organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(Anthracen-9-yl­methyl­­idene)-4-nitro­aniline

aDepartment of Chemistry, SRM University, Vadapalani Campus, Chennai 600 026, India, bDepartment of Physics, Voorhees College, Vellore 632 001, India, cDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India.
*Correspondence e-mail: geethaorgchem@gmail.com, smurugavel27@gmail.com

(Received 21 August 2011; accepted 2 September 2011; online 14 September 2011)

In the title molecule, C21H14N2O2, the anthracenyl system is approximately planar [maximum deviation = 0.056 (4) Å] and is oriented at a dihedral angle of 73.6 (1)° with respect to the benzene ring. An intra­molecular C—H⋯N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H⋯π and ππ inter­actions [centroid–centroid distances of 3.688 (2), 3.656 (1) and 3.716 (2) Å].

Related literature

For applications of anthracene derivatives, see: de Silva et al. (1997[Silva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891-7892.]); Klarner et al. (1998[Klarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993-997.]); Han et al. (2009[Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671-1680.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Arumugam et al. (2011[Arumugam, N., Almansour, A. I., Karama, U., Rosli, M. M. & Razak, I. A. (2011). Acta Cryst. E67, o2251.]); Villalpando et al. (2010[Villalpando, A., Fronczek, F. R. & Isovitsch, R. (2010). Acta Cryst. E66, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14N2O2

  • Mr = 326.34

  • Triclinic, [P \overline 1]

  • a = 8.3634 (4) Å

  • b = 8.9045 (4) Å

  • c = 11.5119 (6) Å

  • α = 75.235 (2)°

  • β = 84.544 (3)°

  • γ = 75.054 (2)°

  • V = 800.56 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.924, Tmax = 0.991

  • 15391 measured reflections

  • 2983 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.151

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.306

  • S = 1.12

  • 2983 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1 0.93 2.37 2.980 (4) 123
C20—H20⋯Cg1i 0.93 2.86 3.717 (3) 154
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthracene is an attractive material in its photochemical and electrochemical properties and is used as a potential medium for photoconductive (de Silva et al., 1997) and electroluminescence (Klarner et al., 1998) devices. Furthermore, anthracene derivatives exhibited anticancer activity has also been reported recently (Han et al., 2009). Against this background and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The anthracene moiety (C1-C14) is essentially planar [maximum deviation = -0.056 (4) Å for the C11 atom] and shows a dihedral angle of 73.6 (1)° with respect to the (C16-C21) benzene ring. The nitro group is slightly twisted away from the plane of the attached benzene ring [C20-C19-N2-O1 = -4.9 (5) ° and C18-C19-N2-O2 = -6.7 (5) °]. The geometric parameters of the title molecule agrees well with those reported for similar structures (Arumugam et al., 2011, Villalpando et al., 2010).

In addition to van der Waals interactions, the crystal packing is stabilized by C-H···N and C-H···π hydrogen bonds as well as by π-π interactions. The intramolecular C12-H12···N1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by C-H···π interactions between H20 and the neighbouring C1-C6 benzene ring, with a C20-H20···Cg1i separation of 2.86 Å (Fig. 2, Table 1; Cg1 is the centroid of the C1-C6 benzene ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π-π interactions with Cg1···Cg3ii, Cg2···Cg2ii and Cg2···Cg3ii separations of 3.688 (2) Å, 3.656 (1) Å and 3.716 (2) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring,C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively, symmetry code as in Fig. 2).

Related literature top

For applications of anthracene derivatives, see: de Silva et al. (1997); Klarner et al. (1998); Han et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Arumugam et al. (2011); Villalpando et al. (2010).

Experimental top

Equimolar amounts of p-nitroaniline and 9-anthracenecarboxaldehyde were suspended in ethanol at a concentration of 0.1 M and the reaction mixture was refluxed overnight under vigorous stirring. Afterwards the mixture was cooled down and filtered. Recrystallization of the crude product from hexane : CHCl3 (1 : 1) yielded orange crystals of title compound (Yield 74 %).

Refinement top

All H atoms were positioned geometrically, with C-H = 0.93 - 0.98 Å and constrained to ride on their parent atom with Uiso(H)=1.2Ueq(C).

Structure description top

Anthracene is an attractive material in its photochemical and electrochemical properties and is used as a potential medium for photoconductive (de Silva et al., 1997) and electroluminescence (Klarner et al., 1998) devices. Furthermore, anthracene derivatives exhibited anticancer activity has also been reported recently (Han et al., 2009). Against this background and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The anthracene moiety (C1-C14) is essentially planar [maximum deviation = -0.056 (4) Å for the C11 atom] and shows a dihedral angle of 73.6 (1)° with respect to the (C16-C21) benzene ring. The nitro group is slightly twisted away from the plane of the attached benzene ring [C20-C19-N2-O1 = -4.9 (5) ° and C18-C19-N2-O2 = -6.7 (5) °]. The geometric parameters of the title molecule agrees well with those reported for similar structures (Arumugam et al., 2011, Villalpando et al., 2010).

In addition to van der Waals interactions, the crystal packing is stabilized by C-H···N and C-H···π hydrogen bonds as well as by π-π interactions. The intramolecular C12-H12···N1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by C-H···π interactions between H20 and the neighbouring C1-C6 benzene ring, with a C20-H20···Cg1i separation of 2.86 Å (Fig. 2, Table 1; Cg1 is the centroid of the C1-C6 benzene ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π-π interactions with Cg1···Cg3ii, Cg2···Cg2ii and Cg2···Cg3ii separations of 3.688 (2) Å, 3.656 (1) Å and 3.716 (2) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring,C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively, symmetry code as in Fig. 2).

For applications of anthracene derivatives, see: de Silva et al. (1997); Klarner et al. (1998); Han et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Arumugam et al. (2011); Villalpando et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Intramolecular C-H···O, C-H···π and π-π interactions (dotted lines) in the title compound. Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring, C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively. [Symmetry code: (i) 1-x, -y, 2-z; (ii) 1-x, -y, 1-z.]
(E)-N-(Anthracen-9-ylmethylidene)-4-nitroaniline top
Crystal data top
C21H14N2O2Z = 2
Mr = 326.34F(000) = 340
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 8.3634 (4) ÅCell parameters from 5007 reflections
b = 8.9045 (4) Åθ = 2.5–25.3°
c = 11.5119 (6) ŵ = 0.09 mm1
α = 75.235 (2)°T = 293 K
β = 84.544 (3)°Flat, orange
γ = 75.054 (2)°0.30 × 0.20 × 0.10 mm
V = 800.56 (7) Å3
Data collection top
Bruker APEXII
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.151
ω and φ scanθmax = 25.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 1010
Tmin = 0.924, Tmax = 0.991k = 1010
15391 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.306H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H14N2O2γ = 75.054 (2)°
Mr = 326.34V = 800.56 (7) Å3
Triclinic, P1Z = 2
a = 8.3634 (4) ÅMo Kα radiation
b = 8.9045 (4) ŵ = 0.09 mm1
c = 11.5119 (6) ÅT = 293 K
α = 75.235 (2)°0.30 × 0.20 × 0.10 mm
β = 84.544 (3)°
Data collection top
Bruker APEXII
diffractometer
2983 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
1870 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.991Rint = 0.151
15391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.306H-atom parameters constrained
S = 1.12Δρmax = 0.45 e Å3
2983 reflectionsΔρmin = 0.43 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4268 (3)0.1323 (3)0.7152 (2)0.0507 (7)
C20.5139 (4)0.2566 (4)0.8071 (2)0.0622 (8)
H20.59120.23540.84980.075*
C30.4872 (4)0.4052 (4)0.8341 (3)0.0725 (9)
H30.54630.48400.89500.087*
C40.3730 (4)0.4430 (4)0.7726 (3)0.0746 (10)
H40.35530.54550.79360.090*
C50.2885 (4)0.3314 (4)0.6829 (3)0.0673 (9)
H50.21340.35790.64170.081*
C60.3125 (3)0.1725 (3)0.6501 (2)0.0532 (7)
C70.2314 (3)0.0591 (3)0.5551 (2)0.0549 (8)
H70.15990.08750.51210.066*
C80.2524 (3)0.0973 (3)0.5211 (2)0.0498 (7)
C90.1657 (3)0.2116 (4)0.4241 (2)0.0621 (8)
H90.09790.18080.37980.075*
C100.1794 (4)0.3636 (4)0.3950 (3)0.0703 (9)
H100.12110.43750.33120.084*
C110.2830 (4)0.4104 (4)0.4619 (3)0.0675 (9)
H110.29040.51640.44270.081*
C120.3710 (3)0.3050 (3)0.5525 (2)0.0588 (8)
H120.43950.33930.59390.071*
C130.3618 (3)0.1421 (3)0.5868 (2)0.0487 (7)
C140.4501 (3)0.0265 (3)0.6825 (2)0.0479 (7)
C150.5698 (3)0.0602 (4)0.7521 (3)0.0584 (8)
H150.58350.00050.83110.070*
C160.7666 (3)0.1767 (3)0.7942 (2)0.0553 (8)
C170.9203 (4)0.1906 (4)0.7470 (3)0.0687 (9)
H170.94670.18770.66720.082*
C181.0355 (4)0.2085 (4)0.8158 (3)0.0695 (9)
H181.14070.21470.78410.083*
C190.9936 (3)0.2169 (3)0.9316 (2)0.0561 (8)
C200.8419 (3)0.2054 (4)0.9826 (2)0.0597 (8)
H200.81680.21051.06220.072*
C210.7263 (3)0.1859 (3)0.9128 (2)0.0589 (8)
H210.62140.17910.94510.071*
N10.6547 (3)0.1602 (3)0.7163 (2)0.0647 (7)
N21.1188 (4)0.2349 (4)1.0045 (3)0.0823 (9)
O11.0791 (4)0.2499 (5)1.1057 (3)0.1296 (12)
O21.2591 (3)0.2269 (4)0.9629 (2)0.1103 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (15)0.0651 (17)0.0434 (14)0.0129 (12)0.0062 (11)0.0174 (12)
C20.0615 (18)0.076 (2)0.0457 (15)0.0128 (14)0.0012 (13)0.0120 (13)
C30.087 (2)0.070 (2)0.0511 (17)0.0134 (17)0.0044 (16)0.0059 (14)
C40.094 (3)0.0552 (19)0.073 (2)0.0245 (17)0.0155 (18)0.0117 (15)
C50.0660 (19)0.073 (2)0.0698 (19)0.0249 (15)0.0068 (15)0.0235 (16)
C60.0498 (16)0.0619 (18)0.0498 (15)0.0148 (13)0.0074 (12)0.0187 (12)
C70.0490 (16)0.0723 (19)0.0503 (15)0.0204 (13)0.0009 (12)0.0218 (13)
C80.0412 (14)0.0648 (17)0.0423 (14)0.0115 (12)0.0031 (11)0.0139 (12)
C90.0511 (17)0.084 (2)0.0502 (16)0.0143 (14)0.0074 (13)0.0139 (14)
C100.0645 (19)0.076 (2)0.0576 (18)0.0116 (15)0.0089 (15)0.0030 (15)
C110.068 (2)0.0588 (18)0.0694 (19)0.0151 (15)0.0038 (15)0.0043 (14)
C120.0550 (17)0.0650 (19)0.0568 (17)0.0172 (13)0.0026 (13)0.0125 (13)
C130.0416 (14)0.0623 (17)0.0439 (14)0.0133 (12)0.0062 (11)0.0176 (12)
C140.0405 (14)0.0615 (17)0.0428 (14)0.0133 (11)0.0018 (11)0.0145 (12)
C150.0498 (16)0.0717 (19)0.0539 (16)0.0151 (14)0.0036 (12)0.0143 (13)
C160.0581 (17)0.0556 (16)0.0545 (16)0.0139 (12)0.0105 (13)0.0144 (12)
C170.0637 (19)0.092 (2)0.0553 (17)0.0213 (16)0.0017 (14)0.0260 (15)
C180.0506 (17)0.093 (2)0.0633 (19)0.0197 (15)0.0002 (14)0.0130 (15)
C190.0501 (16)0.0639 (18)0.0532 (16)0.0140 (13)0.0131 (13)0.0079 (12)
C200.0564 (18)0.0771 (19)0.0485 (15)0.0161 (14)0.0053 (13)0.0191 (13)
C210.0469 (15)0.073 (2)0.0600 (17)0.0187 (13)0.0002 (13)0.0191 (14)
N10.0692 (16)0.0745 (17)0.0572 (14)0.0250 (13)0.0087 (12)0.0182 (12)
N20.068 (2)0.113 (2)0.0676 (18)0.0334 (16)0.0227 (15)0.0059 (16)
O10.100 (2)0.225 (4)0.093 (2)0.056 (2)0.0209 (17)0.069 (2)
O20.0675 (17)0.169 (3)0.097 (2)0.0584 (17)0.0212 (15)0.0007 (17)
Geometric parameters (Å, º) top
C1—C21.418 (4)C11—H110.9300
C1—C141.428 (4)C12—C131.423 (4)
C1—C61.432 (4)C12—H120.9300
C2—C31.352 (4)C13—C141.415 (4)
C2—H20.9300C14—C151.471 (4)
C3—C41.394 (5)C15—N11.245 (3)
C3—H30.9300C15—H150.9300
C4—C51.344 (5)C16—C171.370 (4)
C4—H40.9300C16—C211.393 (4)
C5—C61.430 (4)C16—N11.414 (3)
C5—H50.9300C17—C181.367 (4)
C6—C71.379 (4)C17—H170.9300
C7—C81.399 (4)C18—C191.361 (4)
C7—H70.9300C18—H180.9300
C8—C91.415 (4)C19—C201.364 (4)
C8—C131.430 (4)C19—N21.466 (4)
C9—C101.341 (4)C20—C211.385 (4)
C9—H90.9300C20—H200.9300
C10—C111.412 (4)C21—H210.9300
C10—H100.9300N2—O11.212 (4)
C11—C121.342 (4)N2—O21.216 (4)
C2—C1—C14123.9 (2)C11—C12—H12119.2
C2—C1—C6117.0 (2)C13—C12—H12119.2
C14—C1—C6119.0 (2)C14—C13—C12124.0 (2)
C3—C2—C1121.4 (3)C14—C13—C8119.4 (2)
C3—C2—H2119.3C12—C13—C8116.6 (2)
C1—C2—H2119.3C13—C14—C1120.3 (2)
C2—C3—C4121.5 (3)C13—C14—C15123.2 (2)
C2—C3—H3119.3C1—C14—C15116.5 (2)
C4—C3—H3119.3N1—C15—C14126.8 (3)
C5—C4—C3120.1 (3)N1—C15—H15116.6
C5—C4—H4119.9C14—C15—H15116.6
C3—C4—H4119.9C17—C16—C21119.2 (2)
C4—C5—C6120.8 (3)C17—C16—N1117.1 (2)
C4—C5—H5119.6C21—C16—N1123.6 (2)
C6—C5—H5119.6C18—C17—C16120.9 (3)
C7—C6—C5121.2 (3)C18—C17—H17119.6
C7—C6—C1119.6 (2)C16—C17—H17119.6
C5—C6—C1119.2 (3)C19—C18—C17118.9 (3)
C6—C7—C8122.5 (2)C19—C18—H18120.5
C6—C7—H7118.8C17—C18—H18120.5
C8—C7—H7118.8C18—C19—C20122.6 (3)
C7—C8—C9121.2 (2)C18—C19—N2118.3 (3)
C7—C8—C13119.1 (2)C20—C19—N2119.1 (3)
C9—C8—C13119.7 (2)C19—C20—C21118.2 (3)
C10—C9—C8121.3 (3)C19—C20—H20120.9
C10—C9—H9119.3C21—C20—H20120.9
C8—C9—H9119.3C20—C21—C16120.1 (3)
C9—C10—C11119.4 (3)C20—C21—H21119.9
C9—C10—H10120.3C16—C21—H21119.9
C11—C10—H10120.3C15—N1—C16120.0 (2)
C12—C11—C10121.4 (3)O1—N2—O2123.0 (3)
C12—C11—H11119.3O1—N2—C19118.2 (3)
C10—C11—H11119.3O2—N2—C19118.7 (3)
C11—C12—C13121.6 (3)
C14—C1—C2—C3179.8 (2)C8—C13—C14—C11.7 (4)
C6—C1—C2—C31.6 (4)C12—C13—C14—C154.1 (4)
C1—C2—C3—C40.1 (5)C8—C13—C14—C15177.7 (2)
C2—C3—C4—C51.1 (5)C2—C1—C14—C13177.9 (2)
C3—C4—C5—C60.7 (5)C6—C1—C14—C130.2 (4)
C4—C5—C6—C7177.4 (3)C2—C1—C14—C151.5 (4)
C4—C5—C6—C10.8 (4)C6—C1—C14—C15179.6 (2)
C2—C1—C6—C7176.3 (2)C13—C14—C15—N128.3 (4)
C14—C1—C6—C72.0 (4)C1—C14—C15—N1151.1 (3)
C2—C1—C6—C52.0 (4)C21—C16—C17—C182.0 (5)
C14—C1—C6—C5179.8 (2)N1—C16—C17—C18179.4 (3)
C5—C6—C7—C8179.9 (2)C16—C17—C18—C191.8 (5)
C1—C6—C7—C81.8 (4)C17—C18—C19—C201.2 (5)
C6—C7—C8—C9179.2 (2)C17—C18—C19—N2179.6 (3)
C6—C7—C8—C130.0 (4)C18—C19—C20—C210.7 (5)
C7—C8—C9—C10176.7 (3)N2—C19—C20—C21179.0 (2)
C13—C8—C9—C102.4 (4)C19—C20—C21—C160.8 (4)
C8—C9—C10—C110.4 (4)C17—C16—C21—C201.4 (4)
C9—C10—C11—C121.4 (5)N1—C16—C21—C20178.6 (2)
C10—C11—C12—C131.1 (5)C14—C15—N1—C16179.1 (2)
C11—C12—C13—C14179.2 (2)C17—C16—N1—C15136.4 (3)
C11—C12—C13—C81.0 (4)C21—C16—N1—C1546.3 (4)
C7—C8—C13—C141.8 (4)C18—C19—N2—O1176.6 (3)
C9—C8—C13—C14179.0 (2)C20—C19—N2—O14.9 (5)
C7—C8—C13—C12176.5 (2)C18—C19—N2—O26.7 (5)
C9—C8—C13—C122.7 (4)C20—C19—N2—O2171.8 (3)
C12—C13—C14—C1176.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N10.932.372.980 (4)123
C20—H20···Cg1i0.932.863.717 (3)154
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H14N2O2
Mr326.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3634 (4), 8.9045 (4), 11.5119 (6)
α, β, γ (°)75.235 (2), 84.544 (3), 75.054 (2)
V3)800.56 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.924, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15391, 2983, 1870
Rint0.151
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.306, 1.12
No. of reflections2983
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N10.932.372.980 (4)123
C20—H20···Cg1i0.932.863.717 (3)154
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

SM and KG thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationArumugam, N., Almansour, A. I., Karama, U., Rosli, M. M. & Razak, I. A. (2011). Acta Cryst. E67, o2251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHan, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993–997.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891–7892.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillalpando, A., Fronczek, F. R. & Isovitsch, R. (2010). Acta Cryst. E66, o1353.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds