organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­phen­yl)-3-methyl­sulfanyl-2-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 September 2011; accepted 9 September 2011; online 30 September 2011)

In the title compound, C21H15FOS, the dihedral angle between the mean plane of the benzofuran fragment and the mean planes of the pendant 4-fluoro­benzene and phenyl rings are 31.72 (6)° and 32.51 (6)°, respectively. In the crystal, the mol­ecules are linked by weak C—H⋯π inter­actions. The crystal studied was a merohedral twin with a 0.62 (9):0.38 (9) domain ratio.

Related literature

For background to the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of 2-(4-halophen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzo­furan drivatives, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o802.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FOS

  • Mr = 334.39

  • Monoclinic, P 21

  • a = 10.6439 (15) Å

  • b = 7.2006 (10) Å

  • c = 11.7226 (17) Å

  • β = 115.396 (2)°

  • V = 811.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.36 × 0.29 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.979

  • 7372 measured reflections

  • 3194 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.10

  • 3194 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1278 Friedel pairs

  • Flack parameter: 0.38 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cgi 0.95 2.76 3.448 (2) 130
Symmetry code: (i) [-x+1, y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds having a benzofuran moiety have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 2-(4-halophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report herein the crystal structure of the title compound.

The title compound crystallizes as the non-centrosymmetric space group P21 in spite of having no asymmetric C atoms. The crystal studied was an inversion twin with a 0.68 (9) : 0.32 (9) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofurn fragment is 31.72 (6)°. The dihedral angle between the phenyl ring and the mean plane of the benzofurn fragment is 32.51 (6)°. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a 4-fluorophenyl H atom and the phenyl ring (Table 1; C14—H14···Cgi, Cg is the centroid of the C15–C20 phenyl ring).

Related literature top

For background to the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of 2-(4-halophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran drivatives, see: Choi et al. (2009, 2010).

Experimental top

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-fluoro-4'-hydroxybiphenyl (376 mg, 2.0 mmol) and 2-chloro-2-methylsulfanylacetophenone (401 mg, 2.0 mmol) in dichloromethane (30 mL) at room temperature, and stirring was continued at the same temperature for 1 h. The reaction was quenched by the addition of water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–benzene, 5:2 v/v) to afford the title compound as a colorless solid [yield 61%, m.p. 415–416 K; Rf = 0.78 (hexane–benzene, 5:2 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound in carbon tetrachloride at room temperature.

Refinement top

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

Recently, many compounds having a benzofuran moiety have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 2-(4-halophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report herein the crystal structure of the title compound.

The title compound crystallizes as the non-centrosymmetric space group P21 in spite of having no asymmetric C atoms. The crystal studied was an inversion twin with a 0.68 (9) : 0.32 (9) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofurn fragment is 31.72 (6)°. The dihedral angle between the phenyl ring and the mean plane of the benzofurn fragment is 32.51 (6)°. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a 4-fluorophenyl H atom and the phenyl ring (Table 1; C14—H14···Cgi, Cg is the centroid of the C15–C20 phenyl ring).

For background to the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of 2-(4-halophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran drivatives, see: Choi et al. (2009, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (i) - x + 1, y - 1/2, - z + 1; (ii) - x + 1, y + 1/2, - z + 1.]
5-(4-Fluorophenyl)-3-methylsulfanyl-2-phenyl-1-benzofuran top
Crystal data top
C21H15FOSF(000) = 348
Mr = 334.39Dx = 1.368 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2652 reflections
a = 10.6439 (15) Åθ = 3.4–26.6°
b = 7.2006 (10) ŵ = 0.21 mm1
c = 11.7226 (17) ÅT = 173 K
β = 115.396 (2)°Block, colourless
V = 811.6 (2) Å30.36 × 0.29 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3194 independent reflections
Radiation source: rotating anode2540 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.9°
φ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 89
Tmin = 0.928, Tmax = 0.979l = 1414
7372 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0545P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3194 reflectionsΔρmax = 0.21 e Å3
219 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1278 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.38 (9)
Crystal data top
C21H15FOSV = 811.6 (2) Å3
Mr = 334.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.6439 (15) ŵ = 0.21 mm1
b = 7.2006 (10) ÅT = 173 K
c = 11.7226 (17) Å0.36 × 0.29 × 0.10 mm
β = 115.396 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2540 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.979Rint = 0.035
7372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.21 e Å3
S = 1.10Δρmin = 0.20 e Å3
3194 reflectionsAbsolute structure: Flack (1983), 1278 Friedel pairs
219 parametersAbsolute structure parameter: 0.38 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42262 (6)0.39699 (11)0.12213 (5)0.03595 (18)
F11.34923 (15)0.4759 (3)0.74321 (14)0.0487 (4)
O10.34169 (16)0.4817 (2)0.41757 (13)0.0299 (4)
C10.4191 (2)0.4505 (3)0.26649 (19)0.0269 (5)
C20.5384 (2)0.4604 (3)0.38747 (19)0.0259 (5)
C30.6812 (2)0.4542 (3)0.42791 (19)0.0280 (5)
H30.71950.44160.36850.034*
C40.7681 (2)0.4667 (3)0.5565 (2)0.0272 (5)
C50.7074 (3)0.4836 (4)0.6427 (2)0.0306 (5)
H50.76700.49140.73030.037*
C60.5661 (3)0.4890 (4)0.6047 (2)0.0327 (6)
H60.52690.49980.66350.039*
C70.4842 (2)0.4781 (4)0.47627 (19)0.0273 (5)
C80.3042 (2)0.4667 (3)0.28925 (19)0.0272 (5)
C90.9222 (2)0.4655 (3)0.60428 (19)0.0264 (5)
C100.9871 (3)0.5412 (3)0.5334 (2)0.0294 (5)
H100.93170.59240.45260.035*
C111.1301 (3)0.5429 (3)0.5785 (2)0.0307 (5)
H111.17340.59280.52940.037*
C121.2080 (2)0.4703 (4)0.6967 (2)0.0329 (5)
C131.1500 (2)0.3955 (4)0.7699 (2)0.0330 (5)
H131.20670.34780.85150.040*
C141.0067 (2)0.3910 (4)0.72242 (18)0.0290 (5)
H140.96480.33590.77120.035*
C150.1550 (2)0.4714 (3)0.2092 (2)0.0274 (5)
C160.0615 (2)0.4006 (4)0.25293 (19)0.0312 (5)
H160.09560.34640.33460.037*
C170.0797 (3)0.4087 (4)0.1787 (2)0.0373 (6)
H170.14240.35930.20900.045*
C180.1305 (3)0.4888 (4)0.0595 (2)0.0383 (6)
H180.22780.49390.00820.046*
C190.0387 (3)0.5614 (4)0.0158 (2)0.0359 (6)
H190.07360.61800.06510.043*
C200.1025 (3)0.5520 (3)0.0887 (2)0.0316 (5)
H200.16460.60020.05730.038*
C210.4698 (4)0.6154 (6)0.0774 (3)0.0679 (11)
H21A0.39920.70880.06880.102*
H21B0.47560.60150.00330.102*
H21C0.56020.65530.14250.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0428 (4)0.0435 (3)0.0252 (2)0.0018 (3)0.0181 (2)0.0041 (3)
F10.0285 (9)0.0664 (11)0.0510 (9)0.0028 (8)0.0168 (7)0.0080 (8)
O10.0319 (9)0.0355 (8)0.0257 (7)0.0000 (8)0.0157 (6)0.0012 (7)
C10.0348 (13)0.0234 (11)0.0242 (10)0.0000 (10)0.0143 (9)0.0008 (8)
C20.0336 (13)0.0234 (10)0.0236 (9)0.0006 (10)0.0152 (9)0.0005 (8)
C30.0348 (13)0.0264 (11)0.0271 (10)0.0023 (10)0.0175 (9)0.0009 (9)
C40.0334 (13)0.0216 (9)0.0287 (10)0.0003 (11)0.0152 (9)0.0002 (9)
C50.0336 (14)0.0354 (12)0.0225 (10)0.0029 (11)0.0117 (10)0.0021 (9)
C60.0386 (15)0.0375 (14)0.0282 (11)0.0013 (12)0.0204 (10)0.0037 (10)
C70.0253 (13)0.0301 (11)0.0281 (11)0.0002 (11)0.0130 (9)0.0002 (9)
C80.0362 (13)0.0251 (10)0.0224 (9)0.0001 (11)0.0144 (9)0.0016 (8)
C90.0324 (14)0.0223 (10)0.0280 (10)0.0022 (11)0.0162 (10)0.0031 (9)
C100.0371 (15)0.0270 (11)0.0250 (10)0.0001 (10)0.0142 (10)0.0011 (9)
C110.0354 (15)0.0297 (12)0.0338 (12)0.0021 (11)0.0213 (11)0.0003 (10)
C120.0273 (14)0.0327 (12)0.0400 (12)0.0026 (12)0.0157 (10)0.0038 (11)
C130.0309 (13)0.0363 (12)0.0305 (10)0.0000 (13)0.0119 (9)0.0017 (11)
C140.0339 (13)0.0289 (10)0.0281 (9)0.0041 (12)0.0170 (9)0.0024 (11)
C150.0315 (13)0.0221 (10)0.0289 (10)0.0027 (11)0.0131 (9)0.0017 (9)
C160.0389 (14)0.0256 (10)0.0321 (10)0.0011 (12)0.0181 (10)0.0023 (11)
C170.0392 (14)0.0305 (13)0.0449 (12)0.0061 (12)0.0208 (11)0.0044 (12)
C180.0296 (14)0.0326 (14)0.0441 (14)0.0015 (12)0.0076 (11)0.0083 (11)
C190.0436 (17)0.0294 (13)0.0266 (11)0.0027 (12)0.0073 (11)0.0005 (9)
C200.0387 (15)0.0273 (12)0.0303 (11)0.0009 (11)0.0162 (11)0.0000 (9)
C210.091 (3)0.073 (2)0.0554 (19)0.026 (2)0.047 (2)0.0069 (16)
Geometric parameters (Å, º) top
S1—C11.752 (2)C10—H100.9500
S1—C211.796 (3)C11—C121.377 (3)
F1—C121.362 (3)C11—H110.9500
O1—C71.371 (3)C12—C131.365 (3)
O1—C81.385 (2)C13—C141.382 (3)
C1—C81.364 (3)C13—H130.9500
C1—C21.444 (3)C14—H140.9500
C2—C31.385 (3)C15—C161.397 (3)
C2—C71.396 (3)C15—C201.402 (3)
C3—C41.393 (3)C16—C171.378 (3)
C3—H30.9500C16—H160.9500
C4—C51.418 (3)C17—C181.388 (4)
C4—C91.489 (3)C17—H170.9500
C5—C61.374 (4)C18—C191.385 (4)
C5—H50.9500C18—H180.9500
C6—C71.381 (3)C19—C201.376 (3)
C6—H60.9500C19—H190.9500
C8—C151.458 (3)C20—H200.9500
C9—C141.395 (3)C21—H21A0.9800
C9—C101.399 (3)C21—H21B0.9800
C10—C111.380 (3)C21—H21C0.9800
C1—S1—C21102.33 (13)C10—C11—H11120.9
C7—O1—C8106.56 (16)F1—C12—C13118.6 (2)
C8—C1—C2106.77 (18)F1—C12—C11118.5 (2)
C8—C1—S1126.90 (17)C13—C12—C11122.9 (2)
C2—C1—S1125.83 (17)C12—C13—C14118.4 (2)
C3—C2—C7119.45 (19)C12—C13—H13120.8
C3—C2—C1135.12 (19)C14—C13—H13120.8
C7—C2—C1105.4 (2)C13—C14—C9121.4 (2)
C2—C3—C4119.4 (2)C13—C14—H14119.3
C2—C3—H3120.3C9—C14—H14119.3
C4—C3—H3120.3C16—C15—C20118.8 (2)
C3—C4—C5118.9 (2)C16—C15—C8120.38 (19)
C3—C4—C9121.32 (19)C20—C15—C8120.8 (2)
C5—C4—C9119.82 (19)C17—C16—C15120.6 (2)
C6—C5—C4122.8 (2)C17—C16—H16119.7
C6—C5—H5118.6C15—C16—H16119.7
C4—C5—H5118.6C16—C17—C18120.1 (2)
C5—C6—C7116.3 (2)C16—C17—H17119.9
C5—C6—H6121.8C18—C17—H17119.9
C7—C6—H6121.8C19—C18—C17119.8 (2)
O1—C7—C6126.3 (2)C19—C18—H18120.1
O1—C7—C2110.47 (18)C17—C18—H18120.1
C6—C7—C2123.3 (2)C20—C19—C18120.5 (2)
C1—C8—O1110.74 (19)C20—C19—H19119.8
C1—C8—C15134.14 (19)C18—C19—H19119.8
O1—C8—C15115.12 (19)C19—C20—C15120.2 (2)
C14—C9—C10117.8 (2)C19—C20—H20119.9
C14—C9—C4120.84 (19)C15—C20—H20119.9
C10—C9—C4121.3 (2)S1—C21—H21A109.5
C11—C10—C9121.4 (2)S1—C21—H21B109.5
C11—C10—H10119.3H21A—C21—H21B109.5
C9—C10—H10119.3S1—C21—H21C109.5
C12—C11—C10118.1 (2)H21A—C21—H21C109.5
C12—C11—H11120.9H21B—C21—H21C109.5
C21—S1—C1—C8107.9 (3)C3—C4—C9—C14149.0 (2)
C21—S1—C1—C281.3 (2)C5—C4—C9—C1431.9 (3)
C8—C1—C2—C3179.5 (3)C3—C4—C9—C1031.9 (3)
S1—C1—C2—C38.2 (4)C5—C4—C9—C10147.2 (2)
C8—C1—C2—C71.3 (3)C14—C9—C10—C110.2 (4)
S1—C1—C2—C7171.00 (18)C4—C9—C10—C11178.9 (2)
C7—C2—C3—C40.3 (3)C9—C10—C11—C120.9 (3)
C1—C2—C3—C4179.4 (3)C10—C11—C12—F1178.3 (2)
C2—C3—C4—C50.6 (3)C10—C11—C12—C130.7 (4)
C2—C3—C4—C9178.4 (2)F1—C12—C13—C14179.7 (2)
C3—C4—C5—C60.3 (4)C11—C12—C13—C140.7 (4)
C9—C4—C5—C6178.8 (2)C12—C13—C14—C91.9 (4)
C4—C5—C6—C70.3 (4)C10—C9—C14—C131.7 (4)
C8—O1—C7—C6179.9 (2)C4—C9—C14—C13177.4 (2)
C8—O1—C7—C20.2 (3)C1—C8—C15—C16148.6 (3)
C5—C6—C7—O1179.7 (2)O1—C8—C15—C1631.5 (3)
C5—C6—C7—C20.7 (4)C1—C8—C15—C2033.4 (4)
C3—C2—C7—O1180.0 (2)O1—C8—C15—C20146.6 (2)
C1—C2—C7—O10.7 (3)C20—C15—C16—C170.4 (4)
C3—C2—C7—C60.3 (4)C8—C15—C16—C17178.5 (3)
C1—C2—C7—C6179.0 (2)C15—C16—C17—C180.5 (4)
C2—C1—C8—O11.5 (3)C16—C17—C18—C190.3 (4)
S1—C1—C8—O1170.70 (16)C17—C18—C19—C201.0 (4)
C2—C1—C8—C15178.5 (2)C18—C19—C20—C151.1 (4)
S1—C1—C8—C159.3 (4)C16—C15—C20—C190.3 (4)
C7—O1—C8—C11.1 (3)C8—C15—C20—C19177.7 (2)
C7—O1—C8—C15178.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgi0.952.763.448 (2)130
Symmetry code: (i) x+1, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H15FOS
Mr334.39
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.6439 (15), 7.2006 (10), 11.7226 (17)
β (°) 115.396 (2)
V3)811.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.36 × 0.29 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.928, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7372, 3194, 2540
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.10
No. of reflections3194
No. of parameters219
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20
Absolute structureFlack (1983), 1278 Friedel pairs
Absolute structure parameter0.38 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgi0.952.763.448 (2)130
Symmetry code: (i) x+1, y+3/2, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o802.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds