[Journal logo]

Volume 67 
Part 10 
Pages o2676-o2677  
October 2011  

Received 14 September 2011
Accepted 14 September 2011
Online 17 September 2011

Key indicators
Single-crystal Synchrotron study
T = 120 K
Mean [sigma](C-C) = 0.003 Å
R = 0.048
wR = 0.126
Data-to-parameter ratio = 16.0
Details
Open access

1,3-Dicyclohexyl-3-[(pyridin-2-yl)carbonyl]urea monohydrate from synchrotron radiation

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil,bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil,cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: edward.tiekink@gmail.com

The title urea derivative crystallizes as a monohydrate, C19H27N3O2·H2O. The central C3N grouping is almost planar (r.m.s. deviation = 0.0092 Å), and the amide and pyridine groups are substantially twisted out this plane [dihedral angles = 62.80 (12) and 34.98 (10)°, respectively]. Supramolecular double chains propagating along the b-axis direction feature in the crystal packing whereby linear chains sustained by N-H...O hydrogen bonds formed between the amide groups are linked by helical chains of water molecules (linked by O-H...O hydrogen bonds). The H atom that participates in these water chains is disordered over two positions of equal occupancy. The double chains are connected into a two-dimensional array by C-H...O contacts and the layers stack along the a axis.

Related literature

For the preparation of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Kaiser et al. (2008[Kaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. pp. 468-472.]); Neves Filho et al. (2007[Neves Filho, R. A. W., de Oliveira, R. N. & Srivastava, R. M. (2007). J. Braz. Chem. Soc. 18, 1410-1414.]); Schotman (1991[Schotman, A. K. (1991). Rec. Trav. Chim. Pays-Bas, 110, 319-325.]). For the crystal structures of related N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives, see: Chérioux et al. (2002[Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27-o29.]); Cai et al. (2009[Cai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211-212.]); Dhinaa et al. (2010[Dhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291.]); Orea Flores et al. (2006[Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922-o2923.]); Gallagher et al. (1999[Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607-1610.]); Wang & Zhou (2008[Wang, C.-K. & Zhou, F.-Y. (2008). Acta Cryst. E64, o1451.]); Wu et al. (2006[Wu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435-o437.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27N3O2·H2O

  • Mr = 347.46

  • Monoclinic, P 21 /c

  • a = 18.639 (19) Å

  • b = 5.035 (5) Å

  • c = 21.59 (2) Å

  • [beta] = 111.395 (9)°

  • V = 1887 (3) Å3

  • Z = 4

  • Synchrotron radiation

  • [lambda] = 0.6905 Å

  • [mu] = 0.05 mm-1

  • T = 120 K

  • 0.25 × 0.08 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 1.000

  • 13440 measured reflections

  • 3810 independent reflections

  • 3200 reflections with I > 2[sigma](I)

  • Rint = 0.043

Refinement
  • R[F2 > 2[sigma](F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.06

  • 3810 reflections

  • 238 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.36 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1n...O1i 0.88 (1) 2.07 (1) 2.908 (3) 160 (2)
O1w-H1w...O2 0.84 (2) 1.98 (2) 2.820 (3) 174 (2)
O1w-H2w...O1wii 0.84 (3) 1.97 (3) 2.773 (4) 162 (4)
O1w-H3w...O1wiii 0.84 (3) 1.98 (3) 2.799 (4) 167 (4)
C17-H17...O1wiv 0.95 2.59 3.517 (4) 164
C18-H18...O2v 0.95 2.47 3.367 (4) 157
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6408 ).


Acknowledgements

We thank Professor W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211-212.  [ChemPort]
Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27-o29.  [CrossRef] [details]
Dhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291.  [CSD] [CrossRef] [details]
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607-1610.  [CrossRef] [details]
Kaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. pp. 468-472.  [ISI] [CrossRef]
Neves Filho, R. A. W., de Oliveira, R. N. & Srivastava, R. M. (2007). J. Braz. Chem. Soc. 18, 1410-1414.  [CrossRef] [ChemPort]
Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922-o2923.  [CSD] [CrossRef] [details]
Schotman, A. K. (1991). Rec. Trav. Chim. Pays-Bas, 110, 319-325.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Wang, C.-K. & Zhou, F.-Y. (2008). Acta Cryst. E64, o1451.  [CSD] [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Wu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435-o437.  [CrossRef] [details]


Acta Cryst (2011). E67, o2676-o2677   [ doi:10.1107/S1600536811037512 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.