organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-{[(3-Propyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-4-yl)imino]­meth­yl}-3-(p-tol­yl)-1,2,3-oxa­diazol-3-ium-5-olate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 12 September 2011; accepted 13 September 2011; online 17 September 2011)

The title compound, C15H16N6O2S, exists in a trans configuration with respect to the acyclic N=C bond. The 1,2,3-oxadiazol-3-ium ring makes dihedral angles of 10.59 (8) and 73.94 (8)°, respectively, with the 1,2,4-triazole and benzene rings. The mol­ecular structure is stabilized by an intra­molecular C—H⋯S hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked into inversion dimers by pairs of inter­molecular N—H⋯S hydrogen bonds, generating eight-membered R22(8) ring motifs. The dimers are further connected by C—H⋯O hydrogen bonds, forming a sheet parallel to the bc plane. The ethyl group is disordered over two sets of sites with occupancies of 0.744 (7) and 0.256 (7).

Related literature

For general background to and applications of sydnone derivatives, see: Baker et al. (1949[Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307-314.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Kalluraya et al. (2002[Kalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712-1717.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Nithinchandra & Kalluraya, B. (2011). Acta Cryst. E67, o1005-o1006.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N6O2S

  • Mr = 344.40

  • Monoclinic, P 21 /c

  • a = 13.4220 (11) Å

  • b = 6.2411 (5) Å

  • c = 21.1374 (16) Å

  • β = 104.575 (2)°

  • V = 1713.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.51 × 0.17 × 0.08 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.983

  • 18912 measured reflections

  • 5003 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.123

  • S = 1.04

  • 5003 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1N5⋯S1i 0.857 (18) 2.440 (18) 3.2933 (13) 174.3 (16)
C1—H1A⋯O2ii 0.93 2.48 3.346 (2) 154
C9—H9A⋯S1 0.93 2.42 3.1845 (13) 139
Symmetry codes: (i) -x+2, -y+3, -z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949

has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). The 4-formyl sydnone will be used for the preparation of a new series of Schiff bases by condensation with appropriate 4-amino-4H-1,2,4-triazole-3-thiol. These Schiff bases containing sydnone is utilized for the synthesis of appropriate Mannich bases (Kalluraya et al., 2002).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011). The title compound exists in trans configuration with respect to the acyclic N3C9 bond [bond lengths = 1.2669 (17) Å]. The 1,2,4-triazole (N4–N6/C10/C11, maximum deviation of 0.004 (1) Å at atom N4) and the phenyl (C1–C6) rings form dihedral angles of 73.94 (8) and 10.59 (8)°, respectively, with the 1,2,3-oxadiazol-3-ium ring (O1/N1/N2/C7/C8, maximum deviation of 0.004 (1) Å at atoms C7 and C8). The molecular structure is stabilized by an intramolecular C9–H9A···S1 hydrogen bond, which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). The ethyl group is disordered over two sets of sites in a 0.744 (7): 0.256 (7) ratio.

In the crystal (Fig. 2), the intermolecular N5—H1N5···S1 hydrogen bonds (Table 1) form the inversion dimers and produce eight-membered ring motifs R22(8) (Bernstein et al., 1995). Another intermolecular C1—H1A···O2 hydrogen bond connects these dimers to another molecule forming two-dimensional sheets parallel to the bc plane.

Related literature top

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008); Kalluraya et al. (2002). For standard bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2011).

Experimental top

4-Formyl-3-p-tolylsydnone (0.01 mol) and 4-amino-5-propyl-4H-1,2,4-triazole-3-thiol (0.01 mol) in ethanol and a catalytic amount of conc. sulphuric acid was stirred at room temperature for 2-3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from a 1:2 mixture solution of DMF and ethanol by slow evaporation.

Refinement top

Atom H1N5 was located in a difference Fourier map and refined freely [N5—H1N5 = 0.855 (18) Å]. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl groups. The ethyl group is disordered over two sets of sites in a 0.744 (7): 0.256 (7) ratio.

Structure description top

Sydnones constitute a well defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949

has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). The 4-formyl sydnone will be used for the preparation of a new series of Schiff bases by condensation with appropriate 4-amino-4H-1,2,4-triazole-3-thiol. These Schiff bases containing sydnone is utilized for the synthesis of appropriate Mannich bases (Kalluraya et al., 2002).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011). The title compound exists in trans configuration with respect to the acyclic N3C9 bond [bond lengths = 1.2669 (17) Å]. The 1,2,4-triazole (N4–N6/C10/C11, maximum deviation of 0.004 (1) Å at atom N4) and the phenyl (C1–C6) rings form dihedral angles of 73.94 (8) and 10.59 (8)°, respectively, with the 1,2,3-oxadiazol-3-ium ring (O1/N1/N2/C7/C8, maximum deviation of 0.004 (1) Å at atoms C7 and C8). The molecular structure is stabilized by an intramolecular C9–H9A···S1 hydrogen bond, which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). The ethyl group is disordered over two sets of sites in a 0.744 (7): 0.256 (7) ratio.

In the crystal (Fig. 2), the intermolecular N5—H1N5···S1 hydrogen bonds (Table 1) form the inversion dimers and produce eight-membered ring motifs R22(8) (Bernstein et al., 1995). Another intermolecular C1—H1A···O2 hydrogen bond connects these dimers to another molecule forming two-dimensional sheets parallel to the bc plane.

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008); Kalluraya et al. (2002). For standard bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line. The minor component of disorder is shown as open bonds.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
(E)-4-{[(3-Propyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol- 4-yl)imino]methyl}-3-(p-tolyl)-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C15H16N6O2SF(000) = 720
Mr = 344.40Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5356 reflections
a = 13.4220 (11) Åθ = 2.2–27.6°
b = 6.2411 (5) ŵ = 0.21 mm1
c = 21.1374 (16) ÅT = 296 K
β = 104.575 (2)°Needle, colourless
V = 1713.7 (2) Å30.51 × 0.17 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5003 independent reflections
Radiation source: fine-focus sealed tube3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.865, Tmax = 0.983k = 88
18912 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.2043P]
where P = (Fo2 + 2Fc2)/3
5003 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H16N6O2SV = 1713.7 (2) Å3
Mr = 344.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4220 (11) ŵ = 0.21 mm1
b = 6.2411 (5) ÅT = 296 K
c = 21.1374 (16) Å0.51 × 0.17 × 0.08 mm
β = 104.575 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3637 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.983Rint = 0.030
18912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
5003 reflectionsΔρmin = 0.21 e Å3
243 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.08849 (3)1.22661 (6)0.061779 (16)0.04353 (11)
O11.07417 (9)0.32936 (18)0.22957 (5)0.0546 (3)
O20.90860 (8)0.41866 (18)0.18192 (5)0.0532 (3)
N11.15527 (9)0.59146 (19)0.20345 (5)0.0412 (3)
N21.17089 (11)0.4104 (2)0.23528 (7)0.0560 (3)
N30.93160 (9)0.8734 (2)0.11642 (5)0.0419 (3)
N40.90503 (8)1.05639 (18)0.07899 (5)0.0372 (2)
N50.88806 (10)1.3345 (2)0.01976 (6)0.0487 (3)
N60.78985 (10)1.2811 (2)0.02200 (7)0.0552 (3)
C11.26773 (13)0.9030 (3)0.23096 (9)0.0590 (4)
H1A1.22970.94960.25950.071*
C21.34955 (13)1.0220 (3)0.22159 (10)0.0661 (5)
H2A1.36671.15000.24430.079*
C31.40617 (13)0.9549 (4)0.17941 (9)0.0676 (5)
C41.37997 (16)0.7634 (4)0.14644 (10)0.0825 (7)
H4A1.41840.71550.11820.099*
C51.29812 (14)0.6417 (4)0.15446 (9)0.0684 (5)
H5A1.28040.51420.13160.082*
C61.24376 (11)0.7144 (2)0.19713 (7)0.0443 (3)
C70.99772 (11)0.4668 (2)0.19272 (6)0.0411 (3)
C81.05554 (10)0.6411 (2)0.17668 (6)0.0361 (3)
C91.02620 (10)0.8309 (2)0.13889 (6)0.0386 (3)
H9A1.07620.92260.13080.046*
C100.96113 (10)1.2042 (2)0.05372 (6)0.0373 (3)
C110.80236 (11)1.1116 (3)0.05860 (7)0.0474 (3)
C120.71870 (12)0.9897 (3)0.07693 (11)0.0679 (5)
H12A0.65941.07970.07260.081*0.744 (7)
H12B0.74120.94430.12170.081*0.744 (7)
H12C0.65671.07560.06380.081*0.256 (7)
H12D0.73580.98140.12430.081*0.256 (7)
C13A0.6932 (7)0.7918 (14)0.0331 (4)0.102 (3)0.744 (7)
H13A0.75450.70430.03840.123*0.744 (7)
H13B0.67180.83680.01220.123*0.744 (7)
C14A0.6070 (3)0.6572 (8)0.0496 (3)0.164 (3)0.744 (7)
H14A0.60420.51940.02900.245*0.744 (7)
H14B0.54230.72910.03400.245*0.744 (7)
H14C0.62090.63900.09610.245*0.744 (7)
C13B0.6925 (14)0.770 (4)0.0589 (11)0.082 (6)0.256 (7)
H13C0.64740.71090.08390.098*0.256 (7)
H13D0.75380.68140.06580.098*0.256 (7)
C14B0.6399 (10)0.782 (2)0.0107 (6)0.111 (5)0.256 (7)
H14D0.60680.64750.02470.166*0.256 (7)
H14E0.68920.81250.03540.166*0.256 (7)
H14F0.58920.89370.01750.166*0.256 (7)
C151.49528 (18)1.0890 (5)0.16902 (14)0.1059 (9)
H15A1.49081.23110.18550.159*
H15B1.49211.09580.12320.159*
H15C1.55921.02470.19190.159*
H1N50.8984 (13)1.445 (3)0.0018 (8)0.053 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04646 (19)0.0376 (2)0.04930 (19)0.00191 (14)0.01724 (14)0.00811 (15)
O10.0733 (7)0.0373 (6)0.0597 (6)0.0047 (5)0.0290 (5)0.0156 (5)
O20.0634 (7)0.0455 (6)0.0582 (6)0.0161 (5)0.0295 (5)0.0057 (5)
N10.0470 (6)0.0360 (6)0.0430 (5)0.0075 (5)0.0159 (5)0.0074 (5)
N20.0652 (8)0.0450 (8)0.0605 (7)0.0138 (6)0.0207 (6)0.0192 (6)
N30.0436 (6)0.0370 (6)0.0467 (6)0.0015 (5)0.0143 (5)0.0112 (5)
N40.0403 (5)0.0317 (6)0.0409 (5)0.0015 (4)0.0127 (4)0.0046 (4)
N50.0514 (7)0.0394 (7)0.0548 (7)0.0039 (6)0.0128 (5)0.0145 (6)
N60.0474 (7)0.0497 (8)0.0666 (8)0.0070 (6)0.0108 (6)0.0151 (7)
C10.0542 (8)0.0500 (10)0.0791 (10)0.0052 (7)0.0286 (8)0.0071 (8)
C20.0557 (9)0.0518 (10)0.0933 (13)0.0060 (8)0.0234 (9)0.0122 (10)
C30.0485 (9)0.0806 (14)0.0764 (11)0.0124 (9)0.0203 (8)0.0046 (10)
C40.0672 (11)0.1099 (19)0.0830 (12)0.0267 (12)0.0424 (10)0.0313 (13)
C50.0622 (10)0.0821 (14)0.0679 (10)0.0176 (10)0.0293 (8)0.0269 (10)
C60.0396 (6)0.0440 (8)0.0494 (7)0.0044 (6)0.0115 (5)0.0046 (6)
C70.0599 (8)0.0309 (7)0.0384 (6)0.0021 (6)0.0234 (5)0.0015 (5)
C80.0436 (6)0.0301 (6)0.0379 (6)0.0011 (5)0.0161 (5)0.0017 (5)
C90.0425 (6)0.0309 (6)0.0454 (6)0.0014 (5)0.0167 (5)0.0051 (5)
C100.0480 (7)0.0305 (6)0.0346 (5)0.0000 (5)0.0126 (5)0.0005 (5)
C110.0424 (7)0.0443 (8)0.0555 (8)0.0043 (6)0.0119 (6)0.0050 (7)
C120.0438 (8)0.0637 (12)0.0984 (13)0.0038 (8)0.0222 (8)0.0150 (11)
C13A0.079 (3)0.067 (4)0.172 (8)0.012 (3)0.054 (5)0.010 (4)
C14A0.109 (3)0.099 (3)0.316 (8)0.047 (3)0.115 (4)0.049 (4)
C13B0.045 (5)0.052 (6)0.137 (15)0.018 (4)0.004 (7)0.034 (9)
C14B0.080 (7)0.132 (11)0.102 (8)0.029 (7)0.013 (6)0.001 (7)
C150.0746 (14)0.125 (2)0.130 (2)0.0437 (15)0.0464 (14)0.0228 (18)
Geometric parameters (Å, º) top
S1—C101.6805 (14)C7—C81.4260 (18)
O1—N21.3698 (18)C8—C91.4273 (18)
O1—C71.4118 (18)C9—H9A0.9300
O2—C71.1982 (17)C11—C121.486 (2)
N1—N21.3051 (17)C12—C13B1.45 (2)
N1—C81.3515 (17)C12—C13A1.530 (10)
N1—C61.4482 (18)C12—H12A0.9600
N3—C91.2669 (17)C12—H12B0.9600
N3—N41.3838 (16)C12—H12C0.9700
N4—C111.3800 (17)C12—H12D0.9700
N4—C101.3806 (16)C13A—C14A1.539 (8)
N5—C101.3355 (19)C13A—H13A0.9700
N5—N61.3720 (18)C13A—H13B0.9700
N5—H1N50.855 (18)C14A—H14A0.9600
N6—C111.296 (2)C14A—H14B0.9600
C1—C61.373 (2)C14A—H14C0.9600
C1—C21.381 (2)C13B—C14B1.46 (2)
C1—H1A0.9300C13B—H13C0.9700
C2—C31.374 (3)C13B—H13D0.9700
C2—H2A0.9300C14B—H14D0.9600
C3—C41.384 (3)C14B—H14E0.9600
C3—C151.520 (3)C14B—H14F0.9600
C4—C51.381 (3)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C5—C61.372 (2)C15—H15C0.9600
C5—H5A0.9300
N2—O1—C7111.44 (10)N6—C11—C12125.49 (14)
N2—N1—C8115.36 (12)N4—C11—C12123.46 (14)
N2—N1—C6118.51 (12)C13B—C12—C11124.6 (8)
C8—N1—C6126.06 (12)C11—C12—C13A108.9 (3)
N1—N2—O1104.38 (11)C13B—C12—H12A113.0
C9—N3—N4118.50 (11)C11—C12—H12A109.8
C11—N4—C10108.14 (11)C13A—C12—H12A111.1
C11—N4—N3118.55 (11)C13B—C12—H12B88.6
C10—N4—N3133.28 (11)C11—C12—H12B109.7
C10—N5—N6114.54 (13)C13A—C12—H12B109.0
C10—N5—H1N5125.4 (12)H12A—C12—H12B108.4
N6—N5—H1N5120.0 (12)C13B—C12—H12C108.4
C11—N6—N5103.75 (12)C11—C12—H12C107.0
C6—C1—C2118.49 (15)C13A—C12—H12C103.1
C6—C1—H1A120.8H12B—C12—H12C118.7
C2—C1—H1A120.8C13B—C12—H12D101.6
C3—C2—C1121.25 (18)C11—C12—H12D107.3
C3—C2—H2A119.4C13A—C12—H12D122.7
C1—C2—H2A119.4H12A—C12—H12D96.0
C2—C3—C4118.55 (17)H12C—C12—H12D106.8
C2—C3—C15120.6 (2)C12—C13A—C14A111.7 (6)
C4—C3—C15120.82 (18)C12—C13A—H13A109.3
C5—C4—C3121.52 (17)C14A—C13A—H13A109.3
C5—C4—H4A119.2C12—C13A—H13B109.3
C3—C4—H4A119.2C14A—C13A—H13B109.3
C6—C5—C4118.02 (18)H13A—C13A—H13B107.9
C6—C5—H5A121.0C12—C13B—C14B103.8 (12)
C4—C5—H5A121.0C12—C13B—H13C111.0
C5—C6—C1122.16 (15)C14B—C13B—H13C111.0
C5—C6—N1118.00 (14)C12—C13B—H13D111.0
C1—C6—N1119.76 (13)C14B—C13B—H13D111.0
O2—C7—O1120.32 (12)H13C—C13B—H13D109.0
O2—C7—C8136.30 (14)C13B—C14B—H14D109.5
O1—C7—C8103.37 (12)C13B—C14B—H14E109.5
N1—C8—C7105.45 (12)H14D—C14B—H14E109.5
N1—C8—C9121.96 (12)C13B—C14B—H14F109.5
C7—C8—C9132.54 (12)H14D—C14B—H14F109.5
N3—C9—C8119.54 (12)H14E—C14B—H14F109.5
N3—C9—H9A120.2C3—C15—H15A109.5
C8—C9—H9A120.2C3—C15—H15B109.5
N5—C10—N4102.51 (12)H15A—C15—H15B109.5
N5—C10—S1126.47 (11)C3—C15—H15C109.5
N4—C10—S1131.01 (10)H15A—C15—H15C109.5
N6—C11—N4111.05 (13)H15B—C15—H15C109.5
C8—N1—N2—O10.29 (16)O1—C7—C8—N10.69 (13)
C6—N1—N2—O1176.84 (11)O2—C7—C8—C91.1 (3)
C7—O1—N2—N10.21 (15)O1—C7—C8—C9177.93 (13)
C9—N3—N4—C11175.21 (13)N4—N3—C9—C8178.92 (11)
C9—N3—N4—C107.3 (2)N1—C8—C9—N3177.96 (12)
C10—N5—N6—C110.05 (18)C7—C8—C9—N35.2 (2)
C6—C1—C2—C30.1 (3)N6—N5—C10—N40.44 (16)
C1—C2—C3—C40.4 (3)N6—N5—C10—S1179.18 (11)
C1—C2—C3—C15179.3 (2)C11—N4—C10—N50.64 (14)
C2—C3—C4—C50.9 (3)N3—N4—C10—N5177.05 (13)
C15—C3—C4—C5178.8 (2)C11—N4—C10—S1178.95 (11)
C3—C4—C5—C61.0 (3)N3—N4—C10—S13.4 (2)
C4—C5—C6—C10.7 (3)N5—N6—C11—N40.38 (17)
C4—C5—C6—N1177.43 (18)N5—N6—C11—C12179.64 (16)
C2—C1—C6—C50.2 (3)C10—N4—C11—N60.68 (17)
C2—C1—C6—N1176.94 (15)N3—N4—C11—N6177.41 (12)
N2—N1—C6—C573.94 (19)C10—N4—C11—C12179.35 (15)
C8—N1—C6—C5102.85 (18)N3—N4—C11—C122.6 (2)
N2—N1—C6—C1109.20 (17)N6—C11—C12—C13B116.8 (9)
C8—N1—C6—C174.02 (19)N4—C11—C12—C13B63.2 (9)
N2—O1—C7—O2178.68 (12)N6—C11—C12—C13A100.0 (4)
N2—O1—C7—C80.57 (14)N4—C11—C12—C13A80.0 (4)
N2—N1—C8—C70.65 (15)C13B—C12—C13A—C14A40 (2)
C6—N1—C8—C7176.23 (12)C11—C12—C13A—C14A179.8 (5)
N2—N1—C8—C9178.25 (12)C11—C12—C13B—C14B74.1 (13)
C6—N1—C8—C91.4 (2)C13A—C12—C13B—C14B26 (2)
O2—C7—C8—N1178.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···S1i0.857 (18)2.440 (18)3.2933 (13)174.3 (16)
C1—H1A···O2ii0.932.483.346 (2)154
C9—H9A···S10.932.423.1845 (13)139
Symmetry codes: (i) x+2, y+3, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16N6O2S
Mr344.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.4220 (11), 6.2411 (5), 21.1374 (16)
β (°) 104.575 (2)
V3)1713.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.51 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.865, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
18912, 5003, 3637
Rint0.030
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.123, 1.04
No. of reflections5003
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···S1i0.857 (18)2.440 (18)3.2933 (13)174.3 (16)
C1—H1A···O2ii0.932.483.346 (2)154
C9—H9A···S10.932.423.1845 (13)139
Symmetry codes: (i) x+2, y+3, z; (ii) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra & Kalluraya, B. (2011). Acta Cryst. E67, o1005–o1006.  Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds