C1—C1179.06 (19)C2—Fe1—C9—C10165.36 (14)
C5—C1—C2—C30.18 (13)C8—Fe1—C9—C10119.24 (13)
C11—C1—C2—C3177.79 (11)C1—Fe1—C9—C1045.61 (18)
Fe1—C1—C2—C359.17 (8)C7—C6—C10—C90.30 (15)
C5—C1—C2—Fe159.00 (8)Fe1—C6—C10—C959.55 (10)
C11—C1—C2—Fe1123.04 (12)C7—C6—C10—Fe159.25 (9)
C10—Fe1—C2—C3163.17 (14)C8—C9—C10—C60.16 (16)
C9—Fe1—C2—C342.78 (19)Fe1—C9—C10—C659.66 (9)
C6—Fe1—C2—C3161.90 (7)C8—C9—C10—Fe159.50 (10)
C5—Fe1—C2—C381.52 (7)C9—Fe1—C10—C6119.06 (13)
C4—Fe1—C2—C337.61 (7)C5—Fe1—C10—C6121.92 (8)
C7—Fe1—C2—C3119.46 (8)C4—Fe1—C10—C6163.50 (8)
C8—Fe1—C2—C377.31 (9)C3—Fe1—C10—C6164.95 (13)
C1—Fe1—C2—C3119.55 (10)C7—Fe1—C10—C637.57 (8)
C10—Fe1—C2—C143.62 (17)C2—Fe1—C10—C647.85 (18)
C9—Fe1—C2—C1162.33 (16)C8—Fe1—C10—C681.50 (9)
C6—Fe1—C2—C178.55 (8)C1—Fe1—C10—C679.79 (9)
C5—Fe1—C2—C138.03 (6)C6—Fe1—C10—C9119.06 (13)
C4—Fe1—C2—C181.94 (7)C5—Fe1—C10—C9119.01 (9)
C3—Fe1—C2—C1119.55 (10)C4—Fe1—C10—C977.44 (10)
C7—Fe1—C2—C1120.99 (7)C3—Fe1—C10—C945.9 (2)
C8—Fe1—C2—C1163.14 (7)C7—Fe1—C10—C981.50 (10)
C1—C2—C3—C40.11 (13)C2—Fe1—C10—C9166.92 (13)
Fe1—C2—C3—C459.26 (8)C8—Fe1—C10—C937.56 (10)
C1—C2—C3—Fe159.38 (8)C1—Fe1—C10—C9161.15 (9)
C10—Fe1—C3—C442.40 (18)C2—C1—C11—C12141.51 (12)
C9—Fe1—C3—C476.60 (9)C5—C1—C11—C1236.18 (14)
C6—Fe1—C3—C4165.15 (13)Fe1—C1—C11—C12124.36 (9)
C5—Fe1—C3—C437.68 (7)C2—C1—C11—P117.64 (15)
C7—Fe1—C3—C4160.86 (8)C5—C1—C11—P1160.05 (9)
C2—Fe1—C3—C4119.36 (10)Fe1—C1—C11—P1111.78 (9)
C8—Fe1—C3—C4118.54 (8)C24—P1—C11—C1255.45 (8)
C1—Fe1—C3—C481.76 (7)C18—P1—C11—C12165.79 (7)
C10—Fe1—C3—C2161.76 (15)Pd1—P1—C11—C1270.00 (8)
C9—Fe1—C3—C2164.04 (8)C24—P1—C11—C1179.46 (8)
C6—Fe1—C3—C245.79 (16)C18—P1—C11—C170.20 (9)
C5—Fe1—C3—C281.68 (7)Pd1—P1—C11—C154.01 (8)
C4—Fe1—C3—C2119.36 (10)C1—C11—C12—C17111.01 (11)
C7—Fe1—C3—C279.78 (9)P1—C11—C12—C17123.19 (10)
C8—Fe1—C3—C2122.09 (8)C1—C11—C12—C1367.35 (13)
C1—Fe1—C3—C237.61 (7)P1—C11—C12—C1358.45 (12)
C2—C3—C4—C50.01 (14)C17—C12—C13—C140.37 (16)
Fe1—C3—C4—C559.26 (9)C11—C12—C13—C14177.97 (10)
C2—C3—C4—Fe159.26 (8)C17—C12—C13—P2178.78 (8)
C10—Fe1—C4—C3163.73 (7)C11—C12—C13—P22.87 (15)
C9—Fe1—C4—C3121.91 (8)C30—P2—C13—C1485.14 (10)
C6—Fe1—C4—C3164.58 (13)C36—P2—C13—C1426.70 (10)
C5—Fe1—C4—C3119.34 (10)Pd1—P2—C13—C14140.51 (8)
C7—Fe1—C4—C347.93 (17)C30—P2—C13—C1295.70 (10)
C2—Fe1—C4—C337.70 (7)C36—P2—C13—C12152.46 (9)
C8—Fe1—C4—C380.22 (9)Pd1—P2—C13—C1238.64 (11)
C1—Fe1—C4—C381.68 (7)C12—C13—C14—C150.72 (17)
C10—Fe1—C4—C576.93 (9)P2—C13—C14—C15179.91 (9)
C9—Fe1—C4—C5118.75 (8)C13—C14—C15—C161.47 (18)
C6—Fe1—C4—C545.24 (17)C14—C15—C16—C171.10 (18)
C3—Fe1—C4—C5119.34 (10)C15—C16—C17—C120.02 (18)
C7—Fe1—C4—C5167.27 (14)C13—C12—C17—C160.72 (17)
C2—Fe1—C4—C581.63 (7)C11—C12—C17—C16177.69 (11)
C8—Fe1—C4—C5160.44 (8)C24—P1—C18—C19130.75 (10)
C1—Fe1—C4—C537.65 (7)C11—P1—C18—C19119.35 (10)
C3—C4—C5—C10.10 (14)Pd1—P1—C18—C194.22 (11)
Fe1—C4—C5—C159.39 (8)C24—P1—C18—C2350.03 (10)
C3—C4—C5—Fe159.29 (9)C11—P1—C18—C2359.86 (10)
C2—C1—C5—C40.17 (13)Pd1—P1—C18—C23176.57 (8)
C11—C1—C5—C4177.98 (10)C23—C18—C19—C200.80 (17)
Fe1—C1—C5—C459.22 (8)P1—C18—C19—C20180.00 (9)
C2—C1—C5—Fe159.05 (8)C18—C19—C20—C210.91 (17)
C11—C1—C5—Fe1122.80 (10)C19—C20—C21—C220.07 (18)
C10—Fe1—C5—C4121.34 (8)C20—C21—C22—C231.16 (19)
C9—Fe1—C5—C479.30 (9)C21—C22—C23—C181.27 (18)
C6—Fe1—C5—C4162.63 (8)C19—C18—C23—C220.28 (17)
C3—Fe1—C5—C437.63 (7)P1—C18—C23—C22178.95 (9)
C7—Fe1—C5—C4166.14 (15)C18—P1—C24—C2597.61 (10)
C2—Fe1—C5—C481.60 (8)C11—P1—C24—C25154.07 (9)
C8—Fe1—C5—C447.55 (17)Pd1—P1—C24—C2529.07 (11)
C1—Fe1—C5—C4119.57 (10)C18—P1—C24—C2981.20 (10)
C10—Fe1—C5—C1119.09 (7)C11—P1—C24—C2927.12 (11)
C9—Fe1—C5—C1161.13 (7)Pd1—P1—C24—C29152.12 (8)
C6—Fe1—C5—C177.80 (8)C29—C24—C25—C261.65 (19)
C4—Fe1—C5—C1119.57 (10)P1—C24—C25—C26177.21 (11)
C3—Fe1—C5—C181.94 (7)C24—C25—C26—C271.2 (2)
C7—Fe1—C5—C146.57 (18)C25—C26—C27—C280.6 (2)
C2—Fe1—C5—C137.97 (6)C26—C27—C28—C291.9 (2)
C8—Fe1—C5—C1167.12 (13)C27—C28—C29—C241.44 (18)
C9—Fe1—C6—C1037.91 (9)C25—C24—C29—C280.33 (17)
C5—Fe1—C6—C1076.33 (9)P1—C24—C29—C28178.47 (9)
C4—Fe1—C6—C1042.71 (18)C36—P2—C30—C3569.50 (11)
C3—Fe1—C6—C10165.63 (13)C13—P2—C30—C3538.11 (11)
C7—Fe1—C6—C10119.45 (12)Pd1—P2—C30—C35172.59 (8)
C2—Fe1—C6—C10160.61 (8)C36—P2—C30—C31109.34 (10)
C8—Fe1—C6—C1081.64 (10)C13—P2—C30—C31143.06 (9)
C1—Fe1—C6—C10118.44 (8)Pd1—P2—C30—C318.57 (11)
C10—Fe1—C6—C7119.45 (12)C35—C30—C31—C321.05 (17)
C9—Fe1—C6—C781.54 (10)P2—C30—C31—C32177.80 (9)
C5—Fe1—C6—C7164.22 (8)C30—C31—C32—C331.24 (18)
C4—Fe1—C6—C7162.16 (13)C31—C32—C33—C342.01 (19)
C3—Fe1—C6—C746.19 (17)C32—C33—C34—C350.47 (19)
C2—Fe1—C6—C779.94 (9)C33—C34—C35—C301.83 (18)
C8—Fe1—C6—C737.81 (9)C31—C30—C35—C342.58 (17)
C1—Fe1—C6—C7122.11 (8)P2—C30—C35—C34176.26 (9)
C10—C6—C7—C80.32 (15)C30—P2—C36—C415.45 (12)
Fe1—C6—C7—C859.45 (9)C13—P2—C36—C41105.01 (11)
C10—C6—C7—Fe159.12 (9)Pd1—P2—C36—C41131.55 (10)
C10—Fe1—C7—C637.54 (8)C30—P2—C36—C37176.27 (10)
C9—Fe1—C7—C681.59 (9)C13—P2—C36—C3773.27 (11)
C5—Fe1—C7—C641.8 (2)Pd1—P2—C36—C3750.17 (10)
C4—Fe1—C7—C6163.12 (13)C41—C36—C37—C380.9 (2)
C3—Fe1—C7—C6161.73 (8)P2—C36—C37—C38177.46 (11)
C2—Fe1—C7—C6119.13 (8)C36—C37—C38—C390.1 (2)
C8—Fe1—C7—C6119.11 (13)C37—C38—C39—C401.0 (2)
C1—Fe1—C7—C676.70 (9)C38—C39—C40—C411.2 (2)
C10—Fe1—C7—C881.57 (10)C37—C36—C41—C400.70 (19)
C9—Fe1—C7—C837.52 (9)P2—C36—C41—C40177.56 (10)
C6—Fe1—C7—C8119.11 (13)C39—C40—C41—C360.4 (2)
C5—Fe1—C7—C8160.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i1.002.403.3365 (17)156
C15—H15···Cl1ii0.952.703.4262 (12)133
C19—H19···Cl10.952.663.2410 (12)120
C23—H23···O1i0.952.473.3239 (16)149
C25—H25···Cl10.952.703.5075 (13)143
C29—H29···O1i0.952.453.3201 (16)152
C31—H31···Cl20.952.763.3893 (13)125
C42—H42A···O20.982.423.368 (2)163
C45—H45A···Cl1iii0.982.833.6881 (16)147
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[FePdCl2(C5H5)(C36H29P2)]·2C2H6OS
Mr978.03
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9878 (8), 11.5275 (8), 17.1405 (12)
α, β, γ (°)78.720 (2), 81.796 (2), 78.143 (2)
V3)2071.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.59 × 0.45 × 0.36
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.58, 0.67
No. of measured, independent and
observed [I > 2σ(I)] reflections
37987, 11991, 11375
Rint0.018
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.02
No. of reflections11991
No. of parameters502
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.60

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i1.002.403.3365 (17)155.7
C15—H15···Cl1ii0.952.703.4262 (12)133.3
C19—H19···Cl10.952.663.2410 (12)119.7
C23—H23···O1i0.952.473.3239 (16)148.9
C25—H25···Cl10.952.703.5075 (13)143.2
C29—H29···O1i0.952.453.3201 (16)152.3
C31—H31···Cl20.952.763.3893 (13)124.5
C42—H42A···O20.982.423.368 (2)162.6
C45—H45A···Cl1iii0.982.833.6881 (16)147.0
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was kindly supported by SOLVIAS AG.

References

First citationBlaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240–1250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SMART, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, L.-X. & Hou, X.-L. (2010). Chiral Ferrocenes in Asymmetric Catalysis. Weinheim: Wiley-VCH.  Google Scholar
First citationLotz, M., Schuecker, R., Mereiter, K. & Knochel, P. (2010). Organometallics, 29, 6503–6508.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchuecker, R., Weissensteiner, W., Mereiter, K., Lotz, M. & Knochel, P. (2010). Organometallics, 29, 6443–6458.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475–1477.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds