metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(nitrato-κO)tetra­kis­[1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one]copper(II)

aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com

(Received 17 August 2011; accepted 29 August 2011; online 14 September 2011)

In the title complex, [Cu(NO3)2(C11H11N3O)4], the CuII atom is situated on a centre of inversion and is coordinated by two O atoms from two nitrate anions and four N atoms from four monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands in a distorted octa­hedral geometry. Weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds result in a supra­molecular layer parallel to (101). These layers are connected by ππ inter­actions between the benzene rings [centroid–centroid distance = 3.891 (2) Å].

Related literature

For background to complexes with neutral N-containing ligands, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]). For a related structure, see: Cai et al. (2010[Cai, H., Guo, Y. & Li, J.-G. (2010). Acta Cryst. E66, m1605.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C11H11N3O)4]

  • Mr = 992.47

  • Triclinic, [P \overline 1]

  • a = 7.7742 (14) Å

  • b = 12.472 (2) Å

  • c = 12.498 (2) Å

  • α = 102.232 (3)°

  • β = 100.737 (3)°

  • γ = 104.394 (3)°

  • V = 1110.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.876, Tmax = 0.925

  • 5737 measured reflections

  • 3905 independent reflections

  • 3295 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.03

  • 3905 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯N2i 0.97 2.50 3.368 (4) 148
C19—H19⋯O5ii 0.93 2.56 3.291 (4) 136
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Neutral organic ligands containing rigid or flexible spacers, such as 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)propane and many others, have been used to generate a rich variety of metal-organic architectures with different metal ions by various reaction procedures (Barnett & Champness, 2003; Roesky & Andruh, 2003; Zaworotko, 2001). Recently, we have initiated a research program of synthesizing supermolecules based on pseudohalides and a flexible ligand, which consists of a propanone unit substituted with a triazole and a phenyl group (Cai et al., 2010). To further explore this series, we synthesized the title compound, a new Cu(II) complex based on the ligand 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one (L).

In the neutral mononuclear title complex (Fig. 1), the CuII atom is six-coordinated by four monodentate L ligands in the equatorial plane and two O atoms from two NO3- anions in the axial positions, displaying a CuN4O2 octahedral geometry. The triazol and phenyl rings in the ligands are not coplanar. The dihedral angels formed by the least-squares planes of the phenyl and triazole rings are 43.8 (2) and 65.9 (2)°. Weak intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) extend the monomeric units into a two-dimensional supramolecular layer parallel to (1 0 1), as shown in Fig. 2.

Related literature top

For background to complexes with neutral N-containing ligands, see: Barnett & Champness (2003); Roesky & Andruh (2003); Zaworotko (2001). For a related structure, see: Cai et al. (2010).

Experimental top

Cu(NO3)2.3H2O (24.2 mg, 0.1 mmol) and L (22.3 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, v/v 1:1) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Colourless block crystals of the title compound suitable for X-ray analysis were obtained in 65% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for C46H44MnN14O4S2: C 53.25, H 4.47, N 19.76%; found: C 53.45, H 4.43, N 19.62%.

Refinement top

Although all H atoms were visible in difference Fourier maps, they were finally placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Neutral organic ligands containing rigid or flexible spacers, such as 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)propane and many others, have been used to generate a rich variety of metal-organic architectures with different metal ions by various reaction procedures (Barnett & Champness, 2003; Roesky & Andruh, 2003; Zaworotko, 2001). Recently, we have initiated a research program of synthesizing supermolecules based on pseudohalides and a flexible ligand, which consists of a propanone unit substituted with a triazole and a phenyl group (Cai et al., 2010). To further explore this series, we synthesized the title compound, a new Cu(II) complex based on the ligand 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one (L).

In the neutral mononuclear title complex (Fig. 1), the CuII atom is six-coordinated by four monodentate L ligands in the equatorial plane and two O atoms from two NO3- anions in the axial positions, displaying a CuN4O2 octahedral geometry. The triazol and phenyl rings in the ligands are not coplanar. The dihedral angels formed by the least-squares planes of the phenyl and triazole rings are 43.8 (2) and 65.9 (2)°. Weak intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) extend the monomeric units into a two-dimensional supramolecular layer parallel to (1 0 1), as shown in Fig. 2.

For background to complexes with neutral N-containing ligands, see: Barnett & Champness (2003); Roesky & Andruh (2003); Zaworotko (2001). For a related structure, see: Cai et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x, 1-y, -z.]
[Figure 2] Fig. 2. The two-dimensional layer structure of the title compound, showing C—H···O and C—H···N hydrogen bonds as red dashed lines.
Bis(nitrato-κO)tetrakis[1-phenyl-3-(1H-1,2,4-triazol- 1-yl)propan-1-one]copper(II) top
Crystal data top
[Cu(NO3)2(C11H11N3O)4]Z = 1
Mr = 992.47F(000) = 515
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7742 (14) ÅCell parameters from 2167 reflections
b = 12.472 (2) Åθ = 2.8–25.5°
c = 12.498 (2) ŵ = 0.57 mm1
α = 102.232 (3)°T = 296 K
β = 100.737 (3)°Block, blue
γ = 104.394 (3)°0.24 × 0.20 × 0.14 mm
V = 1110.0 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3905 independent reflections
Radiation source: fine-focus sealed tube3295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.876, Tmax = 0.925k = 1410
5737 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.6085P]
where P = (Fo2 + 2Fc2)/3
3905 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(NO3)2(C11H11N3O)4]γ = 104.394 (3)°
Mr = 992.47V = 1110.0 (3) Å3
Triclinic, P1Z = 1
a = 7.7742 (14) ÅMo Kα radiation
b = 12.472 (2) ŵ = 0.57 mm1
c = 12.498 (2) ÅT = 296 K
α = 102.232 (3)°0.24 × 0.20 × 0.14 mm
β = 100.737 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3905 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3295 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.925Rint = 0.016
5737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
3905 reflectionsΔρmin = 0.34 e Å3
313 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.03192 (15)
O10.1209 (3)0.14388 (17)0.15924 (18)0.0600 (6)
O20.6023 (4)0.8407 (2)0.42668 (19)0.0725 (7)
O30.2044 (3)0.38551 (18)0.0827 (2)0.0617 (6)
O40.4197 (4)0.2377 (2)0.0202 (2)0.0874 (8)
O50.4769 (4)0.3628 (3)0.1018 (3)0.1086 (11)
N10.0657 (3)0.36119 (17)0.06904 (17)0.0338 (5)
N20.2167 (4)0.26287 (19)0.1668 (2)0.0493 (6)
N30.1188 (3)0.19722 (17)0.11162 (17)0.0351 (5)
N40.1884 (3)0.51953 (16)0.14694 (16)0.0335 (5)
N50.3189 (3)0.47333 (18)0.29969 (18)0.0414 (5)
N60.4316 (3)0.56936 (17)0.28594 (17)0.0330 (5)
N70.3682 (3)0.3303 (2)0.0570 (2)0.0495 (6)
C10.0307 (4)0.2570 (2)0.0540 (2)0.0374 (6)
H10.04440.22970.00970.045*
C20.1795 (4)0.3605 (2)0.1381 (2)0.0468 (7)
H20.22760.42370.16330.056*
C30.1336 (4)0.0823 (2)0.1151 (2)0.0426 (6)
H3A0.03890.04180.08480.051*
H3B0.25180.08840.06810.051*
C40.1139 (4)0.0150 (2)0.2340 (2)0.0397 (6)
H4A0.21160.05430.26300.048*
H4B0.00200.01220.28150.048*
C50.1208 (3)0.1061 (2)0.2409 (2)0.0382 (6)
C60.1233 (3)0.1786 (2)0.3521 (2)0.0376 (6)
C70.0983 (4)0.1428 (2)0.4503 (2)0.0486 (7)
H70.08430.07040.44720.058*
C80.0941 (4)0.2141 (3)0.5531 (3)0.0581 (8)
H80.07460.19010.61870.070*
C90.1190 (4)0.3198 (3)0.5576 (3)0.0610 (9)
H90.11600.36770.62640.073*
C100.1481 (4)0.3550 (2)0.4609 (3)0.0581 (9)
H100.16680.42640.46440.070*
C110.1500 (4)0.2856 (2)0.3582 (3)0.0461 (7)
H110.16920.31050.29320.055*
C120.3529 (3)0.5953 (2)0.1955 (2)0.0332 (6)
H120.40500.65740.16980.040*
C130.1750 (4)0.4467 (2)0.2141 (2)0.0412 (6)
H130.07270.38350.20060.049*
C140.6175 (3)0.6206 (2)0.3603 (2)0.0400 (6)
H14A0.68570.67970.33160.048*
H14B0.67940.56180.35850.048*
C150.6195 (4)0.6732 (2)0.4821 (2)0.0383 (6)
H15A0.51580.62640.50090.046*
H15B0.73060.67210.53170.046*
C160.6107 (4)0.7953 (2)0.5032 (2)0.0409 (6)
C170.6149 (3)0.8587 (2)0.6201 (2)0.0382 (6)
C180.6220 (4)0.8080 (2)0.7086 (2)0.0445 (7)
H180.62550.73250.69640.053*
C190.6238 (4)0.8694 (3)0.8155 (3)0.0580 (8)
H190.62800.83480.87450.070*
C200.6193 (4)0.9811 (3)0.8344 (3)0.0600 (9)
H200.62101.02200.90620.072*
C210.6123 (4)1.0324 (3)0.7475 (3)0.0601 (9)
H210.60911.10810.76050.072*
C220.6099 (4)0.9717 (2)0.6406 (3)0.0504 (7)
H220.60491.00690.58190.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0358 (3)0.0315 (2)0.0255 (2)0.01221 (18)0.00439 (18)0.00191 (17)
O10.0937 (17)0.0467 (12)0.0502 (13)0.0292 (12)0.0234 (12)0.0209 (10)
O20.126 (2)0.0701 (15)0.0463 (13)0.0520 (15)0.0302 (14)0.0325 (12)
O30.0424 (12)0.0555 (13)0.0895 (17)0.0057 (10)0.0197 (11)0.0325 (12)
O40.095 (2)0.0634 (16)0.0724 (18)0.0020 (14)0.0014 (15)0.0032 (14)
O50.102 (2)0.094 (2)0.170 (3)0.0450 (18)0.096 (2)0.048 (2)
N10.0401 (12)0.0319 (11)0.0282 (11)0.0125 (9)0.0091 (9)0.0031 (9)
N20.0711 (17)0.0410 (13)0.0495 (15)0.0233 (12)0.0348 (13)0.0159 (11)
N30.0445 (12)0.0296 (11)0.0316 (11)0.0116 (9)0.0123 (10)0.0063 (9)
N40.0382 (12)0.0321 (11)0.0281 (11)0.0103 (9)0.0050 (9)0.0070 (9)
N50.0489 (13)0.0389 (12)0.0352 (13)0.0097 (10)0.0065 (11)0.0155 (10)
N60.0361 (11)0.0338 (11)0.0277 (11)0.0090 (9)0.0071 (9)0.0079 (9)
N70.0480 (15)0.0492 (15)0.0577 (16)0.0122 (12)0.0174 (13)0.0272 (13)
C10.0429 (15)0.0340 (14)0.0332 (14)0.0084 (11)0.0137 (12)0.0050 (11)
C20.069 (2)0.0383 (15)0.0432 (16)0.0201 (14)0.0271 (15)0.0153 (12)
C30.0554 (17)0.0328 (14)0.0414 (16)0.0169 (12)0.0116 (13)0.0100 (12)
C40.0471 (15)0.0319 (13)0.0381 (15)0.0149 (12)0.0068 (12)0.0054 (11)
C50.0360 (14)0.0334 (13)0.0428 (16)0.0097 (11)0.0065 (12)0.0096 (12)
C60.0321 (13)0.0309 (13)0.0446 (16)0.0066 (10)0.0067 (12)0.0055 (11)
C70.0565 (18)0.0384 (15)0.0459 (17)0.0142 (13)0.0092 (14)0.0044 (13)
C80.061 (2)0.0571 (19)0.0442 (18)0.0099 (16)0.0091 (15)0.0020 (15)
C90.0533 (19)0.0520 (19)0.061 (2)0.0097 (15)0.0167 (16)0.0149 (16)
C100.0476 (17)0.0343 (15)0.086 (3)0.0137 (13)0.0185 (17)0.0007 (16)
C110.0393 (15)0.0345 (14)0.064 (2)0.0112 (12)0.0145 (14)0.0115 (13)
C120.0392 (14)0.0333 (13)0.0278 (13)0.0104 (11)0.0094 (11)0.0097 (10)
C130.0470 (16)0.0364 (14)0.0347 (15)0.0060 (12)0.0066 (12)0.0090 (11)
C140.0334 (14)0.0492 (16)0.0356 (15)0.0142 (12)0.0054 (11)0.0087 (12)
C150.0376 (14)0.0430 (15)0.0302 (14)0.0095 (12)0.0012 (11)0.0110 (11)
C160.0413 (15)0.0482 (16)0.0348 (15)0.0152 (12)0.0050 (12)0.0166 (12)
C170.0333 (13)0.0407 (14)0.0349 (15)0.0078 (11)0.0016 (11)0.0089 (11)
C180.0502 (16)0.0390 (15)0.0350 (15)0.0042 (12)0.0039 (12)0.0076 (12)
C190.066 (2)0.0575 (19)0.0357 (17)0.0012 (16)0.0055 (15)0.0091 (14)
C200.057 (2)0.066 (2)0.0393 (18)0.0092 (16)0.0051 (15)0.0056 (15)
C210.060 (2)0.0468 (17)0.061 (2)0.0198 (15)0.0002 (16)0.0022 (15)
C220.0531 (18)0.0471 (17)0.0475 (18)0.0177 (14)0.0001 (14)0.0138 (14)
Geometric parameters (Å, º) top
Cu1—N11.9931 (19)C6—C111.389 (4)
Cu1—N42.0515 (19)C7—C81.388 (4)
Cu1—O32.396 (2)C7—H70.9300
O1—C51.211 (3)C8—C91.370 (4)
O2—C161.210 (3)C8—H80.9300
O3—N71.232 (3)C9—C101.370 (5)
O4—N71.257 (3)C9—H90.9300
O5—N71.201 (3)C10—C111.384 (4)
N1—C11.321 (3)C10—H100.9300
N1—C21.346 (3)C11—H110.9300
N2—C21.313 (3)C12—H120.9300
N2—N31.360 (3)C13—H130.9300
N3—C11.325 (3)C14—C151.520 (4)
N3—C31.459 (3)C14—H14A0.9700
N4—C121.328 (3)C14—H14B0.9700
N4—C131.360 (3)C15—C161.512 (4)
N5—C131.313 (3)C15—H15A0.9700
N5—N61.361 (3)C15—H15B0.9700
N6—C121.324 (3)C16—C171.496 (4)
N6—C141.467 (3)C17—C181.385 (4)
C1—H10.9300C17—C221.391 (4)
C2—H20.9300C18—C191.387 (4)
C3—C41.503 (4)C18—H180.9300
C3—H3A0.9700C19—C201.373 (5)
C3—H3B0.9700C19—H190.9300
C4—C51.510 (3)C20—C211.371 (5)
C4—H4A0.9700C20—H200.9300
C4—H4B0.9700C21—C221.384 (4)
C5—C61.495 (4)C21—H210.9300
C6—C71.389 (4)C22—H220.9300
N1—Cu1—N1i180.00 (11)C11—C6—C5119.3 (3)
N1—Cu1—N4i91.68 (8)C8—C7—C6120.7 (3)
N1i—Cu1—N4i88.32 (8)C8—C7—H7119.7
N1—Cu1—N488.32 (8)C6—C7—H7119.7
N1i—Cu1—N491.68 (8)C9—C8—C7119.8 (3)
N4i—Cu1—N4180.00 (11)C9—C8—H8120.1
N1—Cu1—O3i90.37 (8)C7—C8—H8120.1
N1i—Cu1—O3i89.63 (8)C10—C9—C8120.1 (3)
N4i—Cu1—O3i82.97 (8)C10—C9—H9119.9
N4—Cu1—O3i97.03 (8)C8—C9—H9119.9
N1—Cu1—O389.63 (8)C9—C10—C11120.6 (3)
N1i—Cu1—O390.37 (8)C9—C10—H10119.7
N4i—Cu1—O397.03 (8)C11—C10—H10119.7
N4—Cu1—O382.97 (8)C10—C11—C6120.1 (3)
O3i—Cu1—O3180.0C10—C11—H11120.0
N7—O3—Cu1136.91 (19)C6—C11—H11120.0
C1—N1—C2103.6 (2)N6—C12—N4109.9 (2)
C1—N1—Cu1132.14 (18)N6—C12—H12125.1
C2—N1—Cu1123.99 (17)N4—C12—H12125.1
C2—N2—N3102.5 (2)N5—C13—N4114.2 (2)
C1—N3—N2110.0 (2)N5—C13—H13122.9
C1—N3—C3129.9 (2)N4—C13—H13122.9
N2—N3—C3119.9 (2)N6—C14—C15113.0 (2)
C12—N4—C13103.1 (2)N6—C14—H14A109.0
C12—N4—Cu1131.17 (17)C15—C14—H14A109.0
C13—N4—Cu1125.54 (17)N6—C14—H14B109.0
C13—N5—N6102.6 (2)C15—C14—H14B109.0
C12—N6—N5110.2 (2)H14A—C14—H14B107.8
C12—N6—C14130.0 (2)C16—C15—C14113.0 (2)
N5—N6—C14119.5 (2)C16—C15—H15A109.0
O5—N7—O3122.4 (3)C14—C15—H15A109.0
O5—N7—O4120.4 (3)C16—C15—H15B109.0
O3—N7—O4117.3 (3)C14—C15—H15B109.0
N1—C1—N3109.7 (2)H15A—C15—H15B107.8
N1—C1—H1125.2O2—C16—C17121.1 (3)
N3—C1—H1125.2O2—C16—C15120.1 (3)
N2—C2—N1114.3 (2)C17—C16—C15118.8 (2)
N2—C2—H2122.8C18—C17—C22118.7 (3)
N1—C2—H2122.8C18—C17—C16122.1 (2)
N3—C3—C4111.1 (2)C22—C17—C16119.1 (2)
N3—C3—H3A109.4C17—C18—C19120.3 (3)
C4—C3—H3A109.4C17—C18—H18119.8
N3—C3—H3B109.4C19—C18—H18119.8
C4—C3—H3B109.4C20—C19—C18120.2 (3)
H3A—C3—H3B108.0C20—C19—H19119.9
C3—C4—C5112.3 (2)C18—C19—H19119.9
C3—C4—H4A109.1C21—C20—C19120.1 (3)
C5—C4—H4A109.1C21—C20—H20119.9
C3—C4—H4B109.1C19—C20—H20119.9
C5—C4—H4B109.1C20—C21—C22120.0 (3)
H4A—C4—H4B107.9C20—C21—H21120.0
O1—C5—C6121.2 (2)C22—C21—H21120.0
O1—C5—C4120.9 (2)C21—C22—C17120.6 (3)
C6—C5—C4118.0 (2)C21—C22—H22119.7
C7—C6—C11118.6 (3)C17—C22—H22119.7
C7—C6—C5122.1 (2)
N1—Cu1—O3—N792.4 (3)C3—C4—C5—C6173.5 (2)
N1i—Cu1—O3—N787.6 (3)O1—C5—C6—C7171.1 (3)
N4i—Cu1—O3—N70.8 (3)C4—C5—C6—C77.5 (4)
N4—Cu1—O3—N7179.2 (3)O1—C5—C6—C118.4 (4)
N4i—Cu1—N1—C1107.5 (2)C4—C5—C6—C11172.9 (2)
N4—Cu1—N1—C172.5 (2)C11—C6—C7—C82.1 (4)
O3i—Cu1—N1—C1169.5 (2)C5—C6—C7—C8177.5 (3)
O3—Cu1—N1—C110.5 (2)C6—C7—C8—C91.5 (5)
N4i—Cu1—N1—C279.8 (2)C7—C8—C9—C100.1 (5)
N4—Cu1—N1—C2100.2 (2)C8—C9—C10—C111.0 (5)
O3i—Cu1—N1—C23.2 (2)C9—C10—C11—C60.4 (4)
O3—Cu1—N1—C2176.8 (2)C7—C6—C11—C101.2 (4)
C2—N2—N3—C10.2 (3)C5—C6—C11—C10178.4 (2)
C2—N2—N3—C3175.6 (2)N5—N6—C12—N40.2 (3)
N1—Cu1—N4—C12107.1 (2)C14—N6—C12—N4173.7 (2)
N1i—Cu1—N4—C1272.9 (2)C13—N4—C12—N60.2 (3)
O3i—Cu1—N4—C1216.9 (2)Cu1—N4—C12—N6175.26 (16)
O3—Cu1—N4—C12163.1 (2)N6—N5—C13—N40.1 (3)
N1—Cu1—N4—C1366.9 (2)C12—N4—C13—N50.2 (3)
N1i—Cu1—N4—C13113.1 (2)Cu1—N4—C13—N5175.61 (17)
O3i—Cu1—N4—C13157.1 (2)C12—N6—C14—C15118.9 (3)
O3—Cu1—N4—C1322.9 (2)N5—N6—C14—C1568.1 (3)
C13—N5—N6—C120.0 (3)N6—C14—C15—C1685.4 (3)
C13—N5—N6—C14174.4 (2)C14—C15—C16—O20.3 (4)
Cu1—O3—N7—O5107.0 (4)C14—C15—C16—C17178.9 (2)
Cu1—O3—N7—O472.1 (4)O2—C16—C17—C18179.1 (3)
C2—N1—C1—N30.2 (3)C15—C16—C17—C181.7 (4)
Cu1—N1—C1—N3173.99 (16)O2—C16—C17—C220.3 (4)
N2—N3—C1—N10.3 (3)C15—C16—C17—C22179.0 (2)
C3—N3—C1—N1175.1 (2)C22—C17—C18—C190.1 (4)
N3—N2—C2—N10.0 (3)C16—C17—C18—C19179.3 (3)
C1—N1—C2—N20.1 (3)C17—C18—C19—C200.2 (5)
Cu1—N1—C2—N2174.55 (19)C18—C19—C20—C210.2 (5)
C1—N3—C3—C4137.6 (3)C19—C20—C21—C220.1 (5)
N2—N3—C3—C448.0 (3)C20—C21—C22—C170.1 (5)
N3—C3—C4—C5177.6 (2)C18—C17—C22—C210.1 (4)
C3—C4—C5—O17.8 (4)C16—C17—C22—C21179.5 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···N2ii0.972.503.368 (4)148
C19—H19···O5iii0.932.563.291 (4)136
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C11H11N3O)4]
Mr992.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7742 (14), 12.472 (2), 12.498 (2)
α, β, γ (°)102.232 (3), 100.737 (3), 104.394 (3)
V3)1110.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.24 × 0.20 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.876, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
5737, 3905, 3295
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.03
No. of reflections3905
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···N2i0.972.503.368 (4)148.2
C19—H19···O5ii0.932.563.291 (4)136.0
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

We acknowledge financial support by the Special Fund for Central Universities (ZXH2009D011), the Natural Science Foundation of Tianjin (09JCYBJC04200), the National Natural Science Foundation of the Civil Aviation Administration of China (61079010) and the Scientific Research Foundation of the Civil Aviation University of China (No. 2011KYS05)

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, H., Guo, Y. & Li, J.-G. (2010). Acta Cryst. E66, m1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds