metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­(di­methyl­formamide)[μ7-5,5′-(methyl­enedi­­oxy)diisophthalato]dizinc] di­methyl­formamide monosolvate]

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: qiuwenge@bjut.edu.cn

(Received 27 May 2011; accepted 13 September 2011; online 20 September 2011)

In the crystal structure of the title coordination polymer, {[Zn2(C17H8O10)(C3H7NO)2]·C3H7NO}n, the mol­ecular build­ing block (MBB), viz. {Zn2(CO2)4(C3H7NO)2}, comprises two zinc atoms, each bridged by three carboxyl­ate groups. These two Zn atoms exhibit different coordination environments: a distorted coordination intermediate between trigonal–pyramidal, and square–pyramidal formed by the two coordinated dimethyl­formamide mol­ecules and three carboxylate groups, and a distorted tetra­hedral coordination defined by carboxy­late groups of which three are bidentate bridging and the fourth is a monodentate ligand. Thus, each ligand connects four MBBs, forming the three-dimensional polymer.

Related literature

For the use of flexible multicarboxyl­ate ligands as building blocks in the assembly of coordination frameworks, see: Kim et al. (2004[Kim, Y. J., Suh, M. & Jung, D. Y. (2004). Inorg. Chem. 43, 245-250.]); Zhu et al. (2005[Zhu, H. F., Zhang, Z. H., Okamura, T. A., Sun, W. Y. & Ueyama, N. (2005). Cryst. Growth Des. 5, 177-182.]); Hawxwell et al. (2007[Hawxwell, S. M., Espallargas, G. M., Bradshaw, D., Rosseinsky, M. J., Prior, T. J., Florence, A. J., Streek, J. & Brammer, L. (2007). Chem. Commun. pp. 1532-1534.]). For the synthesis, see: Karmakar & Goldberg (2010[Karmakar, A. & Goldberg, I. (2010). CrystEngComm, 12, 339-349.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C17H8O10)(C3H7NO)2]·C3H7NO

  • Mr = 722.26

  • Orthorhombic, P 21 21 21

  • a = 11.2562 (6) Å

  • b = 13.1744 (7) Å

  • c = 20.3965 (12) Å

  • V = 3024.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 173 K

  • 0.15 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.814

  • 15188 measured reflections

  • 5261 independent reflections

  • 5131 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.07

  • 5261 reflections

  • 403 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2298 Friedel pairs

  • Flack parameter: 0.010 (9)

Table 1
Selected bond lengths (Å)

Zn1—O10i 1.9779 (19)
Zn1—O4ii 2.010 (2)
Zn1—O11 2.030 (2)
Zn1—O2 2.052 (2)
Zn1—O12 2.073 (2)
Zn2—O8iii 1.953 (2)
Zn2—O9i 1.966 (2)
Zn2—O3ii 1.967 (2)
Zn2—O1 1.986 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

The use of flexible multicarboxylate ligands as building blocks in the assembly of coordination frameworks has been an attractive strategy because some conformational freedom of the ligand molecules may offer various possibilities for release of the steric strain imposed by the metal-ligand association and relaxation of the network architecture (Kim et al. 2004; Zhu et al. 2005). Herein we chose a flexible multicarboxylate ligand, 1,1-bis-[3,5-bis(carboxy) phenoxy]methane, reacted with zinc nitrate affording a new three-dimensional coordination polymer, namely the title compound, (I), [Zn(ii)2(L)(DMF)3]n, where L=1,1-bis-[3,5-bis(carboxylato) phenoxy]methane, DMF=N,N-dimethyl formamide.

The molecular building blocks (MBBs) of the compound (I) comprise two zinc centres, in which the two Zn atoms are five-coordinated and four-coordinated respectively. The different coordination environments in the dinuclear zinc cluster (Fig. 1, Table 1) reveal the Zn1 centre coordinated by five oxygen atoms from three L ligands and two DMF molecules, while the Zn2 centre is coordinated by four oxygen atoms from four L ligands. A non-coordinated solvent molecule of DMF occupies the interstitial voids within the framework.

Related literature top

For the use of flexible multicarboxylate ligands as building blocks in the assembly of coordination frameworks, see: Kim et al. (2004); Zhu et al. (2005). For related literature [on what subject(s)?], see: Hawxwell et al. (2007). For the synthesis, see: Karmakar & Goldberg (2010).

Experimental top

The tetracarboxylic ligand, H4L was synthesised using the literature method of Karmakar (2010). A mixture of zinc nitrate hexahydrate (0.02 mmol, 6 mg) and the H4L ligand (0.01 mmol, 3.8 mg) in DMF (0.8 mL) was placed in a 5 mL sealed glass vial, and heated at 358 K for 72 h. Colourless crystals of the title compound were obtained after cooling to room temperature (yield of 52%, based on H4L).

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Structure description top

The use of flexible multicarboxylate ligands as building blocks in the assembly of coordination frameworks has been an attractive strategy because some conformational freedom of the ligand molecules may offer various possibilities for release of the steric strain imposed by the metal-ligand association and relaxation of the network architecture (Kim et al. 2004; Zhu et al. 2005). Herein we chose a flexible multicarboxylate ligand, 1,1-bis-[3,5-bis(carboxy) phenoxy]methane, reacted with zinc nitrate affording a new three-dimensional coordination polymer, namely the title compound, (I), [Zn(ii)2(L)(DMF)3]n, where L=1,1-bis-[3,5-bis(carboxylato) phenoxy]methane, DMF=N,N-dimethyl formamide.

The molecular building blocks (MBBs) of the compound (I) comprise two zinc centres, in which the two Zn atoms are five-coordinated and four-coordinated respectively. The different coordination environments in the dinuclear zinc cluster (Fig. 1, Table 1) reveal the Zn1 centre coordinated by five oxygen atoms from three L ligands and two DMF molecules, while the Zn2 centre is coordinated by four oxygen atoms from four L ligands. A non-coordinated solvent molecule of DMF occupies the interstitial voids within the framework.

For the use of flexible multicarboxylate ligands as building blocks in the assembly of coordination frameworks, see: Kim et al. (2004); Zhu et al. (2005). For related literature [on what subject(s)?], see: Hawxwell et al. (2007). For the synthesis, see: Karmakar & Goldberg (2010).

Computing details top

Data collection: APEX2 (Bruker 2008); cell refinement: SAINT (Bruker 2008); data reduction: SAINT (Bruker 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of compound(1) with labeling and displacement ellipsoids drawn at the 30% probability level; the hydrogen atoms and DMF molecules have been omitted for clarity.
[Figure 2] Fig. 2. The perspective view of the polymeric structure. The hydrogen atoms and solvent moleculs have been omitted for clarity.
Poly[[bis(dimethylformamide)[µ7-5,5'-(methylenedioxy)diisophthalato]dizinc] dimethylformamide monosolvate] top
Crystal data top
[Zn2(C17H8O10)(C3H7NO)2]·C3H7NOF(000) = 1480
Mr = 722.26Dx = 1.586 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9981 reflections
a = 11.2562 (6) Åθ = 2.4–28.2°
b = 13.1744 (7) ŵ = 1.66 mm1
c = 20.3965 (12) ÅT = 173 K
V = 3024.7 (3) Å3Block, colourless
Z = 40.15 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube5131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 1213
Tmin = 0.789, Tmax = 0.814k = 1512
15188 measured reflectionsl = 1624
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0225P)2 + 2.9204P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5261 reflectionsΔρmax = 1.02 e Å3
403 parametersΔρmin = 0.51 e Å3
7 restraintsAbsolute structure: Flack (1983), 2298 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (9)
Crystal data top
[Zn2(C17H8O10)(C3H7NO)2]·C3H7NOV = 3024.7 (3) Å3
Mr = 722.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.2562 (6) ŵ = 1.66 mm1
b = 13.1744 (7) ÅT = 173 K
c = 20.3965 (12) Å0.15 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
5131 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.814Rint = 0.022
15188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064Δρmax = 1.02 e Å3
S = 1.07Δρmin = 0.51 e Å3
5261 reflectionsAbsolute structure: Flack (1983), 2298 Friedel pairs
403 parametersAbsolute structure parameter: 0.010 (9)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.32282 (3)1.02153 (3)0.532246 (16)0.01304 (8)
Zn20.11040 (3)0.92795 (2)0.640664 (15)0.01034 (8)
O10.25310 (18)0.84177 (15)0.65422 (10)0.0142 (4)
O20.3248 (2)0.86905 (15)0.55265 (10)0.0186 (5)
O30.55588 (18)0.60034 (16)0.44912 (10)0.0173 (5)
O40.6626 (2)0.49210 (16)0.51036 (10)0.0226 (5)
O50.48922 (18)0.55461 (15)0.74102 (10)0.0141 (4)
O60.51506 (17)0.38160 (16)0.71297 (10)0.0142 (4)
O70.13001 (19)0.47767 (17)0.83474 (11)0.0232 (5)
O80.00425 (18)0.35644 (16)0.80428 (10)0.0157 (4)
O90.14499 (16)0.06646 (15)0.67100 (10)0.0151 (4)
O100.32214 (19)0.08120 (16)0.62123 (9)0.0166 (4)
O110.5015 (2)1.0047 (2)0.52425 (14)0.0353 (6)
O120.3428 (2)1.15866 (19)0.48368 (12)0.0306 (6)
O130.3138 (3)1.0302 (2)0.33443 (15)0.0499 (7)
N10.6865 (3)1.0308 (3)0.48390 (18)0.0495 (8)
N20.3226 (3)1.2560 (2)0.39360 (14)0.0247 (6)
N30.4694 (3)0.9184 (2)0.35115 (14)0.0322 (7)
C10.4858 (3)0.5963 (2)0.67844 (14)0.0138 (6)
C20.4123 (3)0.6810 (2)0.67289 (14)0.0137 (6)
H20.37070.70570.71010.016*
C30.4002 (3)0.7295 (2)0.61255 (14)0.0137 (6)
C40.4597 (3)0.6924 (2)0.55776 (15)0.0146 (6)
H40.45170.72560.51670.018*
C50.5308 (3)0.6065 (2)0.56331 (15)0.0141 (6)
C60.5468 (3)0.5589 (2)0.62467 (14)0.0126 (6)
H60.59860.50230.62900.015*
C70.3202 (3)0.8206 (2)0.60605 (14)0.0130 (6)
C80.5879 (2)0.5635 (2)0.50290 (14)0.0149 (6)
C90.5557 (3)0.4640 (2)0.75127 (14)0.0148 (6)
H9A0.64010.47720.74070.018*
H9B0.55110.44520.79820.018*
C100.4025 (3)0.3430 (2)0.72419 (13)0.0129 (6)
C110.3158 (3)0.3889 (2)0.76253 (14)0.0139 (6)
H110.33240.45040.78510.017*
C120.2037 (3)0.3435 (2)0.76758 (14)0.0136 (6)
C130.1795 (3)0.2524 (2)0.73604 (13)0.0134 (6)
H130.10390.22120.74090.016*
C140.2666 (3)0.2068 (2)0.69721 (14)0.0127 (6)
C150.3786 (3)0.2523 (2)0.69091 (14)0.0126 (6)
H150.43790.22180.66420.015*
C160.1075 (3)0.3978 (2)0.80611 (13)0.0144 (6)
C170.2425 (2)0.1110 (2)0.66028 (13)0.0111 (6)
C180.5723 (3)1.0484 (3)0.4863 (2)0.0432 (11)
H180.54091.09780.45710.052*
C190.7341 (6)0.9558 (5)0.5254 (3)0.0816 (16)
H19A0.66970.92360.55020.122*
H19B0.79060.98710.55580.122*
H19C0.77500.90450.49900.122*
C200.7647 (4)1.0820 (5)0.4373 (3)0.0732 (17)
H20A0.71761.12710.40930.110*
H20B0.80491.03130.41000.110*
H20C0.82401.12190.46120.110*
C210.2853 (3)1.1867 (3)0.43474 (17)0.0240 (7)
H210.21031.15600.42680.029*
C220.2583 (4)1.2772 (3)0.3324 (2)0.0437 (11)
H22A0.30311.24960.29520.066*
H22B0.24921.35070.32700.066*
H22C0.17961.24530.33410.066*
C230.4417 (3)1.2999 (3)0.3995 (2)0.0364 (10)
H23A0.46781.29630.44530.055*
H23B0.43991.37100.38530.055*
H23C0.49721.26170.37180.055*
C240.4167 (3)1.0000 (3)0.32387 (19)0.0347 (9)
H240.46281.03810.29360.042*
C250.4002 (5)0.8543 (3)0.3960 (2)0.0493 (11)
H25A0.31570.87080.39180.074*
H25B0.42600.86660.44120.074*
H25C0.41280.78270.38490.074*
C260.5865 (4)0.8865 (4)0.3345 (2)0.0451 (10)
H26A0.62010.93310.30190.068*
H26B0.58370.81780.31630.068*
H26C0.63640.88680.37390.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01357 (16)0.01255 (16)0.01301 (16)0.00049 (14)0.00072 (13)0.00015 (14)
Zn20.01203 (15)0.00882 (15)0.01017 (15)0.00059 (13)0.00052 (13)0.00001 (13)
O10.0166 (10)0.0147 (10)0.0114 (10)0.0036 (8)0.0003 (8)0.0023 (8)
O20.0252 (11)0.0154 (11)0.0153 (11)0.0040 (10)0.0024 (9)0.0010 (8)
O30.0182 (10)0.0207 (12)0.0129 (10)0.0038 (9)0.0020 (9)0.0006 (9)
O40.0282 (12)0.0181 (12)0.0215 (11)0.0101 (10)0.0129 (9)0.0061 (9)
O50.0210 (10)0.0110 (11)0.0102 (10)0.0011 (8)0.0001 (8)0.0012 (8)
O60.0106 (10)0.0111 (10)0.0209 (11)0.0012 (8)0.0009 (8)0.0023 (9)
O70.0230 (11)0.0171 (11)0.0296 (12)0.0006 (10)0.0042 (9)0.0094 (11)
O80.0152 (10)0.0145 (11)0.0175 (11)0.0009 (9)0.0041 (8)0.0011 (9)
O90.0145 (10)0.0104 (10)0.0203 (10)0.0009 (8)0.0005 (8)0.0030 (9)
O100.0182 (10)0.0173 (10)0.0143 (10)0.0026 (10)0.0014 (9)0.0050 (8)
O110.0201 (12)0.0384 (16)0.0474 (16)0.0026 (11)0.0074 (11)0.0003 (13)
O120.0300 (13)0.0318 (13)0.0301 (13)0.0156 (11)0.0114 (11)0.0180 (11)
O130.0426 (16)0.0524 (18)0.0548 (18)0.0067 (16)0.0051 (15)0.0042 (15)
N10.0242 (16)0.074 (2)0.050 (2)0.0051 (17)0.0078 (15)0.0203 (16)
N20.0297 (15)0.0177 (14)0.0266 (15)0.0068 (13)0.0030 (13)0.0092 (12)
N30.0499 (19)0.0250 (16)0.0216 (15)0.0043 (14)0.0147 (14)0.0027 (13)
C10.0152 (14)0.0117 (15)0.0145 (15)0.0040 (11)0.0043 (12)0.0008 (11)
C20.0153 (15)0.0124 (14)0.0134 (14)0.0011 (12)0.0024 (12)0.0015 (11)
C30.0150 (14)0.0107 (14)0.0154 (14)0.0014 (12)0.0012 (12)0.0002 (11)
C40.0156 (14)0.0165 (15)0.0117 (13)0.0011 (12)0.0003 (12)0.0025 (12)
C50.0114 (14)0.0139 (15)0.0172 (15)0.0003 (11)0.0016 (12)0.0001 (12)
C60.0130 (13)0.0091 (14)0.0157 (15)0.0006 (11)0.0001 (11)0.0019 (11)
C70.0135 (14)0.0115 (14)0.0140 (14)0.0004 (12)0.0003 (13)0.0005 (11)
C80.0136 (14)0.0130 (14)0.0181 (15)0.0019 (13)0.0064 (12)0.0006 (12)
C90.0198 (14)0.0093 (15)0.0154 (14)0.0003 (12)0.0062 (12)0.0026 (12)
C100.0135 (14)0.0110 (14)0.0142 (14)0.0002 (12)0.0021 (12)0.0032 (11)
C110.0170 (15)0.0103 (13)0.0145 (14)0.0026 (12)0.0000 (12)0.0004 (11)
C120.0170 (15)0.0126 (14)0.0111 (14)0.0029 (12)0.0012 (11)0.0008 (11)
C130.0126 (14)0.0144 (14)0.0131 (14)0.0002 (12)0.0009 (12)0.0011 (11)
C140.0167 (14)0.0115 (14)0.0100 (14)0.0031 (12)0.0020 (12)0.0022 (12)
C150.0140 (14)0.0124 (14)0.0113 (13)0.0038 (12)0.0003 (12)0.0014 (11)
C160.0179 (14)0.0137 (14)0.0116 (13)0.0016 (12)0.0007 (13)0.0003 (11)
C170.0145 (15)0.0087 (14)0.0101 (13)0.0022 (11)0.0023 (11)0.0030 (11)
C180.0231 (19)0.036 (2)0.071 (3)0.0021 (16)0.0152 (19)0.006 (2)
C190.0789 (18)0.0864 (18)0.0795 (18)0.0028 (10)0.0012 (10)0.0001 (10)
C200.037 (2)0.086 (4)0.097 (4)0.020 (3)0.032 (3)0.026 (4)
C210.0234 (17)0.0222 (17)0.0265 (18)0.0087 (14)0.0017 (14)0.0063 (15)
C220.054 (3)0.037 (2)0.040 (2)0.015 (2)0.021 (2)0.0180 (19)
C230.030 (2)0.030 (2)0.050 (2)0.0078 (16)0.0021 (18)0.0211 (18)
C240.037 (2)0.035 (2)0.032 (2)0.0023 (16)0.0013 (16)0.0007 (16)
C250.071 (3)0.043 (2)0.034 (2)0.003 (2)0.017 (2)0.0046 (19)
C260.032 (2)0.042 (2)0.061 (3)0.0001 (18)0.003 (2)0.010 (2)
Geometric parameters (Å, º) top
Zn1—O10i1.9779 (19)C3—C41.391 (4)
Zn1—O4ii2.010 (2)C3—C71.506 (4)
Zn1—O112.030 (2)C4—C51.390 (4)
Zn1—O22.052 (2)C4—H40.9500
Zn1—O122.073 (2)C5—C61.411 (4)
Zn2—O8iii1.953 (2)C5—C81.501 (4)
Zn2—O9i1.966 (2)C6—H60.9500
Zn2—O3ii1.967 (2)C9—H9A0.9900
Zn2—O11.986 (2)C9—H9B0.9900
O1—C71.270 (3)C10—C111.389 (4)
O2—C71.263 (3)C10—C151.400 (4)
O3—C81.253 (4)C11—C121.400 (4)
O3—Zn2iv1.967 (2)C11—H110.9500
O4—C81.270 (4)C12—C131.389 (4)
O4—Zn1iv2.010 (2)C12—C161.517 (4)
O5—C11.390 (3)C13—C141.396 (4)
O5—C91.424 (4)C13—H130.9500
O6—C101.384 (3)C14—C151.402 (4)
O6—C91.414 (4)C14—C171.496 (4)
O7—C161.230 (4)C15—H150.9500
O8—C161.284 (4)C18—H180.9500
O8—Zn2v1.953 (2)C19—H19A0.9800
O9—C171.263 (3)C19—H19B0.9800
O9—Zn2vi1.966 (2)C19—H19C0.9800
O10—C171.262 (3)C20—H20A0.9800
O10—Zn1vi1.9779 (19)C20—H20B0.9800
O11—C181.252 (5)C20—H20C0.9800
O12—C211.245 (4)C21—H210.9500
O13—C241.244 (5)C22—H22A0.9800
N1—C181.307 (5)C22—H22B0.9800
N1—C191.407 (7)C22—H22C0.9800
N1—C201.460 (6)C23—H23A0.9800
N2—C211.310 (4)C23—H23B0.9800
N2—C231.466 (5)C23—H23C0.9800
N2—C221.470 (5)C24—H240.9500
N3—C241.348 (5)C25—H25A0.9800
N3—C261.424 (5)C25—H25B0.9800
N3—C251.468 (5)C25—H25C0.9800
C1—C61.385 (4)C26—H26A0.9800
C1—C21.394 (4)C26—H26B0.9800
C2—C31.393 (4)C26—H26C0.9800
C2—H20.9500
O10i—Zn1—O4ii115.39 (9)C11—C10—C15120.6 (3)
O10i—Zn1—O1196.95 (10)C10—C11—C12119.3 (3)
O4ii—Zn1—O11147.61 (11)C10—C11—H11120.4
O10i—Zn1—O2101.72 (8)C12—C11—H11120.4
O4ii—Zn1—O290.56 (9)C13—C12—C11120.8 (3)
O11—Zn1—O284.18 (10)C13—C12—C16120.5 (3)
O10i—Zn1—O1295.31 (10)C11—C12—C16118.7 (3)
O4ii—Zn1—O1288.20 (9)C12—C13—C14119.8 (3)
O11—Zn1—O1287.10 (10)C12—C13—H13120.1
O2—Zn1—O12161.68 (9)C14—C13—H13120.1
O8iii—Zn2—O9i113.43 (9)C13—C14—C15120.0 (3)
O8iii—Zn2—O3ii103.75 (9)C13—C14—C17121.4 (3)
O9i—Zn2—O3ii122.06 (9)C15—C14—C17118.5 (3)
O8iii—Zn2—O1100.29 (8)C10—C15—C14119.5 (3)
O9i—Zn2—O1109.06 (8)C10—C15—H15120.2
O3ii—Zn2—O1105.88 (9)C14—C15—H15120.2
C7—O1—Zn2119.91 (18)O7—C16—O8124.3 (3)
C7—O2—Zn1131.99 (19)O7—C16—C12120.2 (3)
C8—O3—Zn2iv130.68 (19)O8—C16—C12115.5 (2)
C8—O4—Zn1iv127.46 (18)O10—C17—O9125.6 (3)
C1—O5—C9118.7 (2)O10—C17—C14116.8 (3)
C10—O6—C9119.1 (2)O9—C17—C14117.5 (3)
C16—O8—Zn2v112.12 (18)O11—C18—N1124.6 (4)
C17—O9—Zn2vi123.25 (18)O11—C18—H18117.7
C17—O10—Zn1vi134.87 (19)N1—C18—H18117.7
C18—O11—Zn1129.1 (3)N1—C19—H19A109.5
C21—O12—Zn1125.8 (2)N1—C19—H19B109.5
C18—N1—C19118.5 (5)H19A—C19—H19B109.5
C18—N1—C20122.3 (5)N1—C19—H19C109.5
C19—N1—C20119.1 (4)H19A—C19—H19C109.5
C21—N2—C23121.0 (3)H19B—C19—H19C109.5
C21—N2—C22121.3 (3)N1—C20—H20A109.5
C23—N2—C22116.5 (3)N1—C20—H20B109.5
C24—N3—C26122.9 (3)H20A—C20—H20B109.5
C24—N3—C25118.8 (3)N1—C20—H20C109.5
C26—N3—C25118.0 (4)H20A—C20—H20C109.5
C6—C1—O5125.0 (3)H20B—C20—H20C109.5
C6—C1—C2121.0 (3)O12—C21—N2123.7 (3)
O5—C1—C2114.1 (3)O12—C21—H21118.2
C3—C2—C1119.8 (3)N2—C21—H21118.2
C3—C2—H2120.1N2—C22—H22A109.5
C1—C2—H2120.1N2—C22—H22B109.5
C4—C3—C2120.1 (3)H22A—C22—H22B109.5
C4—C3—C7119.8 (3)N2—C22—H22C109.5
C2—C3—C7120.1 (3)H22A—C22—H22C109.5
C5—C4—C3119.8 (3)H22B—C22—H22C109.5
C5—C4—H4120.1N2—C23—H23A109.5
C3—C4—H4120.1N2—C23—H23B109.5
C4—C5—C6120.5 (3)H23A—C23—H23B109.5
C4—C5—C8119.2 (3)N2—C23—H23C109.5
C6—C5—C8120.3 (3)H23A—C23—H23C109.5
C1—C6—C5118.8 (3)H23B—C23—H23C109.5
C1—C6—H6120.6O13—C24—N3126.4 (4)
C5—C6—H6120.6O13—C24—H24116.8
O2—C7—O1125.5 (3)N3—C24—H24116.8
O2—C7—C3117.0 (3)N3—C25—H25A109.5
O1—C7—C3117.5 (2)N3—C25—H25B109.5
O3—C8—O4125.6 (3)H25A—C25—H25B109.5
O3—C8—C5116.7 (2)N3—C25—H25C109.5
O4—C8—C5117.7 (3)H25A—C25—H25C109.5
O6—C9—O5113.1 (2)H25B—C25—H25C109.5
O6—C9—H9A109.0N3—C26—H26A109.5
O5—C9—H9A109.0N3—C26—H26B109.5
O6—C9—H9B109.0H26A—C26—H26B109.5
O5—C9—H9B109.0N3—C26—H26C109.5
H9A—C9—H9B107.8H26A—C26—H26C109.5
O6—C10—C11125.2 (3)H26B—C26—H26C109.5
O6—C10—C15114.1 (3)
O8iii—Zn2—O1—C7138.9 (2)C6—C5—C8—O3169.7 (3)
O9i—Zn2—O1—C7101.7 (2)C4—C5—C8—O4172.4 (3)
O3ii—Zn2—O1—C731.3 (2)C6—C5—C8—O49.2 (4)
O10i—Zn1—O2—C73.6 (3)C10—O6—C9—O565.0 (3)
O4ii—Zn1—O2—C7112.5 (3)C1—O5—C9—O660.1 (3)
O11—Zn1—O2—C799.5 (3)C9—O6—C10—C1111.8 (4)
O12—Zn1—O2—C7161.5 (3)C9—O6—C10—C15170.6 (2)
O10i—Zn1—O11—C18113.8 (4)O6—C10—C11—C12177.4 (3)
O4ii—Zn1—O11—C1863.2 (4)C15—C10—C11—C120.0 (4)
O2—Zn1—O11—C18145.0 (4)C10—C11—C12—C131.5 (4)
O12—Zn1—O11—C1818.8 (4)C10—C11—C12—C16176.2 (2)
O10i—Zn1—O12—C21134.1 (3)C11—C12—C13—C141.9 (4)
O4ii—Zn1—O12—C2118.7 (3)C16—C12—C13—C14175.7 (3)
O11—Zn1—O12—C21129.2 (3)C12—C13—C14—C150.9 (4)
O2—Zn1—O12—C2167.6 (5)C12—C13—C14—C17177.5 (3)
C9—O5—C1—C63.0 (4)O6—C10—C15—C14178.6 (2)
C9—O5—C1—C2176.2 (2)C11—C10—C15—C140.9 (4)
C6—C1—C2—C30.3 (4)C13—C14—C15—C100.5 (4)
O5—C1—C2—C3179.5 (2)C17—C14—C15—C10179.0 (2)
C1—C2—C3—C41.1 (4)Zn2v—O8—C16—O75.5 (4)
C1—C2—C3—C7179.5 (3)Zn2v—O8—C16—C12176.76 (18)
C2—C3—C4—C50.2 (4)C13—C12—C16—O7178.9 (3)
C7—C3—C4—C5178.1 (3)C11—C12—C16—O73.4 (4)
C3—C4—C5—C62.4 (4)C13—C12—C16—O83.3 (4)
C3—C4—C5—C8176.0 (3)C11—C12—C16—O8174.4 (3)
O5—C1—C6—C5177.3 (3)Zn1vi—O10—C17—O941.3 (4)
C2—C1—C6—C51.8 (4)Zn1vi—O10—C17—C14139.2 (2)
C4—C5—C6—C13.2 (4)Zn2vi—O9—C17—O1011.7 (4)
C8—C5—C6—C1175.2 (3)Zn2vi—O9—C17—C14167.89 (18)
Zn1—O2—C7—O141.7 (5)C13—C14—C17—O10172.8 (3)
Zn1—O2—C7—C3139.1 (2)C15—C14—C17—O105.6 (4)
Zn2—O1—C7—O219.6 (4)C13—C14—C17—O97.6 (4)
Zn2—O1—C7—C3159.64 (19)C15—C14—C17—O9174.0 (2)
C4—C3—C7—O210.6 (4)Zn1—O11—C18—N1178.6 (3)
C2—C3—C7—O2171.0 (3)C19—N1—C18—O111.8 (7)
C4—C3—C7—O1168.7 (3)C20—N1—C18—O11178.2 (4)
C2—C3—C7—O19.7 (4)Zn1—O12—C21—N2157.8 (3)
Zn2iv—O3—C8—O44.0 (5)C23—N2—C21—O125.5 (6)
Zn2iv—O3—C8—C5177.16 (19)C22—N2—C21—O12172.3 (4)
Zn1iv—O4—C8—O347.0 (4)C26—N3—C24—O13177.5 (4)
Zn1iv—O4—C8—C5134.2 (2)C25—N3—C24—O132.8 (6)
C4—C5—C8—O38.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z+1; (iii) x, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z+1; (v) x, y1/2, z+3/2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C17H8O10)(C3H7NO)2]·C3H7NO
Mr722.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)11.2562 (6), 13.1744 (7), 20.3965 (12)
V3)3024.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.15 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2008)
Tmin, Tmax0.789, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
15188, 5261, 5131
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.07
No. of reflections5261
No. of parameters403
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.51
Absolute structureFlack (1983), 2298 Friedel pairs
Absolute structure parameter0.010 (9)

Computer programs: APEX2 (Bruker 2008), SAINT (Bruker 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O10i1.9779 (19)Zn2—O8iii1.953 (2)
Zn1—O4ii2.010 (2)Zn2—O9i1.966 (2)
Zn1—O112.030 (2)Zn2—O3ii1.967 (2)
Zn1—O22.052 (2)Zn2—O11.986 (2)
Zn1—O122.073 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z+1; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the National High Technology Research and Development Program 863 (No. 2009AA063201).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHawxwell, S. M., Espallargas, G. M., Bradshaw, D., Rosseinsky, M. J., Prior, T. J., Florence, A. J., Streek, J. & Brammer, L. (2007). Chem. Commun. pp. 1532–1534.  Web of Science CSD CrossRef Google Scholar
First citationKarmakar, A. & Goldberg, I. (2010). CrystEngComm, 12, 339–349.  Web of Science CSD CrossRef Google Scholar
First citationKim, Y. J., Suh, M. & Jung, D. Y. (2004). Inorg. Chem. 43, 245–250.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. F., Zhang, Z. H., Okamura, T. A., Sun, W. Y. & Ueyama, N. (2005). Cryst. Growth Des. 5, 177–182.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds