metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 10| October 2011| Pages m1375-m1376

2,5-Bis(pyridinium-2-yl)-3,6-bis­­(2-pyrid­yl)pyrazine bis­­[tetra­chlorido­aurate(III)]

aDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and bDepartment of Chemistry, Share-Ray Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: anita_abedi@yahoo.com

(Received 20 August 2011; accepted 5 September 2011; online 14 September 2011)

In the title compound, (C24H18N6)[AuCl4]2, the cation is located on an inversion center. Each of the two independent AuIII ions lies on an inversion center and has a distorted square-planar geometry. In the crystal, inter­molecular C—H⋯Cl hydrogen bonds, ππ inter­actions [centroid–centroid distances = 3.5548 (16) and 3.7507 (16) Å] and Au⋯π inter­actions [Au⋯centroid distance = 3.6424 (10) Å] are effective in the stabilization of the structure, resulting in the formation of a supra­molecular structure. Intra­molecular N—H⋯N hydrogen bonds are present in the cation.

Related literature

For the structures of related proton-transfer complexes, see: Abedi et al. (2008[Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.]); Aragoni et al. (2005a[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Ogilvie, H. (2005a). Inorg. Chem. Commun. 8, 79-82.],b[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Ogilvie, H. & Verani, G. (2005b). J. Organomet. Chem. 690, 1923-1934.]); Bock et al. (1992[Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299-301.]); Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Graf & Stoeckli-Evans (1996[Graf, M. & Stoeckli-Evans, H. (1996). Acta Cryst. C52, 3073-3075.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267-m1268.]); Padgett et al. (2005[Padgett, C. W., Walsh, R. D., Drake, G. W., Hanks, T. W. & Pennington, W. T. (2005). Cryst. Growth Des. 5, 745-753.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Yıldırım et al. (2009a[Yıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009a). Acta Cryst. E65, m479-m480.],b[Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491-m492.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H18N6)[AuCl4]2

  • Mr = 1067.98

  • Triclinic, [P \overline 1]

  • a = 7.2847 (6) Å

  • b = 9.6611 (8) Å

  • c = 10.6263 (9) Å

  • α = 79.6692 (13)°

  • β = 78.7378 (12)°

  • γ = 88.8600 (13)°

  • V = 721.48 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 10.93 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.080, Tmax = 0.110

  • 8652 measured reflections

  • 3821 independent reflections

  • 3395 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.050

  • S = 1.05

  • 3821 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −1.36 e Å−3

Table 1
Selected bond lengths (Å)

Au1—Cl1 2.2775 (7)
Au1—Cl2 2.2774 (6)
Au2—Cl3 2.2834 (7)
Au2—Cl4 2.2821 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3i 0.87 1.69 2.538 (3) 164
C4—H4A⋯Cl1ii 0.95 2.77 3.680 (3) 161
C6—H6A⋯Cl2iii 0.95 2.77 3.519 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we reported the synthesis and crystal structures of two proton-transfer complexes (Abedi et al., 2008; Kalateh et al., 2008). Several proton-transfer systems using 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) as proton donor molecules, such as [tppzH2][I3]2.2I2, (II), [tppzH4][I3]2[I]2, (III), [tppzH4][Br]4.2H2O, (IV), (Padgett et al., 2005), [tppzH4][Br]2[Br4], (V), (Aragoni et al., 2005a), [tppzH2][ICl2]2, (VI), (Aragoni et al., 2005b), [tppzH4][Cl]4.2H2O, (VII), (Graf & Stoeckli-Evans, 1996) and [tppzH2][B(Ph)4]2, (IIX), (Bock et al., 1992), have been synthesized and characterized by single-crystal X-ray diffraction methods. Several proton-transfer systems using AuCl4 as proton acceptor molecules, such as [EMI][AuCl4], (IX), [BMI]2[AuCl4].2H2O, (X), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (XI), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (XII), [H5O2][benzo-15-crown-5]2[AuCl4], (XIII), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (XIV), [H3O][18-crown-6][AuCl4], (XV), [H3O][4-nitrobenzo-18-crown-6][AuCl4], (XVI), (Calleja et al., 2001), [DPpyH][AuCl4], (XVII), (Yap et al., 1995), [H2DA18C6][AuCl4], (XVIII), (Hojjat Kashani et al., 2008), [Me2Ph2phenH][AuCl4], (XIX), (Yıldırım et al., 2009a) and [pz(py)2H][AuCl4], (XX), (Yıldırım et al., 2009b) (EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium, DPpyH is 2,6-diphenylpyridinium, H2DA18C6 is 1,10-diazonia-18-crown-6, Me2Ph2phenH is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium and pz(py)2H is 2-[3-(2-pyridyl)pyrazin-2-yl]pyridinium) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one half-cation and two half-anions (Fig. 1). The AuIII ions, each lies on an inversion center, have a square-planer coordination geometry. The bond lengths and angles in the cation are in good agreement with the corresponding values in (V) and (IIX). The Au—Cl bond lengths (Table 1) and angles are within normal range observed in (XIIX), (XIX) and (XX). In the crystal structure, intermolecular C—H···Cl hydrogen bonds (Table 2), ππ contacts between the pyridine rings (Fig. 2), Cg2···Cg2i and Cg3···Cg3ii [Cg2 and Cg3 are the centroids of the N2, C3–C7 ring and N3, C8–C12 ring. Symmetry codes: (i) 1-x, -y, 1-z; (ii) 1-x, 1-y, 2-z], with centroid–centroid distances of 3.5548 (16) and 3.7507 (16) Å and Au2···Cg1 contacts (Fig. 2) [Cg1 is the centroid of the N1, C1, C2, N1iii, C1iii, C2iii ring. Symmetry code: (iii) 1-x, 1-y, 1-z] with an Au···centroid distance of 3.6424 (10) Å are effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure.

Related literature top

For the structures of related proton-transfer complexes, see: Abedi et al. (2008); Aragoni et al. (2005a,b); Bock et al. (1992); Calleja et al. (2001); Graf & Stoeckli-Evans (1996); Hasan et al. (1999); Hojjat Kashani et al. (2008); Johnson & Steed (1998); Kalateh et al. (2008); Padgett et al. (2005); Yap et al. (1995); Yıldırım et al. (2009a,b); Zhang et al. (2006).

Experimental top

For the preparation of (I), a solution of 2,3,5,6-tetrakis(2-pyridyl)pyrazine (0.26 g, 0.65 mmol) in CHCl3 (20 ml) was added to a solution of HAuCl4.3H2O, (0.45 g, 1.30 mmol) in methanol (20 ml) and the resulting yellow solution was stirred for 10 min at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a yellow solution in DMF. After one week, yellow prismatic crystals of (I) were isolated (yield: 0.51 g, 73.5%; m. p. 569–570 K).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and N—H = 0.87 Å and with Uiso(H) = 1.2Ueq(C,N). The highest residual electron density was found at 0.82 Å from Au2 atom and the deepest hole at 0.76 Å from Au1 atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) -x, 2-y, -z; (b) -x, 1-y, 1-z; (c) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
2,5-Bis(pyridinium-2-yl)-3,6-bis(2-pyridyl)pyrazine bis[tetrachloridoaurate(III)] top
Crystal data top
(C24H18N6)[AuCl4]2Z = 1
Mr = 1067.98F(000) = 498
Triclinic, P1Dx = 2.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2847 (6) ÅCell parameters from 336 reflections
b = 9.6611 (8) Åθ = 3.0–29.0°
c = 10.6263 (9) ŵ = 10.93 mm1
α = 79.6692 (13)°T = 100 K
β = 78.7378 (12)°Prism, yellow
γ = 88.8600 (13)°0.30 × 0.20 × 0.20 mm
V = 721.48 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3821 independent reflections
Radiation source: fine-focus sealed tube3395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.080, Tmax = 0.110k = 1313
8652 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.1485P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3821 reflectionsΔρmax = 1.76 e Å3
185 parametersΔρmin = 1.36 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0137 (4)
Crystal data top
(C24H18N6)[AuCl4]2γ = 88.8600 (13)°
Mr = 1067.98V = 721.48 (10) Å3
Triclinic, P1Z = 1
a = 7.2847 (6) ÅMo Kα radiation
b = 9.6611 (8) ŵ = 10.93 mm1
c = 10.6263 (9) ÅT = 100 K
α = 79.6692 (13)°0.30 × 0.20 × 0.20 mm
β = 78.7378 (12)°
Data collection top
Bruker APEXII CCD
diffractometer
3821 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3395 reflections with I > 2σ(I)
Tmin = 0.080, Tmax = 0.110Rint = 0.020
8652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.05Δρmax = 1.76 e Å3
3821 reflectionsΔρmin = 1.36 e Å3
185 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4305 (3)0.3824 (2)0.5837 (2)0.0090 (4)
N20.4962 (3)0.2025 (2)0.3140 (2)0.0103 (4)
H2N0.57140.26590.26160.012*
N30.3379 (3)0.5836 (2)0.8362 (2)0.0102 (4)
C10.4712 (3)0.3792 (3)0.4559 (2)0.0095 (5)
C20.4559 (3)0.4976 (3)0.6317 (2)0.0091 (5)
C30.4186 (3)0.2409 (3)0.4284 (2)0.0084 (5)
C40.4503 (4)0.0810 (3)0.2834 (3)0.0125 (5)
H4A0.50620.05800.20140.015*
C50.3216 (4)0.0119 (3)0.3702 (3)0.0126 (5)
H5A0.28820.09790.34830.015*
C60.2435 (4)0.0241 (3)0.4889 (3)0.0130 (5)
H6A0.15630.03800.55030.016*
C70.2919 (4)0.1504 (3)0.5190 (3)0.0117 (5)
H6B0.23880.17490.60090.014*
C80.3936 (3)0.4731 (3)0.7766 (2)0.0092 (5)
C90.2659 (4)0.5627 (3)0.9642 (3)0.0136 (5)
H8A0.22550.64161.00380.016*
C100.2484 (4)0.4302 (3)1.0404 (3)0.0135 (5)
H9A0.19430.41741.13070.016*
C110.3120 (4)0.3162 (3)0.9817 (3)0.0126 (5)
H10A0.30620.22421.03230.015*
C120.3843 (4)0.3378 (3)0.8486 (2)0.0127 (5)
H11A0.42690.26050.80720.015*
Cl30.10327 (10)0.34900 (7)0.69144 (6)0.01701 (14)
Cl40.05043 (9)0.33137 (7)0.38464 (6)0.01462 (13)
Cl10.28009 (9)0.92195 (7)0.04725 (6)0.01430 (13)
Cl20.05623 (9)0.89691 (7)0.18017 (6)0.01601 (14)
Au10.00001.00000.00000.00864 (5)
Au20.00000.50000.50000.00909 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0094 (10)0.0098 (10)0.0087 (10)0.0017 (8)0.0029 (8)0.0026 (8)
N20.0119 (10)0.0098 (10)0.0087 (10)0.0012 (8)0.0001 (8)0.0018 (8)
N30.0111 (10)0.0103 (10)0.0089 (10)0.0001 (8)0.0009 (8)0.0023 (8)
C10.0094 (11)0.0085 (11)0.0107 (11)0.0018 (9)0.0009 (9)0.0031 (9)
C20.0081 (11)0.0096 (11)0.0098 (11)0.0019 (9)0.0014 (9)0.0032 (9)
C30.0090 (11)0.0083 (11)0.0086 (11)0.0025 (9)0.0034 (9)0.0019 (9)
C40.0162 (13)0.0105 (12)0.0113 (12)0.0011 (10)0.0021 (10)0.0043 (10)
C50.0172 (13)0.0078 (11)0.0136 (12)0.0004 (10)0.0046 (10)0.0021 (10)
C60.0140 (13)0.0108 (12)0.0139 (13)0.0018 (10)0.0037 (10)0.0004 (10)
C70.0125 (12)0.0122 (12)0.0098 (12)0.0016 (10)0.0004 (10)0.0029 (10)
C80.0089 (11)0.0113 (12)0.0072 (11)0.0009 (9)0.0004 (9)0.0027 (9)
C90.0172 (13)0.0136 (13)0.0101 (12)0.0016 (10)0.0001 (10)0.0053 (10)
C100.0161 (13)0.0160 (13)0.0079 (11)0.0018 (10)0.0005 (10)0.0024 (10)
C110.0160 (13)0.0112 (12)0.0103 (12)0.0026 (10)0.0023 (10)0.0007 (10)
C120.0177 (13)0.0111 (12)0.0091 (12)0.0010 (10)0.0014 (10)0.0024 (9)
Cl30.0223 (3)0.0147 (3)0.0120 (3)0.0025 (3)0.0002 (3)0.0005 (2)
Cl40.0180 (3)0.0130 (3)0.0151 (3)0.0005 (2)0.0051 (3)0.0063 (2)
Cl10.0133 (3)0.0173 (3)0.0133 (3)0.0026 (2)0.0028 (2)0.0054 (2)
Cl20.0173 (3)0.0215 (3)0.0111 (3)0.0019 (3)0.0008 (2)0.0103 (2)
Au10.01007 (8)0.00904 (8)0.00661 (8)0.00065 (5)0.00033 (5)0.00288 (5)
Au20.00902 (8)0.00935 (8)0.00916 (8)0.00064 (5)0.00137 (5)0.00284 (5)
Geometric parameters (Å, º) top
N1—C21.335 (3)C6—C71.384 (4)
N1—C11.338 (3)C6—H6A0.9500
N2—C41.338 (3)C7—H6B0.9500
N2—C31.349 (3)C8—C121.387 (4)
N2—H2N0.8705C9—C101.380 (4)
N3—C91.339 (3)C9—H8A0.9500
N3—C81.353 (3)C10—C111.389 (4)
C1—C2i1.414 (4)C10—H9A0.9500
C1—C31.491 (3)C11—C121.389 (3)
C2—C1i1.414 (4)C11—H10A0.9500
C2—C81.494 (3)C12—H11A0.9500
C3—C71.388 (3)Au1—Cl12.2775 (7)
C4—C51.391 (4)Au1—Cl22.2774 (6)
C4—H4A0.9500Au2—Cl32.2834 (7)
C5—C61.381 (4)Au2—Cl42.2821 (6)
C5—H5A0.9500
C2—N1—C1122.5 (2)C3—C7—H6B120.3
C4—N2—C3121.8 (2)N3—C8—C12120.3 (2)
C4—N2—H2N124.3N3—C8—C2119.3 (2)
C3—N2—H2N113.8C12—C8—C2120.4 (2)
C9—N3—C8120.3 (2)N3—C9—C10122.1 (3)
N1—C1—C2i118.8 (2)N3—C9—H8A118.9
N1—C1—C3111.4 (2)C10—C9—H8A118.9
C2i—C1—C3129.6 (2)C9—C10—C11118.3 (2)
N1—C2—C1i118.7 (2)C9—C10—H9A120.9
N1—C2—C8111.2 (2)C11—C10—H9A120.9
C1i—C2—C8130.0 (2)C12—C11—C10119.5 (2)
N2—C3—C7119.4 (2)C12—C11—H10A120.2
N2—C3—C1119.6 (2)C10—C11—H10A120.2
C7—C3—C1121.0 (2)C8—C12—C11119.4 (2)
N2—C4—C5120.8 (2)C8—C12—H11A120.3
N2—C4—H4A119.6C11—C12—H11A120.3
C5—C4—H4A119.6Cl2ii—Au1—Cl2180.0
C6—C5—C4118.2 (2)Cl2ii—Au1—Cl190.28 (2)
C6—C5—H5A120.9Cl2—Au1—Cl189.72 (2)
C4—C5—H5A120.9Cl1—Au1—Cl1ii180.0
C5—C6—C7120.3 (3)Cl4iii—Au2—Cl4180.000 (19)
C5—C6—H6A119.9Cl4iii—Au2—Cl389.50 (2)
C7—C6—H6A119.9Cl4—Au2—Cl390.50 (2)
C6—C7—C3119.4 (2)Cl3—Au2—Cl3iii180.0
C6—C7—H6B120.3
C2—N1—C1—C2i0.1 (4)N2—C3—C7—C61.8 (4)
C2—N1—C1—C3176.5 (2)C1—C3—C7—C6178.7 (2)
C1—N1—C2—C1i0.1 (4)C9—N3—C8—C122.9 (4)
C1—N1—C2—C8178.2 (2)C9—N3—C8—C2174.0 (2)
C4—N2—C3—C72.1 (4)N1—C2—C8—N3153.8 (2)
C4—N2—C3—C1178.4 (2)C1i—C2—C8—N324.3 (4)
N1—C1—C3—N2160.6 (2)N1—C2—C8—C1223.1 (3)
C2i—C1—C3—N223.3 (4)C1i—C2—C8—C12158.8 (3)
N1—C1—C3—C719.0 (3)C8—N3—C9—C101.2 (4)
C2i—C1—C3—C7157.2 (3)N3—C9—C10—C111.5 (4)
C3—N2—C4—C51.0 (4)C9—C10—C11—C122.4 (4)
N2—C4—C5—C60.4 (4)N3—C8—C12—C111.9 (4)
C4—C5—C6—C70.7 (4)C2—C8—C12—C11174.9 (2)
C5—C6—C7—C30.4 (4)C10—C11—C12—C80.7 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.871.692.538 (3)164
C4—H4A···Cl1iv0.952.773.680 (3)161
C6—H6A···Cl2v0.952.773.519 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formula(C24H18N6)[AuCl4]2
Mr1067.98
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2847 (6), 9.6611 (8), 10.6263 (9)
α, β, γ (°)79.6692 (13), 78.7378 (12), 88.8600 (13)
V3)721.48 (10)
Z1
Radiation typeMo Kα
µ (mm1)10.93
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.080, 0.110
No. of measured, independent and
observed [I > 2σ(I)] reflections
8652, 3821, 3395
Rint0.020
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.05
No. of reflections3821
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 1.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Au1—Cl12.2775 (7)Au2—Cl32.2834 (7)
Au1—Cl22.2774 (6)Au2—Cl42.2821 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.871.692.538 (3)164
C4—H4A···Cl1ii0.952.773.680 (3)161
C6—H6A···Cl2iii0.952.773.519 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y1, z+1.
 

Acknowledgements

We thank the Graduate Study Councils of the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAbedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.  Web of Science CSD CrossRef IUCr Journals
First citationAragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Ogilvie, H. (2005a). Inorg. Chem. Commun. 8, 79–82.  Web of Science CSD CrossRef CAS
First citationAragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Ogilvie, H. & Verani, G. (2005b). J. Organomet. Chem. 690, 1923–1934.  Web of Science CSD CrossRef CAS
First citationBock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299–301.  CSD CrossRef
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS
First citationGraf, M. & Stoeckli-Evans, H. (1996). Acta Cryst. C52, 3073–3075.  CSD CrossRef CAS Web of Science IUCr Journals
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef
First citationKalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267–m1268.  Web of Science CSD CrossRef IUCr Journals
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationPadgett, C. W., Walsh, R. D., Drake, G. W., Hanks, T. W. & Pennington, W. T. (2005). Cryst. Growth Des. 5, 745–753.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009a). Acta Cryst. E65, m479–m480.  Web of Science CSD CrossRef IUCr Journals
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491–m492.  Web of Science CSD CrossRef IUCr Journals
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 10| October 2011| Pages m1375-m1376
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds