organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine-1,1′-diium 2,3,5,6-tetra­bromo­terephthalate dihydrate

aInstitute for Molecular Science, 38 Nishigounaka Okazaki, Aichi, Japan, and bDepartment of Chemistry, Fukuoka University, Fukuoka 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

(Received 9 July 2011; accepted 2 September 2011; online 14 September 2011)

The title compound, C10H10N22+·C8Br4O42−·2H2O, consists of a tetra­bromo­terephthalate dianion, a 4,4′-bipyridinium dication and two solvent water mol­ecules. Crystallographic inversion centers are situated at the center of the aromatic ring of the dianion as well as at the midpoint of the carbon–carbon bond connecting the pyridine rings in the dication. In the crystal, inter­molecular N—H⋯O hydrogen-bonding inter­actions between tetra­bromo­terephthalate dianions and protonated 4,4′-bipyridinium dications result in the formation of a chain-like structure. Further O—H⋯O hydrogen bonds between carboxyl­ate O atoms and water mol­ecules lead to the formation of a two-dimensional network in the crystal structure.

Related literature

For hydrogen-bonded assemblies, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]); Jia et al. (2009[Jia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.]); Soleimannejad et al. (2009[Soleimannejad, J., Aghabozorg, H., Morsali, A., Hemmati, F. & Manteghi, F. (2009). Acta Cryst. E65, o153.]). For proton transfer, see: Kawata et al. (2002[Kawata, S., Adachi, K., Sugiyama, Y., Kabir, M. K. & Kaizaki, S. (2002). CrystEngCommun, 4, 496-498.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N22+·C8Br4O42−·2H2O

  • Mr = 673.93

  • Triclinic, [P \overline 1]

  • a = 6.503 (3) Å

  • b = 9.249 (4) Å

  • c = 9.987 (4) Å

  • α = 64.119 (14)°

  • β = 85.868 (18)°

  • γ = 73.737 (14)°

  • V = 517.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.83 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.126, Tmax = 0.209

  • 5065 measured reflections

  • 2336 independent reflections

  • 2116 reflections with F2 > 2.0σ(F2)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.19

  • 2336 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −1.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯O2i 0.963 1.944 2.822 (4) 150.5
O3—H7⋯O2 1.002 1.765 2.766 (3) 177.2
N1—H5⋯O1ii 0.941 1.670 2.606 (4) 172.9
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: IL MILIONE (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2004[Palmer, D. (2004). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Hydrogen bonded inorganic and organic compounds are of great current interest in recent years due to fundamental scientific and technological applications (Desiraju & Steiner,1999; Kawata et al., 2002). Here we report the synthesis and single-crystal structure of the title compound [(C8Br4O4)(C10H10N2).2H2O)]. It consists of a tetrabromoterephthalate dianion, a 4,4'-bipyridinium dication and solvent water molecules. Intermolecular N–H···O hydrogen bonding interactions between tetrabromoterephthalate dianions and protonated 4,4'-bipyridinium dications result in the formation of a one-dimensional chain-like structure. Further O–H···O hydrogen bonds between oxygen atoms of carboxylates and water molecules lead to the formation of a two-dimensional network in the crystal structure.

Related literature top

For hydrogen-bonded assemblies, see: Desiraju & Steiner (1999); Jia et al. (2009); Soleimannejad et al. (2009). For proton transfer, see: Kawata et al. (2002).

Experimental top

An aqueous solution (2 ml) of cerium nitrate hexahydrate (0.43 g, 1 mmolL-1) was transferred to a glass tube, then a mixture of tetrabromoterephthalic acid (0.48 g, 1 mmolL-1), NaOH (0.08 g, 2 mmolL-1) and 4,4'-bpy (0.15 g, 1 mmolL-1) in ethanol/water (2 ml) was poured into the glass tube without mixing the two solutions. Colorless crystals began to form at ambient temperature during 1 month. One of these crystals was used for X-ray crystallography.

Refinement top

Hydrogen atoms bonded to carbon atoms, H1, H2, H3 and H4 were introduced at the positions calculated theoretically and refined using riding models with Uiso(H) = 1.5 Ueq(C). H5, H6, H7 are located in the Fourier difference maps but the positions of these atoms were not refined. Thermal parameteers have been fixed to 1.2 Ueq(N) or 1.5 Ueq(O), respectively.

Structure description top

Hydrogen bonded inorganic and organic compounds are of great current interest in recent years due to fundamental scientific and technological applications (Desiraju & Steiner,1999; Kawata et al., 2002). Here we report the synthesis and single-crystal structure of the title compound [(C8Br4O4)(C10H10N2).2H2O)]. It consists of a tetrabromoterephthalate dianion, a 4,4'-bipyridinium dication and solvent water molecules. Intermolecular N–H···O hydrogen bonding interactions between tetrabromoterephthalate dianions and protonated 4,4'-bipyridinium dications result in the formation of a one-dimensional chain-like structure. Further O–H···O hydrogen bonds between oxygen atoms of carboxylates and water molecules lead to the formation of a two-dimensional network in the crystal structure.

For hydrogen-bonded assemblies, see: Desiraju & Steiner (1999); Jia et al. (2009); Soleimannejad et al. (2009). For proton transfer, see: Kawata et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: IL MILIONE (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalMaker (Palmer, 2004).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen bonding interactions for the title compound.
4,4'-Bipyridine-1,1'-diium 2,3,5,6-tetrabromoterephthalate dihydrate top
Crystal data top
C10H10N22+·C8Br4O42·2H2OZ = 1
Mr = 673.93F(000) = 324.00
Triclinic, P1Dx = 2.161 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.503 (3) ÅCell parameters from 1137 reflections
b = 9.249 (4) Åθ = 3.3–27.5°
c = 9.987 (4) ŵ = 7.83 mm1
α = 64.119 (14)°T = 293 K
β = 85.868 (18)°Prism, colorless
γ = 73.737 (14)°0.30 × 0.20 × 0.20 mm
V = 517.9 (4) Å3
Data collection top
Rigaku Mercury70
diffractometer
2116 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 88
Tmin = 0.126, Tmax = 0.209k = 1212
5065 measured reflectionsl = 1212
2336 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1173P]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 1.55 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H10N22+·C8Br4O42·2H2Oγ = 73.737 (14)°
Mr = 673.93V = 517.9 (4) Å3
Triclinic, P1Z = 1
a = 6.503 (3) ÅMo Kα radiation
b = 9.249 (4) ŵ = 7.83 mm1
c = 9.987 (4) ÅT = 293 K
α = 64.119 (14)°0.30 × 0.20 × 0.20 mm
β = 85.868 (18)°
Data collection top
Rigaku Mercury70
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2116 reflections with F2 > 2.0σ(F2)
Tmin = 0.126, Tmax = 0.209Rint = 0.027
5065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.19Δρmax = 0.48 e Å3
2336 reflectionsΔρmin = 1.55 e Å3
136 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10645 (4)0.42116 (4)0.71999 (3)0.03083 (11)
Br20.32963 (5)0.18104 (4)0.54456 (3)0.03350 (12)
O10.1557 (4)0.8335 (3)0.5839 (3)0.0351 (5)
O20.3797 (4)0.6584 (3)0.7830 (3)0.0422 (6)
O30.7487 (4)0.4074 (3)0.9249 (3)0.0446 (6)
N10.8843 (4)0.9226 (3)0.7575 (3)0.0306 (6)
C10.8549 (6)1.0592 (5)0.7789 (4)0.0409 (8)
C20.7080 (5)1.0919 (4)0.8752 (4)0.0368 (7)
C30.5825 (4)0.9836 (4)0.9480 (3)0.0236 (6)
C40.6149 (5)0.8444 (5)0.9214 (4)0.0367 (7)
C50.7679 (6)0.8159 (4)0.8268 (4)0.0377 (7)
C60.4067 (4)0.6003 (3)0.5735 (3)0.0221 (5)
C70.3331 (4)0.4652 (4)0.5922 (3)0.0229 (5)
C80.4251 (4)0.3656 (4)0.5196 (3)0.0231 (5)
C90.3056 (5)0.7067 (4)0.6539 (3)0.0262 (6)
H10.93511.13380.72770.0491*
H20.69271.18590.89160.0442*
H30.53290.76980.96770.0441*
H40.79060.72080.81100.0452*
H50.98990.89370.69710.0367*
H60.75390.38781.02770.0670*
H70.61520.49700.87110.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02820 (17)0.03494 (19)0.03224 (19)0.01138 (13)0.01655 (12)0.01780 (14)
Br20.03620 (19)0.03384 (19)0.0411 (2)0.01650 (14)0.01468 (14)0.02352 (15)
O10.0340 (11)0.0330 (11)0.0321 (11)0.0036 (9)0.0083 (9)0.0172 (9)
O20.0477 (13)0.0549 (14)0.0277 (12)0.0052 (11)0.0025 (10)0.0266 (11)
O30.0460 (14)0.0483 (14)0.0416 (14)0.0126 (11)0.0168 (11)0.0237 (12)
N10.0286 (12)0.0356 (13)0.0320 (13)0.0080 (10)0.0150 (10)0.0211 (11)
C10.0426 (18)0.0430 (18)0.050 (2)0.0230 (15)0.0297 (16)0.0292 (17)
C20.0434 (17)0.0342 (16)0.0468 (19)0.0185 (14)0.0247 (15)0.0287 (15)
C30.0239 (13)0.0270 (13)0.0226 (13)0.0063 (10)0.0070 (11)0.0145 (11)
C40.0438 (17)0.0400 (16)0.0412 (18)0.0220 (14)0.0226 (15)0.0276 (15)
C50.0479 (18)0.0391 (17)0.0413 (18)0.0177 (14)0.0192 (15)0.0302 (15)
C60.0204 (12)0.0252 (12)0.0200 (13)0.0012 (10)0.0033 (10)0.0127 (11)
C70.0197 (12)0.0283 (13)0.0208 (13)0.0048 (10)0.0067 (10)0.0127 (11)
C80.0225 (12)0.0226 (12)0.0245 (13)0.0046 (10)0.0043 (10)0.0121 (11)
C90.0277 (14)0.0307 (14)0.0274 (15)0.0097 (11)0.0122 (11)0.0196 (12)
Geometric parameters (Å, º) top
Br1—C71.892 (3)C6—C71.394 (5)
Br2—C81.887 (4)C6—C8ii1.396 (4)
O1—C91.248 (3)C6—C91.516 (5)
O2—C91.249 (4)C7—C81.395 (5)
N1—C11.332 (6)O3—H60.963
N1—C51.331 (5)O3—H71.002
C1—C21.374 (6)N1—H50.941
C2—C31.392 (5)C1—H10.930
C3—C3i1.501 (4)C2—H20.930
C3—C41.382 (6)C4—H30.930
C4—C51.374 (5)C5—H40.930
O1···H5iii1.670H5···O1vi1.670
O1···H5iv2.828H5···O1iv2.828
O2···H5iii2.737H5···O2vi2.737
O2···H6v1.944H6···O2v1.944
O2···H71.765H7···O21.765
C1—N1—C5120.5 (3)C6ii—C8—C7120.4 (3)
N1—C1—C2121.2 (4)O1—C9—O2126.8 (4)
C1—C2—C3119.6 (4)O1—C9—C6116.2 (3)
C2—C3—C3i121.2 (4)O2—C9—C6116.9 (3)
C2—C3—C4117.7 (3)H6—O3—H7110.0
C3i—C3—C4121.1 (3)C1—N1—H5122.8
C3—C4—C5120.1 (4)C5—N1—H5116.6
N1—C5—C4120.9 (4)N1—C1—H1119.417
C7—C6—C8ii118.8 (3)C2—C1—H1119.409
C7—C6—C9120.1 (3)C1—C2—H2120.212
C8ii—C6—C9121.1 (3)C3—C2—H2120.215
Br1—C7—C6117.8 (3)C3—C4—H3119.938
Br1—C7—C8121.4 (3)C5—C4—H3119.934
C6—C7—C8120.8 (3)N1—C5—H4119.564
Br2—C8—C6ii118.1 (3)C4—C5—H4119.572
Br2—C8—C7121.6 (2)
C1—N1—C5—C40.2 (5)C8ii—C6—C7—C80.0 (4)
C5—N1—C1—C21.5 (5)C7—C6—C9—O193.1 (3)
N1—C1—C2—C32.2 (5)C7—C6—C9—O286.7 (4)
C1—C2—C3—C3i178.9 (3)C9—C6—C7—Br10.1 (3)
C1—C2—C3—C41.1 (4)C9—C6—C7—C8179.68 (19)
C2—C3—C3i—C4i0.0 (4)C8ii—C6—C9—O187.3 (4)
C2—C3—C4—C50.5 (4)C8ii—C6—C9—O293.0 (3)
C3i—C3—C4—C5179.5 (3)C9—C6—C8ii—Br2ii0.8 (3)
C4—C3—C3i—C2i0.0 (4)C9—C6—C8ii—C7ii179.68 (19)
C3—C4—C5—N11.2 (5)Br1—C7—C8—Br20.1 (3)
C7—C6—C8ii—Br2ii179.51 (18)Br1—C7—C8—C6ii179.58 (14)
C7—C6—C8ii—C7ii0.0 (4)C6—C7—C8—Br2179.49 (18)
C8ii—C6—C7—Br1179.59 (18)C6—C7—C8—C6ii0.0 (4)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O2v0.9631.9442.822 (4)150.5
O3—H7···O21.0021.7652.766 (3)177.2
N1—H5···O1vi0.9411.6702.606 (4)172.9
Symmetry codes: (v) x+1, y+1, z+2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10N22+·C8Br4O42·2H2O
Mr673.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.503 (3), 9.249 (4), 9.987 (4)
α, β, γ (°)64.119 (14), 85.868 (18), 73.737 (14)
V3)517.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)7.83
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury70
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.126, 0.209
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
5065, 2336, 2116
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.19
No. of reflections2336
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 1.55

Computer programs: CrystalClear (Rigaku/MSC, 2005), IL MILIONE (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010), CrystalMaker (Palmer, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O2i0.9631.9442.822 (4)150.5
O3—H7···O21.0021.7652.766 (3)177.2
N1—H5···O1ii0.9411.6702.606 (4)172.9
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

Acknowledgements

HK thanks the Japan Society for the Promotion of Science for his postdoctoral fellowship.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationJia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawata, S., Adachi, K., Sugiyama, Y., Kabir, M. K. & Kaizaki, S. (2002). CrystEngCommun, 4, 496–498.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2004). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H., Morsali, A., Hemmati, F. & Manteghi, F. (2009). Acta Cryst. E65, o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds