organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-3,9-Bis(3-chloro­phen­yl)-2,4,8,10-tetra­oxa­spiro­[5.5]undeca­ne

aKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: chemsxq@yahoo.com.cn

(Received 23 July 2011; accepted 13 September 2011; online 17 September 2011)

In the title compound, C19H18Cl2O4, the two non-planar six-membered heterocycles passing through the spiro-C atom both adopt chair conformations, and the dihedral angle between the two benzene rings is 7.2 (1)°. In the crystal, the enanti­omers with R and S configurations are generated by the symmetry elements of the centrosymmetric space group, forming a racemic crystal. Inter­molecular C—H⋯π and weak C—H⋯O inter­actions link the mol­ecules in the crystal structure.

Related literature

For general background to spiranes, see: Cismaş et al. (2005[Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287-1314.]); Mihiş et al. (2008[Mihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848-2858.]); Sun et al. (2010[Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152-156.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl2O4

  • Mr = 381.23

  • Monoclinic, P 21 /c

  • a = 13.0924 (13) Å

  • b = 5.8473 (6) Å

  • c = 23.061 (2) Å

  • β = 92.865 (2)°

  • V = 1763.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.926

  • 9216 measured reflections

  • 3083 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.01

  • 3083 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12BCg1i 0.97 2.70 3.632 (2) 162
C9—H9A⋯O3ii 0.97 2.64 3.402 (2) 135
C11—H11B⋯O3iii 0.97 2.61 3.530 (2) 158
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2000[Bruker (2000). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to the characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş et al., 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş et al., 2008; Sun et al., 2010). We herein present the structure of 3,9-bis(3-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, the two nonplanar six-membered heterocycles [(O1, O2 and C7–C10) and (O3, O4 and C10–C13)] passing through the spiro-C atom (C10) both adopt chair conformations, and the dihedral angle between the two benzene rings (C1–C6 and C14–C19) is 7.2 (1)°. In the crystal packing structure (Fig. 2), the enantiomers with R and S configurations are generated by the symmetry elements of the centrosymmetric groups forming a racemate. Intermolecular weak C–H···O interactions link molecules with the same configuration (R or S) into the two chains chains along the b axis. The chains are further connected by C–H···π interactions [C12–H12B···Cg1i = 2.70 Å; (i) -x + 2, -y, -z + 1; Cg1 is the centroid of benzene ring (C1–C6); Table 1] creating a racemic network.

Related literature top

For general background to spiranes, see: Cismaş et al. (2005); Mihiş et al. (2008); Sun et al. (2010).

Experimental top

To a solution of 3-chlorobenzaldehyde (7.32 mmol, 1.03 g) and pentaerythritol (4 mmol, 0.54 g) in toluene (30 mL), phosphotungstic acid (30 mg) as catalyst was added, respectively. The mixtures were refluxed for 4 h to complete the reaction. After reaction, the mixture was evaporated under vacuum and the residuces were washed with 5% sodium bicarboinate (20 mL) and 50% ethanol (20 mL), respectively. The pure product recrystallised from ethanol to afford colourless crystals (yield 65%, m.p. 397–398 K). Single crystals suitable for X-ray diffraction were also obtained by evaporation of an enthanol solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

Owing to the characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş et al., 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş et al., 2008; Sun et al., 2010). We herein present the structure of 3,9-bis(3-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, the two nonplanar six-membered heterocycles [(O1, O2 and C7–C10) and (O3, O4 and C10–C13)] passing through the spiro-C atom (C10) both adopt chair conformations, and the dihedral angle between the two benzene rings (C1–C6 and C14–C19) is 7.2 (1)°. In the crystal packing structure (Fig. 2), the enantiomers with R and S configurations are generated by the symmetry elements of the centrosymmetric groups forming a racemate. Intermolecular weak C–H···O interactions link molecules with the same configuration (R or S) into the two chains chains along the b axis. The chains are further connected by C–H···π interactions [C12–H12B···Cg1i = 2.70 Å; (i) -x + 2, -y, -z + 1; Cg1 is the centroid of benzene ring (C1–C6); Table 1] creating a racemic network.

For general background to spiranes, see: Cismaş et al. (2005); Mihiş et al. (2008); Sun et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I). Hydrogen bonds are shown as dashed lines.
rac-3,9-Bis(3-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane top
Crystal data top
C19H18Cl2O4F(000) = 792
Mr = 381.23Dx = 1.436 Mg m3
Monoclinic, P21/cMelting point: 397 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.0924 (13) ÅCell parameters from 5568 reflections
b = 5.8473 (6) Åθ = 2.4–30.2°
c = 23.061 (2) ŵ = 0.39 mm1
β = 92.865 (2)°T = 296 K
V = 1763.2 (3) Å3PRISM, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3083 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.892, Tmax = 0.926k = 66
9216 measured reflectionsl = 2723
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.045P)2 + 0.585P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3083 reflectionsΔρmax = 0.23 e Å3
227 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0101 (15)
Crystal data top
C19H18Cl2O4V = 1763.2 (3) Å3
Mr = 381.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0924 (13) ŵ = 0.39 mm1
b = 5.8473 (6) ÅT = 296 K
c = 23.061 (2) Å0.30 × 0.20 × 0.20 mm
β = 92.865 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3083 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2669 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.926Rint = 0.044
9216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
3083 reflectionsΔρmin = 0.37 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.44666 (4)0.09142 (9)0.42374 (2)0.06281 (18)
Cl20.60790 (4)0.03575 (11)0.87193 (2)0.0707 (2)
C101.00108 (11)0.0663 (3)0.63687 (6)0.0355 (3)
C71.18050 (11)0.0270 (3)0.57866 (6)0.0381 (4)
H71.22820.06460.60320.046*
C130.81522 (11)0.0410 (3)0.68608 (6)0.0367 (3)
H130.77650.07900.66500.044*
C140.74431 (11)0.1662 (3)0.72470 (6)0.0365 (3)
C61.23665 (11)0.1316 (3)0.52994 (6)0.0360 (3)
C91.08461 (12)0.0975 (3)0.65948 (7)0.0437 (4)
H9A1.05440.21770.68200.052*
H9B1.13330.01540.68480.052*
C120.91461 (12)0.0658 (3)0.60524 (6)0.0426 (4)
H12A0.94310.17150.57790.051*
H12B0.87040.04010.58350.051*
C190.71569 (12)0.0629 (3)0.77554 (7)0.0407 (4)
H190.74390.07670.78710.049*
C180.64487 (12)0.1693 (3)0.80883 (7)0.0452 (4)
C11.31014 (11)0.0007 (3)0.50473 (7)0.0383 (3)
H11.32690.14420.51980.046*
C110.95635 (13)0.2022 (3)0.68599 (7)0.0466 (4)
H11A0.91560.32740.66970.056*
H11B1.01160.26700.71030.056*
C150.70256 (13)0.3758 (3)0.70861 (8)0.0475 (4)
H150.72170.44650.67470.057*
C21.35834 (12)0.0819 (3)0.45714 (7)0.0413 (4)
C81.04953 (14)0.2341 (3)0.59572 (8)0.0479 (4)
H8A1.09580.33460.61780.057*
H8B0.99650.32760.57680.057*
C31.33736 (13)0.2967 (3)0.43493 (7)0.0471 (4)
H31.37160.35200.40350.057*
C51.21370 (13)0.3469 (3)0.50771 (7)0.0451 (4)
H51.16450.43680.52440.054*
C170.60229 (13)0.3780 (3)0.79319 (8)0.0533 (5)
H170.55460.44770.81600.064*
C41.26424 (14)0.4277 (3)0.46054 (8)0.0505 (4)
H41.24870.57240.44590.061*
C160.63242 (14)0.4803 (3)0.74285 (9)0.0567 (5)
H160.60520.62160.73180.068*
O30.89369 (8)0.06191 (19)0.72093 (4)0.0415 (3)
O11.10447 (8)0.11743 (19)0.55266 (5)0.0421 (3)
O40.85569 (8)0.1908 (2)0.64567 (4)0.0429 (3)
O21.13674 (8)0.19688 (19)0.61245 (5)0.0441 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0534 (3)0.0747 (4)0.0629 (3)0.0064 (2)0.0281 (2)0.0002 (2)
Cl20.0728 (3)0.0869 (4)0.0552 (3)0.0017 (3)0.0312 (2)0.0047 (3)
C100.0400 (8)0.0339 (8)0.0332 (7)0.0029 (6)0.0077 (6)0.0012 (6)
C70.0375 (8)0.0435 (9)0.0333 (8)0.0046 (7)0.0032 (6)0.0027 (6)
C130.0374 (8)0.0396 (8)0.0333 (8)0.0012 (6)0.0030 (6)0.0001 (6)
C140.0320 (7)0.0410 (8)0.0365 (8)0.0008 (6)0.0015 (6)0.0031 (6)
C60.0364 (8)0.0403 (8)0.0314 (7)0.0037 (6)0.0015 (6)0.0043 (6)
C90.0440 (8)0.0575 (10)0.0301 (8)0.0008 (8)0.0061 (6)0.0084 (7)
C120.0412 (8)0.0578 (10)0.0293 (7)0.0037 (7)0.0056 (6)0.0027 (7)
C190.0395 (8)0.0414 (9)0.0415 (8)0.0005 (7)0.0050 (7)0.0017 (7)
C180.0392 (8)0.0554 (10)0.0417 (9)0.0061 (8)0.0099 (7)0.0063 (7)
C10.0373 (8)0.0393 (8)0.0384 (8)0.0006 (7)0.0029 (6)0.0014 (6)
C110.0546 (10)0.0402 (9)0.0467 (9)0.0128 (8)0.0180 (7)0.0077 (7)
C150.0473 (9)0.0479 (10)0.0478 (9)0.0060 (8)0.0067 (7)0.0053 (8)
C20.0353 (8)0.0496 (9)0.0394 (8)0.0052 (7)0.0057 (6)0.0027 (7)
C80.0592 (10)0.0354 (9)0.0511 (9)0.0028 (8)0.0229 (8)0.0051 (7)
C30.0516 (9)0.0505 (10)0.0395 (8)0.0119 (8)0.0049 (7)0.0046 (7)
C50.0533 (9)0.0393 (9)0.0426 (9)0.0041 (7)0.0032 (7)0.0061 (7)
C170.0423 (9)0.0600 (11)0.0587 (11)0.0058 (8)0.0130 (8)0.0143 (9)
C40.0662 (11)0.0379 (9)0.0471 (9)0.0035 (8)0.0004 (8)0.0042 (7)
C160.0528 (10)0.0491 (10)0.0686 (12)0.0148 (9)0.0065 (9)0.0016 (9)
O30.0461 (6)0.0455 (6)0.0338 (5)0.0124 (5)0.0106 (5)0.0071 (5)
O10.0510 (6)0.0384 (6)0.0382 (6)0.0059 (5)0.0149 (5)0.0094 (5)
O40.0453 (6)0.0475 (6)0.0369 (6)0.0117 (5)0.0112 (5)0.0103 (5)
O20.0475 (6)0.0464 (6)0.0395 (6)0.0082 (5)0.0139 (5)0.0138 (5)
Geometric parameters (Å, º) top
Cl1—C21.7456 (16)C12—H12B0.9700
Cl2—C181.7413 (17)C19—C181.381 (2)
C10—C111.524 (2)C19—H190.9300
C10—C81.525 (2)C18—C171.382 (3)
C10—C91.526 (2)C1—C21.380 (2)
C10—C121.526 (2)C1—H10.9300
C7—O21.4026 (18)C11—O31.4356 (18)
C7—O11.4153 (19)C11—H11A0.9700
C7—C61.503 (2)C11—H11B0.9700
C7—H70.9800C15—C161.383 (2)
C13—O41.4019 (18)C15—H150.9300
C13—O31.4074 (18)C2—C31.379 (2)
C13—C141.508 (2)C8—O11.4285 (19)
C13—H130.9800C8—H8A0.9700
C14—C151.385 (2)C8—H8B0.9700
C14—C191.387 (2)C3—C41.382 (2)
C6—C11.385 (2)C3—H30.9300
C6—C51.387 (2)C5—C41.384 (2)
C9—O21.4332 (19)C5—H50.9300
C9—H9A0.9700C17—C161.381 (3)
C9—H9B0.9700C17—H170.9300
C12—O41.4388 (18)C4—H40.9300
C12—H12A0.9700C16—H160.9300
C11—C10—C8108.33 (13)C17—C18—Cl2119.26 (13)
C11—C10—C9111.63 (14)C2—C1—C6119.55 (15)
C8—C10—C9107.65 (13)C2—C1—H1120.2
C11—C10—C12108.41 (13)C6—C1—H1120.2
C8—C10—C12110.49 (13)O3—C11—C10111.77 (12)
C9—C10—C12110.32 (14)O3—C11—H11A109.3
O2—C7—O1111.08 (12)C10—C11—H11A109.3
O2—C7—C6110.82 (13)O3—C11—H11B109.3
O1—C7—C6106.63 (12)C10—C11—H11B109.3
O2—C7—H7109.4H11A—C11—H11B107.9
O1—C7—H7109.4C16—C15—C14120.17 (16)
C6—C7—H7109.4C16—C15—H15119.9
O4—C13—O3110.93 (12)C14—C15—H15119.9
O4—C13—C14110.70 (12)C3—C2—C1121.58 (15)
O3—C13—C14108.89 (12)C3—C2—Cl1119.28 (12)
O4—C13—H13108.8C1—C2—Cl1119.14 (13)
O3—C13—H13108.8O1—C8—C10111.40 (13)
C14—C13—H13108.8O1—C8—H8A109.3
C15—C14—C19119.48 (15)C10—C8—H8A109.3
C15—C14—C13121.20 (14)O1—C8—H8B109.3
C19—C14—C13119.21 (14)C10—C8—H8B109.3
C1—C6—C5119.62 (14)H8A—C8—H8B108.0
C1—C6—C7117.54 (14)C2—C3—C4118.41 (15)
C5—C6—C7122.74 (14)C2—C3—H3120.8
O2—C9—C10110.88 (12)C4—C3—H3120.8
O2—C9—H9A109.5C4—C5—C6119.81 (16)
C10—C9—H9A109.5C4—C5—H5120.1
O2—C9—H9B109.5C6—C5—H5120.1
C10—C9—H9B109.5C16—C17—C18118.26 (16)
H9A—C9—H9B108.1C16—C17—H17120.9
O4—C12—C10110.87 (12)C18—C17—H17120.9
O4—C12—H12A109.5C3—C4—C5121.02 (16)
C10—C12—H12A109.5C3—C4—H4119.5
O4—C12—H12B109.5C5—C4—H4119.5
C10—C12—H12B109.5C17—C16—C15120.94 (17)
H12A—C12—H12B108.1C17—C16—H16119.5
C18—C19—C14119.40 (15)C15—C16—H16119.5
C18—C19—H19120.3C13—O3—C11110.19 (12)
C14—C19—H19120.3C7—O1—C8111.00 (12)
C19—C18—C17121.73 (16)C13—O4—C12110.26 (12)
C19—C18—Cl2119.00 (14)C7—O2—C9110.87 (12)
O4—C13—C14—C1519.0 (2)C6—C1—C2—Cl1177.16 (11)
O3—C13—C14—C15141.19 (15)C11—C10—C8—O1172.53 (14)
O4—C13—C14—C19164.95 (13)C9—C10—C8—O151.68 (18)
O3—C13—C14—C1942.74 (18)C12—C10—C8—O168.85 (18)
O2—C7—C6—C1159.48 (13)C1—C2—C3—C41.7 (2)
O1—C7—C6—C179.51 (16)Cl1—C2—C3—C4177.45 (13)
O2—C7—C6—C524.2 (2)C1—C6—C5—C40.1 (2)
O1—C7—C6—C596.80 (17)C7—C6—C5—C4176.16 (15)
C11—C10—C9—O2170.89 (12)C19—C18—C17—C160.1 (3)
C8—C10—C9—O252.13 (17)Cl2—C18—C17—C16179.73 (15)
C12—C10—C9—O268.50 (16)C2—C3—C4—C50.6 (3)
C11—C10—C12—O450.16 (18)C6—C5—C4—C30.2 (3)
C8—C10—C12—O4168.73 (13)C18—C17—C16—C150.7 (3)
C9—C10—C12—O472.36 (16)C14—C15—C16—C170.4 (3)
C15—C14—C19—C180.9 (2)O4—C13—O3—C1163.94 (16)
C13—C14—C19—C18175.20 (14)C14—C13—O3—C11173.99 (12)
C14—C19—C18—C170.7 (2)C10—C11—O3—C1356.69 (18)
C14—C19—C18—Cl2178.92 (12)O2—C7—O1—C861.88 (16)
C5—C6—C1—C21.1 (2)C6—C7—O1—C8177.28 (12)
C7—C6—C1—C2175.31 (14)C10—C8—O1—C757.07 (18)
C8—C10—C11—O3169.67 (13)O3—C13—O4—C1264.98 (15)
C9—C10—C11—O371.97 (18)C14—C13—O4—C12174.01 (11)
C12—C10—C11—O349.75 (18)C10—C12—O4—C1358.23 (16)
C19—C14—C15—C160.4 (3)O1—C7—O2—C962.62 (16)
C13—C14—C15—C16175.67 (16)C6—C7—O2—C9179.05 (12)
C6—C1—C2—C32.0 (2)C10—C9—O2—C758.53 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cg1i0.972.703.632 (2)162
C9—H9A···O3ii0.972.643.402 (2)135
C11—H11B···O3iii0.972.613.530 (2)158
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H18Cl2O4
Mr381.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.0924 (13), 5.8473 (6), 23.061 (2)
β (°) 92.865 (2)
V3)1763.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.892, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
9216, 3083, 2669
Rint0.044
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.01
No. of reflections3083
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.37

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cg1i0.972.703.632 (2)162.0
C9—H9A···O3ii0.972.643.402 (2)135.4
C11—H11B···O3iii0.972.613.530 (2)157.7
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of China (Nos. 20872051 and 21002009) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationBruker (2000). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287–1314.  Google Scholar
First citationMihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848–2858.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152–156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds