organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,13-Disulfamoyl-1,9-di­aza­tetra­cyclo[7.7.1.02,7.010,15]heptadeca-2(7),3,5,10,12,14-hexaen-1-ium chloride

aTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: JINSWw@yahoo.cn

(Received 31 August 2011; accepted 19 September 2011; online 30 September 2011)

In the title salt, C15H17N4O4S2+·Cl, the chloride anion is disordered over two positions with occupancies of 0.776 (6) and 0.224 (6). The cation adopts an L shape and the dihedral angle between the benzene rings is 82.5 (3)°. In the crystal, inversion dimers of cations linked by pairs of N—H⋯N hydrogen bonds occur, with the bond arising from the protonated N atom. The cationic dimers are linked into chains via the disordered chloride ions by way of N—H⋯Cl hydrogen bonds and N—H⋯O, C—H⋯O and C—H⋯Cl inter­actions also occur, which help to consolidate the three-dimensional network.

Related literature

For a related structure and background references to supra­molecular networks, see: Jin et al. (2010[Jin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128-136.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N4O4S2+·Cl

  • Mr = 416.90

  • Monoclinic, P 21 /c

  • a = 11.5247 (11) Å

  • b = 18.5693 (16) Å

  • c = 8.1489 (7) Å

  • β = 109.177 (1)°

  • V = 1647.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 K

  • 0.40 × 0.33 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.869

  • 8082 measured reflections

  • 2895 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.219

  • S = 1.08

  • 2895 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.26 3.081 (8) 153
N1—H1B⋯Cl1ii 0.89 2.26 3.141 (7) 170
N2—H2A⋯Cl1iii 0.89 2.19 3.042 (6) 160
N2—H2B⋯O1iv 0.89 2.46 3.109 (7) 130
N2—H2B⋯O2iv 0.89 2.36 3.240 (7) 168
N4—H4⋯N2v 0.91 2.02 2.922 (7) 173
C12—H12⋯O3vi 0.93 2.49 3.416 (7) 175
C13—H13A⋯Cl1vii 0.97 2.76 3.514 (7) 135
C14—H14A⋯O4i 0.97 2.50 3.212 (9) 130
C15—H15A⋯O3viii 0.97 2.52 3.443 (7) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z+2; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) x, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic salts based on hydrogen bonding are a research field receiving great attention in recent years. As an extension of our study concentrating on hydrogen bonded assembly of organic acid and organic base (Jin et al., 2010), herein we report the crystal structure of 2,9-Dibenzenesulfonamide-1,5-diazaium-bicyclo[3.3.1]dimethanodibenzo chloride.

The crystal of the title compound of the formula C15H17ClN4O4S2 was obtained by recrystallization of 2,9-Dibenzenesulfonamide-1,5-diazaium- bicyclo[3.3.1]dimethanodibenzo from methanol and HCl solution.

The compound is a salt. The asymmetric unit of the compound consists of one monocation, and one chloride anion (Fig. 1), respectively.

The chloride anion is disordered over two positions with occupancies of 0.78, and 0.22 respectively. In the compound there is a mirror plane running through the C15 atom. Two cations formed dimers via the N—H···N hydrogen bond between the NH+ cation and the amino group with N—N separation of 2.922 (6) A%. The cation dimers were connected together via the chloride anion through CH—Cl, Cl—O, and N—H···Cl contacts to form one-dimensional chain (A) running along the b axis direction (Fig. 2). Such adjacent chains were combined together by the CH2—O, and CH—O interactions to form two-dimensional sheet extending along the bc plane. Such kind of sheets were stacked along the a axis direction via the CH2—Cl interactions to form three-dimensional network structure. It is worthy to note that there are one-dimensional chains (B) that are running through the three-dimensional network. And such kind of chains were connected with the three-dimensional network through the N—H···S, and N—H···O interactions.

Related literature top

For a related structure and background references to supramolecular networks, see: Jin et al. (2010).

Experimental top

A solution of 2,9-dibenzenesulfonamide-1,5-diazabicyclo[3.3.1]dimethanodibenzo (38 mg, 0.1 mmol) was dissolved in 5 ml of methanol and 1 ml of conc. HCl under continuous stirring. The solution was stirred for about 1 h at room temperature, then the solution was filtered into a test tube. The solution was left standing at room temperature for several days, colorless block crystals were isolated after slow evaporation of the solution in air at ambient temperature. The crystals were collected and dried in air to give the title compound.

Refinement top

Hydrogen atoms attached to the C atoms were placed in calculated positions with d(C—H) = 0.93–0.97 Å. Positions of the hydrogen atoms at the NH groups were located from the Fourier difference syntheses and refined independently. All Uiso values were restrained on Ueq values of the parent atoms.

Structure description top

Organic salts based on hydrogen bonding are a research field receiving great attention in recent years. As an extension of our study concentrating on hydrogen bonded assembly of organic acid and organic base (Jin et al., 2010), herein we report the crystal structure of 2,9-Dibenzenesulfonamide-1,5-diazaium-bicyclo[3.3.1]dimethanodibenzo chloride.

The crystal of the title compound of the formula C15H17ClN4O4S2 was obtained by recrystallization of 2,9-Dibenzenesulfonamide-1,5-diazaium- bicyclo[3.3.1]dimethanodibenzo from methanol and HCl solution.

The compound is a salt. The asymmetric unit of the compound consists of one monocation, and one chloride anion (Fig. 1), respectively.

The chloride anion is disordered over two positions with occupancies of 0.78, and 0.22 respectively. In the compound there is a mirror plane running through the C15 atom. Two cations formed dimers via the N—H···N hydrogen bond between the NH+ cation and the amino group with N—N separation of 2.922 (6) A%. The cation dimers were connected together via the chloride anion through CH—Cl, Cl—O, and N—H···Cl contacts to form one-dimensional chain (A) running along the b axis direction (Fig. 2). Such adjacent chains were combined together by the CH2—O, and CH—O interactions to form two-dimensional sheet extending along the bc plane. Such kind of sheets were stacked along the a axis direction via the CH2—Cl interactions to form three-dimensional network structure. It is worthy to note that there are one-dimensional chains (B) that are running through the three-dimensional network. And such kind of chains were connected with the three-dimensional network through the N—H···S, and N—H···O interactions.

For a related structure and background references to supramolecular networks, see: Jin et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional doublechain formed through CH—O, and CH2—O interactions running along the a axis direction.
5,13-Disulfamoyl-1,9-diazatetracyclo[7.7.1.02,7.010,15]heptadeca- 2(7),3,5,10,12,14-hexaen-1-ium chloride top
Crystal data top
C15H17N4O4S2+·ClZ = 4
Mr = 416.90F(000) = 864
Monoclinic, P21/cDx = 1.681 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.5247 (11) ŵ = 0.52 mm1
b = 18.5693 (16) ÅT = 298 K
c = 8.1489 (7) ÅBlock, colorless
β = 109.177 (1)°0.40 × 0.33 × 0.27 mm
V = 1647.1 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2895 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1113
Tmin = 0.815, Tmax = 0.869k = 2122
8082 measured reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0953P)2 + 5.3108P]
where P = (Fo2 + 2Fc2)/3
2895 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
C15H17N4O4S2+·ClV = 1647.1 (3) Å3
Mr = 416.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5247 (11) ŵ = 0.52 mm1
b = 18.5693 (16) ÅT = 298 K
c = 8.1489 (7) Å0.40 × 0.33 × 0.27 mm
β = 109.177 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2895 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1944 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.869Rint = 0.042
8082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.08Δρmax = 0.52 e Å3
2895 reflectionsΔρmin = 0.96 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.1069 (3)0.02872 (18)0.3829 (5)0.0948 (11)0.776 (6)
Cl1'0.0764 (12)0.0213 (7)0.4728 (19)0.0948 (11)0.224 (6)
N11.2145 (4)0.1555 (3)0.6436 (7)0.0489 (13)
H1A1.22890.19650.59690.073*
H1B1.18130.12360.55980.073*
N20.2583 (4)0.4134 (3)0.6686 (6)0.0436 (12)
H2A0.20800.41920.73020.065*
H2B0.22620.38150.58430.065*
N30.6862 (4)0.3219 (2)0.2614 (5)0.0342 (10)
N40.7476 (4)0.4335 (2)0.4164 (6)0.0350 (10)
H40.75070.48180.39970.042*
O11.0815 (4)0.1016 (2)0.7888 (6)0.0581 (12)
O21.1807 (4)0.2171 (3)0.8899 (6)0.0684 (14)
O30.4230 (4)0.4292 (3)0.9437 (5)0.0658 (14)
O40.3793 (6)0.3081 (3)0.8158 (8)0.0860 (18)
S11.12094 (13)0.17065 (8)0.74765 (18)0.0425 (4)
S20.38898 (14)0.38395 (8)0.79416 (19)0.0440 (4)
C10.9909 (5)0.2165 (3)0.6090 (7)0.0349 (12)
C20.9842 (5)0.2910 (3)0.6153 (7)0.0356 (12)
H21.04700.31690.69470.043*
C30.8829 (4)0.3271 (3)0.5022 (7)0.0325 (11)
C40.7906 (4)0.2870 (3)0.3842 (6)0.0318 (11)
C50.7975 (5)0.2124 (3)0.3834 (7)0.0361 (12)
H50.73370.18610.30710.043*
C60.8967 (5)0.1769 (3)0.4933 (7)0.0381 (12)
H60.90110.12700.49070.046*
C70.4950 (5)0.3985 (3)0.6817 (7)0.0336 (12)
C80.4905 (4)0.3543 (3)0.5427 (7)0.0328 (11)
H80.43140.31830.50800.039*
C90.5745 (4)0.3639 (3)0.4549 (6)0.0288 (11)
C100.6603 (4)0.4199 (3)0.5082 (6)0.0301 (11)
C110.6638 (5)0.4636 (3)0.6472 (7)0.0371 (12)
H110.72230.50000.68150.045*
C120.5815 (5)0.4538 (3)0.7349 (7)0.0394 (13)
H120.58330.48340.82780.047*
C130.8742 (5)0.4079 (3)0.5131 (8)0.0394 (13)
H13A0.89620.42230.63390.047*
H13B0.93200.43020.46480.047*
C140.5740 (5)0.3144 (3)0.3071 (7)0.0352 (12)
H14A0.56640.26490.34040.042*
H14B0.50340.32540.20620.042*
C150.7088 (5)0.3973 (3)0.2424 (7)0.0421 (13)
H15A0.63480.41990.16640.051*
H15B0.77280.40260.19010.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.093 (2)0.091 (2)0.107 (3)0.0023 (16)0.0411 (18)0.0070 (19)
Cl1'0.093 (2)0.091 (2)0.107 (3)0.0023 (16)0.0411 (18)0.0070 (19)
N10.041 (3)0.047 (3)0.063 (3)0.006 (2)0.023 (2)0.008 (2)
N20.046 (3)0.049 (3)0.037 (3)0.004 (2)0.015 (2)0.007 (2)
N30.035 (2)0.038 (2)0.031 (2)0.0010 (19)0.0125 (18)0.0018 (19)
N40.037 (2)0.027 (2)0.043 (2)0.0031 (18)0.016 (2)0.0048 (19)
O10.061 (3)0.058 (3)0.058 (3)0.007 (2)0.023 (2)0.023 (2)
O20.063 (3)0.072 (3)0.056 (3)0.017 (2)0.001 (2)0.014 (2)
O30.051 (3)0.113 (4)0.034 (2)0.005 (3)0.015 (2)0.011 (2)
O40.115 (4)0.051 (3)0.127 (5)0.026 (3)0.087 (4)0.040 (3)
S10.0381 (8)0.0485 (9)0.0396 (8)0.0072 (6)0.0111 (6)0.0007 (6)
S20.0533 (9)0.0450 (9)0.0411 (8)0.0103 (7)0.0256 (7)0.0109 (6)
C10.030 (3)0.038 (3)0.039 (3)0.002 (2)0.015 (2)0.001 (2)
C20.030 (3)0.038 (3)0.041 (3)0.006 (2)0.013 (2)0.007 (2)
C30.030 (3)0.035 (3)0.037 (3)0.001 (2)0.019 (2)0.003 (2)
C40.030 (3)0.037 (3)0.032 (3)0.000 (2)0.014 (2)0.003 (2)
C50.028 (3)0.040 (3)0.039 (3)0.001 (2)0.010 (2)0.010 (2)
C60.041 (3)0.031 (3)0.047 (3)0.002 (2)0.020 (3)0.005 (2)
C70.036 (3)0.034 (3)0.033 (3)0.009 (2)0.015 (2)0.004 (2)
C80.027 (3)0.033 (3)0.035 (3)0.003 (2)0.007 (2)0.001 (2)
C90.026 (2)0.028 (3)0.030 (3)0.006 (2)0.005 (2)0.002 (2)
C100.030 (3)0.026 (3)0.031 (3)0.006 (2)0.005 (2)0.004 (2)
C110.041 (3)0.027 (3)0.041 (3)0.004 (2)0.011 (2)0.005 (2)
C120.049 (3)0.035 (3)0.033 (3)0.007 (2)0.012 (2)0.004 (2)
C130.031 (3)0.035 (3)0.052 (3)0.003 (2)0.013 (2)0.000 (2)
C140.030 (3)0.039 (3)0.034 (3)0.002 (2)0.007 (2)0.007 (2)
C150.047 (3)0.048 (3)0.036 (3)0.003 (3)0.020 (3)0.007 (3)
Geometric parameters (Å, º) top
Cl1'—Cl1'i2.11 (3)C2—H20.9300
N1—S11.600 (5)C3—C41.392 (7)
N1—H1A0.8900C3—C131.509 (7)
N1—H1B0.8900C4—C51.388 (7)
N2—S21.613 (5)C5—C61.367 (7)
N2—H2A0.8900C5—H50.9300
N2—H2B0.8900C6—H60.9300
N3—C151.441 (7)C7—C81.386 (7)
N3—C41.442 (6)C7—C121.397 (8)
N3—C141.465 (6)C8—C91.391 (7)
N4—C101.460 (6)C8—H80.9300
N4—C131.490 (7)C9—C101.401 (7)
N4—C151.499 (7)C9—C141.513 (7)
N4—H40.9100C10—C111.384 (7)
O1—S11.437 (5)C11—C121.375 (7)
O2—S11.427 (5)C11—H110.9300
O3—S21.425 (5)C12—H120.9300
O4—S21.428 (5)C13—H13A0.9700
S1—C11.770 (5)C13—H13B0.9700
S2—C71.772 (5)C14—H14A0.9700
C1—C21.387 (7)C14—H14B0.9700
C1—C61.392 (7)C15—H15A0.9700
C2—C31.398 (7)C15—H15B0.9700
S1—N1—H1A109.3C4—C5—H5119.5
S1—N1—H1B109.2C5—C6—C1119.2 (5)
H1A—N1—H1B109.5C5—C6—H6120.4
S2—N2—H2A109.2C1—C6—H6120.4
S2—N2—H2B109.2C8—C7—C12121.3 (5)
H2A—N2—H2B109.5C8—C7—S2119.1 (4)
C15—N3—C4111.8 (4)C12—C7—S2119.6 (4)
C15—N3—C14109.0 (4)C7—C8—C9120.0 (5)
C4—N3—C14112.7 (4)C7—C8—H8120.0
C10—N4—C13113.2 (4)C9—C8—H8120.0
C10—N4—C15111.4 (4)C8—C9—C10118.3 (4)
C13—N4—C15107.1 (4)C8—C9—C14120.7 (4)
C10—N4—H4108.3C10—C9—C14121.0 (4)
C13—N4—H4108.3C11—C10—C9121.2 (5)
C15—N4—H4108.3C11—C10—N4118.5 (4)
O2—S1—O1117.1 (3)C9—C10—N4120.3 (4)
O2—S1—N1107.9 (3)C12—C11—C10120.5 (5)
O1—S1—N1106.7 (3)C12—C11—H11119.8
O2—S1—C1108.0 (3)C10—C11—H11119.8
O1—S1—C1108.2 (3)C11—C12—C7118.7 (5)
N1—S1—C1108.8 (3)C11—C12—H12120.6
O3—S2—O4119.1 (3)C7—C12—H12120.6
O3—S2—N2106.3 (3)N4—C13—C3111.0 (4)
O4—S2—N2108.5 (3)N4—C13—H13A109.4
O3—S2—C7108.0 (3)C3—C13—H13A109.4
O4—S2—C7108.0 (3)N4—C13—H13B109.4
N2—S2—C7106.2 (2)C3—C13—H13B109.4
C2—C1—C6120.7 (5)H13A—C13—H13B108.0
C2—C1—S1120.1 (4)N3—C14—C9111.8 (4)
C6—C1—S1119.1 (4)N3—C14—H14A109.3
C1—C2—C3119.9 (5)C9—C14—H14A109.3
C1—C2—H2120.1N3—C14—H14B109.3
C3—C2—H2120.1C9—C14—H14B109.3
C4—C3—C2118.9 (5)H14A—C14—H14B107.9
C4—C3—C13121.5 (5)N3—C15—N4110.0 (4)
C2—C3—C13119.6 (5)N3—C15—H15A109.7
C5—C4—C3120.3 (5)N4—C15—H15A109.7
C5—C4—N3118.8 (4)N3—C15—H15B109.7
C3—C4—N3120.9 (5)N4—C15—H15B109.7
C6—C5—C4121.0 (5)H15A—C15—H15B108.2
C6—C5—H5119.5
O2—S1—C1—C220.7 (5)C12—C7—C8—C91.1 (7)
O1—S1—C1—C2148.3 (4)S2—C7—C8—C9178.7 (4)
N1—S1—C1—C296.2 (5)C7—C8—C9—C101.5 (7)
O2—S1—C1—C6159.9 (4)C7—C8—C9—C14177.7 (5)
O1—S1—C1—C632.2 (5)C8—C9—C10—C111.5 (7)
N1—S1—C1—C683.3 (5)C14—C9—C10—C11177.7 (5)
C6—C1—C2—C31.2 (8)C8—C9—C10—N4178.0 (4)
S1—C1—C2—C3178.2 (4)C14—C9—C10—N42.8 (7)
C1—C2—C3—C40.3 (7)C13—N4—C10—C1176.1 (6)
C1—C2—C3—C13178.2 (5)C15—N4—C10—C11163.2 (5)
C2—C3—C4—C52.1 (7)C13—N4—C10—C9104.4 (5)
C13—C3—C4—C5176.4 (5)C15—N4—C10—C916.4 (6)
C2—C3—C4—N3178.1 (4)C9—C10—C11—C121.0 (8)
C13—C3—C4—N33.4 (7)N4—C10—C11—C12178.5 (5)
C15—N3—C4—C5162.8 (4)C10—C11—C12—C70.5 (8)
C14—N3—C4—C574.0 (6)C8—C7—C12—C110.5 (8)
C15—N3—C4—C317.5 (6)S2—C7—C12—C11179.3 (4)
C14—N3—C4—C3105.8 (5)C10—N4—C13—C375.6 (5)
C3—C4—C5—C62.5 (8)C15—N4—C13—C347.6 (5)
N3—C4—C5—C6177.7 (5)C4—C3—C13—N413.2 (7)
C4—C5—C6—C11.0 (8)C2—C3—C13—N4165.3 (4)
C2—C1—C6—C50.9 (8)C15—N3—C14—C948.8 (5)
S1—C1—C6—C5178.6 (4)C4—N3—C14—C976.0 (5)
O3—S2—C7—C8172.3 (4)C8—C9—C14—N3166.0 (4)
O4—S2—C7—C842.2 (5)C10—C9—C14—N313.3 (6)
N2—S2—C7—C874.1 (5)C4—N3—C15—N454.7 (5)
O3—S2—C7—C127.5 (5)C14—N3—C15—N470.6 (5)
O4—S2—C7—C12137.6 (5)C10—N4—C15—N352.9 (6)
N2—S2—C7—C12106.1 (4)C13—N4—C15—N371.4 (5)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.892.263.081 (8)153
N1—H1B···Cl1iii0.892.263.141 (7)170
N2—H2A···Cl1iv0.892.193.042 (6)160
N2—H2B···O1v0.892.463.109 (7)130
N2—H2B···O2v0.892.363.240 (7)168
N4—H4···N2vi0.912.022.922 (7)173
C12—H12···O3vii0.932.493.416 (7)175
C13—H13A···Cl1viii0.972.763.514 (7)135
C14—H14A···O4ii0.972.503.212 (9)130
C15—H15A···O3ix0.972.523.443 (7)158
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z+2; (viii) x+1, y+1/2, z+1/2; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formulaC15H17N4O4S2+·Cl
Mr416.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.5247 (11), 18.5693 (16), 8.1489 (7)
β (°) 109.177 (1)
V3)1647.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.40 × 0.33 × 0.27
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.815, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
8082, 2895, 1944
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.219, 1.08
No. of reflections2895
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.96

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.263.081 (8)153
N1—H1B···Cl1ii0.892.263.141 (7)170
N2—H2A···Cl1iii0.892.193.042 (6)160
N2—H2B···O1iv0.892.463.109 (7)130
N2—H2B···O2iv0.892.363.240 (7)168
N4—H4···N2v0.912.022.922 (7)173
C12—H12···O3vi0.932.493.416 (7)175
C13—H13A···Cl1vii0.972.763.514 (7)135
C14—H14A···O4i0.972.503.212 (9)130
C15—H15A···O3viii0.972.523.443 (7)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x+1, y+1/2, z+1/2; (viii) x, y, z1.
 

Acknowledgements

We gratefully acknowledge financial support by the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the innovation project of Zhejiang A & F University.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds