metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-benzoyl-1,1-di-sec-butyl­thio­ureato-κ2O,S)palladium(II)

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and c Chemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 September 2011; accepted 11 September 2011; online 17 September 2011)

The complex mol­ecule of the title complex, [Pd(C16H23N2OS)2], is completed by crystallographic twofold symmetry with the metal atom lying on the rotation axis. The PdII atom exists within a slightly distorted square-planar geometry defined by a cis-O2S2 donor set. The dihedral angle formed between the mean planes of the symmetry-related six-membered chelate rings is 12.88 (7)° and the bond lengths within the rings are indicative of significant electron delocalization. In the crystal, mol­ecules aggregate into dimers linked by four C—H⋯O inter­actions.

Related literature

For background to the synthesis and cytotoxicity of related PdII complexes of N,N-di(alk­yl/ar­yl)-N′-benzoyl­thio­urea ligands, see: Selvakumaran et al. (2011[Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C16H23N2OS)2]

  • Mr = 689.27

  • Tetragonal, [I \overline 4]

  • a = 13.2737 (1) Å

  • c = 19.5597 (5) Å

  • V = 3446.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.819, Tmax = 0.874

  • 4752 measured reflections

  • 3229 independent reflections

  • 3152 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.02

  • 3229 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1225 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Selected geometric parameters (Å, °)

Pd—O1 2.0230 (17)
Pd—S1 2.2497 (6)
O1—Pd—S1 93.76 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.43 3.179 (3) 136
Symmetry code: (i) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title complex, (I), was investigated during a study of the synthesis and cytotoxicity profiles of N,N-di(alkyl/aryl)-N'-benzoylthiourea ligands, LH (Selvakumaran et al., 2011).

The PdII atom in (I), Fig. 1, exists in a square planar geometry defined by a cis-O2S2 donor set, Table 1, as found for related PdL2 species (Selvakumaran et al., 2011). The molecule has crystallographically imposed 2-fold symmetry. There are significant deviations from the least-squares plane through the six-membered chelate ring (r.m.s. deviation = 0.233 Å) with the maximum deviations being found for the S1 (0.255 (1) Å) and Pd (–0.163 (1) Å) atoms. The major twist in the ring is found about the N1—C8 bond as seen in the value of the C7—N1—C8—S1 torsion angle of -19.3 (4) °. Nevertheless, the bond distance data, Table 1, are consistent with considerable delocalization of π-electron density over the six atoms; a similar conclusion was made for related species (Selvakumaran et al., 2011). The dihedral angle formed between the symmetry related chelate rings is 12.88 (7) °.

The most prominent intermolecular interactions in the crystal structure are of the type C—H···O, Table 2. These involve benzene-H and the coordinated O atoms, and result in the formation of two molecule aggregates sustained, from symmetry, by four such interactions, Fig. 2.

Related literature top

For background to the synthesis and cytotoxicity of related PdII complexes of N,N-di(alkyl/aryl)-N'-benzoylthiourea ligands, see: Selvakumaran et al. (2011).

Experimental top

The title complex, (I), was prepared and characterized as in the literature (Selvakumaran et al., 2011). Orange blocks were obtained by slow evaporation of a dichloromethane solution of the complex.

Refinement top

The H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Structure description top

The title complex, (I), was investigated during a study of the synthesis and cytotoxicity profiles of N,N-di(alkyl/aryl)-N'-benzoylthiourea ligands, LH (Selvakumaran et al., 2011).

The PdII atom in (I), Fig. 1, exists in a square planar geometry defined by a cis-O2S2 donor set, Table 1, as found for related PdL2 species (Selvakumaran et al., 2011). The molecule has crystallographically imposed 2-fold symmetry. There are significant deviations from the least-squares plane through the six-membered chelate ring (r.m.s. deviation = 0.233 Å) with the maximum deviations being found for the S1 (0.255 (1) Å) and Pd (–0.163 (1) Å) atoms. The major twist in the ring is found about the N1—C8 bond as seen in the value of the C7—N1—C8—S1 torsion angle of -19.3 (4) °. Nevertheless, the bond distance data, Table 1, are consistent with considerable delocalization of π-electron density over the six atoms; a similar conclusion was made for related species (Selvakumaran et al., 2011). The dihedral angle formed between the symmetry related chelate rings is 12.88 (7) °.

The most prominent intermolecular interactions in the crystal structure are of the type C—H···O, Table 2. These involve benzene-H and the coordinated O atoms, and result in the formation of two molecule aggregates sustained, from symmetry, by four such interactions, Fig. 2.

For background to the synthesis and cytotoxicity of related PdII complexes of N,N-di(alkyl/aryl)-N'-benzoylthiourea ligands, see: Selvakumaran et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The molecule has 2-fold symmetry. Unlabelled atoms are related by the symmetry operation 1 - x, -y, z.
[Figure 2] Fig. 2. Two molecule aggregate in (I) mediated by C—H···O interactions shown as orange dashed lines. Hydrogen atoms not participating in C—H···O contacts have been omitted for reasons of clarity.
Bis(3-benzoyl-1,1-di-sec-butylthioureato- κ2O,S)palladium(II) top
Crystal data top
[Pd(C16H23N2OS)2]Dx = 1.328 Mg m3
Mr = 689.27Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3599 reflections
Hall symbol: I -4θ = 3.0–29.3°
a = 13.2737 (1) ŵ = 0.69 mm1
c = 19.5597 (5) ÅT = 100 K
V = 3446.25 (9) Å3Block, orange
Z = 40.30 × 0.25 × 0.20 mm
F(000) = 1440
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3229 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3152 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1710
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1413
Tmin = 0.819, Tmax = 0.874l = 1625
4752 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0272P)2 + 1.3893P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3229 reflectionsΔρmax = 0.51 e Å3
186 parametersΔρmin = 0.44 e Å3
0 restraintsAbsolute structure: Flack (1983), 1225 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Pd(C16H23N2OS)2]Z = 4
Mr = 689.27Mo Kα radiation
Tetragonal, I4µ = 0.69 mm1
a = 13.2737 (1) ÅT = 100 K
c = 19.5597 (5) Å0.30 × 0.25 × 0.20 mm
V = 3446.25 (9) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3229 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3152 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.874Rint = 0.020
4752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.51 e Å3
S = 1.02Δρmin = 0.44 e Å3
3229 reflectionsAbsolute structure: Flack (1983), 1225 Friedel pairs
186 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.50000.00000.076929 (11)0.01307 (7)
S10.60853 (5)0.04633 (5)0.00563 (3)0.01761 (13)
O10.59796 (13)0.03016 (13)0.15347 (9)0.0178 (4)
N10.72361 (18)0.12436 (17)0.09978 (10)0.0178 (5)
N20.72955 (17)0.20604 (16)0.00131 (11)0.0183 (5)
C10.7459 (2)0.06393 (19)0.21341 (13)0.0176 (5)
C20.8469 (2)0.0954 (2)0.21380 (14)0.0215 (6)
H20.87610.12320.17370.026*
C30.9035 (2)0.0857 (2)0.27244 (15)0.0270 (6)
H30.97210.10600.27230.032*
C40.8614 (2)0.0468 (2)0.33146 (14)0.0248 (6)
H40.90090.04040.37170.030*
C50.7609 (2)0.0169 (2)0.33165 (13)0.0231 (6)
H50.73150.00940.37220.028*
C60.7041 (2)0.02554 (19)0.27269 (13)0.0193 (5)
H60.63560.00490.27290.023*
C70.68364 (19)0.07145 (19)0.15006 (13)0.0164 (5)
C80.68990 (19)0.13061 (19)0.03510 (13)0.0162 (5)
C90.7978 (2)0.2781 (2)0.03246 (15)0.0223 (6)
H9A0.83440.31660.00300.027*
H9B0.84820.24000.05930.027*
C100.7437 (2)0.3523 (2)0.07997 (17)0.0274 (6)
H100.69510.31330.10870.033*
C110.8185 (3)0.4033 (3)0.12724 (16)0.0361 (8)
H11A0.85550.35210.15310.054*
H11B0.78240.44750.15900.054*
H11C0.86600.44340.10010.054*
C120.6836 (3)0.4300 (3)0.03869 (18)0.0389 (8)
H12A0.64940.47630.07000.058*
H12B0.63340.39520.01050.058*
H12C0.72950.46800.00910.058*
C130.71911 (19)0.21523 (19)0.07512 (15)0.0198 (5)
H13A0.70310.28610.08650.024*
H13B0.66180.17310.09030.024*
C140.8141 (2)0.1834 (2)0.11491 (15)0.0275 (6)
H140.86740.23520.10650.033*
C150.7901 (3)0.1834 (3)0.19190 (14)0.0362 (8)
H15A0.85030.16370.21760.054*
H15B0.76900.25100.20590.054*
H15C0.73560.13540.20110.054*
C160.8549 (3)0.0821 (3)0.09144 (17)0.0445 (10)
H16A0.87040.08510.04250.067*
H16B0.91640.06620.11700.067*
H16C0.80430.02970.09970.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01199 (15)0.01268 (15)0.01453 (11)0.00124 (12)0.0000.000
S10.0181 (3)0.0180 (3)0.0167 (3)0.0044 (2)0.0020 (3)0.0003 (3)
O10.0138 (9)0.0227 (10)0.0169 (8)0.0038 (8)0.0002 (8)0.0001 (8)
N10.0168 (11)0.0171 (11)0.0196 (11)0.0019 (9)0.0001 (8)0.0007 (8)
N20.0183 (11)0.0154 (11)0.0213 (11)0.0027 (8)0.0033 (10)0.0004 (10)
C10.0185 (13)0.0148 (13)0.0196 (13)0.0031 (10)0.0001 (11)0.0035 (10)
C20.0191 (14)0.0200 (14)0.0254 (15)0.0028 (11)0.0005 (12)0.0022 (12)
C30.0167 (13)0.0314 (15)0.0328 (15)0.0021 (12)0.0033 (12)0.0026 (12)
C40.0231 (15)0.0270 (16)0.0242 (15)0.0021 (12)0.0096 (12)0.0014 (12)
C50.0254 (15)0.0221 (15)0.0220 (14)0.0004 (12)0.0016 (11)0.0012 (11)
C60.0155 (13)0.0198 (13)0.0226 (12)0.0005 (10)0.0028 (10)0.0019 (10)
C70.0169 (13)0.0123 (12)0.0201 (12)0.0013 (10)0.0014 (11)0.0044 (11)
C80.0120 (12)0.0154 (13)0.0212 (12)0.0004 (10)0.0021 (10)0.0001 (11)
C90.0240 (15)0.0176 (14)0.0255 (14)0.0096 (11)0.0050 (12)0.0020 (12)
C100.0306 (15)0.0201 (14)0.0315 (14)0.0064 (11)0.0099 (15)0.0023 (14)
C110.047 (2)0.0327 (18)0.0289 (16)0.0097 (15)0.0074 (15)0.0085 (14)
C120.044 (2)0.0269 (17)0.0458 (19)0.0035 (15)0.0043 (17)0.0046 (15)
C130.0205 (13)0.0175 (13)0.0214 (12)0.0003 (10)0.0013 (13)0.0050 (13)
C140.0270 (16)0.0302 (17)0.0252 (14)0.0007 (13)0.0067 (13)0.0000 (13)
C150.045 (2)0.0394 (19)0.0241 (15)0.0005 (16)0.0056 (14)0.0023 (14)
C160.045 (2)0.046 (2)0.042 (2)0.0209 (17)0.0167 (16)0.0055 (16)
Geometric parameters (Å, º) top
Pd—O1i2.0230 (17)C9—H9A0.9900
Pd—O12.0230 (17)C9—H9B0.9900
Pd—S1i2.2497 (6)C10—C111.517 (4)
Pd—S12.2497 (6)C10—C121.533 (5)
S1—C81.747 (3)C10—H101.0000
O1—C71.264 (3)C11—H11A0.9800
N1—C71.320 (3)C11—H11B0.9800
N1—C81.344 (3)C11—H11C0.9800
N2—C81.337 (3)C12—H12A0.9800
N2—C131.455 (3)C12—H12B0.9800
N2—C91.473 (3)C12—H12C0.9800
C1—C61.383 (3)C13—C141.541 (4)
C1—C21.404 (4)C13—H13A0.9900
C1—C71.493 (3)C13—H13B0.9900
C2—C31.377 (4)C14—C161.520 (5)
C2—H20.9500C14—C151.539 (4)
C3—C41.383 (4)C14—H141.0000
C3—H30.9500C15—H15A0.9800
C4—C51.391 (4)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C5—C61.383 (4)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C9—C101.533 (4)
O1i—Pd—O184.53 (10)C11—C10—C9110.5 (3)
O1i—Pd—S1i93.76 (5)C11—C10—C12111.2 (2)
O1—Pd—S1i175.49 (5)C9—C10—C12110.9 (3)
O1i—Pd—S1175.49 (5)C11—C10—H10108.1
O1—Pd—S193.76 (5)C9—C10—H10108.1
S1i—Pd—S188.26 (3)C12—C10—H10108.1
C8—S1—Pd104.10 (9)C10—C11—H11A109.5
C7—O1—Pd128.68 (16)C10—C11—H11B109.5
C7—N1—C8126.9 (2)H11A—C11—H11B109.5
C8—N2—C13123.6 (2)C10—C11—H11C109.5
C8—N2—C9119.3 (2)H11A—C11—H11C109.5
C13—N2—C9116.7 (2)H11B—C11—H11C109.5
C6—C1—C2119.2 (2)C10—C12—H12A109.5
C6—C1—C7119.9 (2)C10—C12—H12B109.5
C2—C1—C7120.9 (2)H12A—C12—H12B109.5
C3—C2—C1119.9 (3)C10—C12—H12C109.5
C3—C2—H2120.1H12A—C12—H12C109.5
C1—C2—H2120.1H12B—C12—H12C109.5
C2—C3—C4120.6 (3)N2—C13—C14113.6 (2)
C2—C3—H3119.7N2—C13—H13A108.8
C4—C3—H3119.7C14—C13—H13A108.8
C3—C4—C5119.8 (3)N2—C13—H13B108.8
C3—C4—H4120.1C14—C13—H13B108.8
C5—C4—H4120.1H13A—C13—H13B107.7
C6—C5—C4119.8 (3)C16—C14—C15111.7 (3)
C6—C5—H5120.1C16—C14—C13112.4 (2)
C4—C5—H5120.1C15—C14—C13108.9 (3)
C1—C6—C5120.7 (2)C16—C14—H14107.9
C1—C6—H6119.6C15—C14—H14107.9
C5—C6—H6119.6C13—C14—H14107.9
O1—C7—N1129.2 (2)C14—C15—H15A109.5
O1—C7—C1115.2 (2)C14—C15—H15B109.5
N1—C7—C1115.6 (2)H15A—C15—H15B109.5
N2—C8—N1114.6 (2)C14—C15—H15C109.5
N2—C8—S1118.7 (2)H15A—C15—H15C109.5
N1—C8—S1126.5 (2)H15B—C15—H15C109.5
N2—C9—C10113.6 (2)C14—C16—H16A109.5
N2—C9—H9A108.8C14—C16—H16B109.5
C10—C9—H9A108.8H16A—C16—H16B109.5
N2—C9—H9B108.8C14—C16—H16C109.5
C10—C9—H9B108.8H16A—C16—H16C109.5
H9A—C9—H9B107.7H16B—C16—H16C109.5
O1i—Pd—S1—C842.5 (7)C2—C1—C7—O1172.0 (2)
O1—Pd—S1—C824.95 (10)C6—C1—C7—N1168.8 (2)
S1i—Pd—S1—C8159.09 (10)C2—C1—C7—N111.2 (4)
O1i—Pd—O1—C7168.9 (2)C13—N2—C8—N1167.7 (2)
S1i—Pd—O1—C7123.2 (6)C9—N2—C8—N14.7 (3)
S1—Pd—O1—C76.9 (2)C13—N2—C8—S18.0 (3)
C6—C1—C2—C31.4 (4)C9—N2—C8—S1179.60 (19)
C7—C1—C2—C3178.6 (2)C7—N1—C8—N2165.5 (2)
C1—C2—C3—C41.0 (4)C7—N1—C8—S119.3 (4)
C2—C3—C4—C50.1 (4)Pd—S1—C8—N2148.11 (19)
C3—C4—C5—C60.6 (4)Pd—S1—C8—N136.8 (2)
C2—C1—C6—C50.7 (4)C8—N2—C9—C1073.8 (3)
C7—C1—C6—C5179.2 (2)C13—N2—C9—C10113.2 (3)
C4—C5—C6—C10.2 (4)N2—C9—C10—C11164.1 (3)
Pd—O1—C7—N115.7 (4)N2—C9—C10—C1272.2 (3)
Pd—O1—C7—C1168.02 (16)C8—N2—C13—C14102.4 (3)
C8—N1—C7—O113.8 (4)C9—N2—C13—C1470.2 (3)
C8—N1—C7—C1169.9 (2)N2—C13—C14—C1648.6 (3)
C6—C1—C7—O18.0 (3)N2—C13—C14—C15172.9 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1ii0.952.433.179 (3)136
Symmetry code: (ii) y+1/2, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(C16H23N2OS)2]
Mr689.27
Crystal system, space groupTetragonal, I4
Temperature (K)100
a, c (Å)13.2737 (1), 19.5597 (5)
V3)3446.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.819, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
4752, 3229, 3152
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.02
No. of reflections3229
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.44
Absolute structureFlack (1983), 1225 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Pd—O12.0230 (17)Pd—S12.2497 (6)
O1—Pd—S193.76 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.433.179 (3)136
Symmetry code: (i) y+1/2, x+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks NITT for a Fellowship. The authors thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSelvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds