organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,7-Di­ethyl-4,10-diiso­propyl­tetra­cene

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan, and bDepartment of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 8 August 2011; accepted 6 September 2011; online 14 September 2011)

The mol­ecule of the title compound, C28H32, is located on a crystallographic inversion center. The ethyl groups are essentially coplanar with the tetra­cene ring, making a torsion angle of −0.4 (4)°. The isopropyl groups adopt an asymmetric conformation with their terminal methyl groups positioned on opposite sides of the tetra­cene plane [the Me—C—C—C torsion angles are −22.5 (4) and 100.9 (3)°]. In the crystal, the mol­ecules adopt an arrangement without significant ππ inter­actions along the stacking direction (y axis).

Related literature

For applications of tetra­cene derivatives, see: Anthony (2008[Anthony, J. E. (2008). Angew. Chem. Int. Ed. 47, 452-483.]). For crystallochromy, see: Klebe et al. (1989[Klebe, G., Graser, F., Hädicke, E. & Berndt, J. (1989). Acta Cryst. B45, 69-77.]). For the synthesis, see: Kitamura et al. (2011[Kitamura, C., Kano, H., Tsukuda, H., Kawase, T., Kobayashi, A. & Naito, H. (2011). Heterocycles, 83, 1621-1629.]). For structures of related alkyl-substituted tetra­cene derivatives, see: Kitamura, Abe et al. (2010[Kitamura, C., Abe, Y., Ohara, T., Yoneda, A., Kawase, T., Kobayashi, A. & Naito, H. (2010). Chem. Eur. J. 16, 890-898.]); Kitamura, Tsukuda et al. (2010[Kitamura, C., Tsukuda, H., Yoneda, A., Kawase, T., Kobayashi, A. & Naito, H. (2010). Eur. J. Org. Chem. pp. 3033-3040.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32

  • Mr = 368.54

  • Monoclinic, P 21 /n

  • a = 12.901 (4) Å

  • b = 5.057 (2) Å

  • c = 16.962 (6) Å

  • β = 106.513 (9)°

  • V = 1061.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 203 K

  • 0.25 × 0.13 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • 9469 measured reflections

  • 2423 independent reflections

  • 1318 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.282

  • S = 1.10

  • 2423 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tetracene is a promising organic semiconducting molecule for OFETs, OLEDs, and solar cells (Anthony, 2008). In addition, we have recently found that alkyl-substituted tetracenes possess interesting chromophore properties. Depending on the length, shape, and the number of alkyl side chains, the solid-state color of the tetetracenes varies through yellow, orange and red (Kitamura, Abe et al., 2010; Kitamura, Tsukuda et al., 2010). The difference in color can be attributed to crystallochromy (Klebe, et al., 1989), i.e. to a color change caused by different molecular interactions based on different molecular arrangements induced by the substituents. Very recently, we have prepared anti/syn-regioisomeric mixtures of alkyl-substituted tetracenes and reported that the solid-state color of the mixtures changed before and after recrystallization from Et2O (Kitamura, et al., 2011). To further investigate the effects of alkyl side chains on the solid-state colorations, we have synthesized an anti/syn mixture of ethyl/isopropyl-substituted tetracene (anti isomer – the title compound; syn isomer – 1,10-diethyl-4,7-diisopropyltetracene). The molecular arrangement in the crystal of the anti isomer is shown on Fig. 2.

Related literature top

For applications of tetracene derivatives, see: Anthony (2008). For crystallochromy, see: Klebe et al. (1989). For the synthesis, see: Kitamura et al. (2011). For structures of related alkyl-substituted tetracene derivatives, see: Kitamura, Abe et al. (2010); Kitamura, Tsukuda et al. (2010).

Experimental top

The anti/syn ethyl/isopropyl-substituted tetracene mixture was prepared as an orange solid (329 mg) according to the method described by Kitamura et al. (2011), except that 2-ethyl-5-isopropyl furan was used. Recrystallization from Et2O afforded a yellow solid (263 mg). 1H-NMR: δ 1.51–1.56 (m, 18H), 3.28 (q, J = 7.5 Hz, 4H), 3.92–3.99 (m, 2H), 7.23–7.28 (m, 4H), 8.89 (s, 4H), 8.95 (s, 4H); 13C-NMR: δ 14.52, 23.59, 26.63, 28.65, 120.24, 122.75, 122.99, 123.27, 137.81, 142.57; EIMS: m/z (%) 368 (100); Elemental analysis for C28H32: C, 91.25; H, 8.75. Found: C, 91.17; H, 8.89. Single crystals suitable for X-ray analysis were obtained by slow evaporation from Et2O.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.94Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for CH, and C—H = 0.97Å and Uiso(H) = 1.5Ueq(C) for CH3. The positions of methyl H atoms were optimized rotationally.

Structure description top

Tetracene is a promising organic semiconducting molecule for OFETs, OLEDs, and solar cells (Anthony, 2008). In addition, we have recently found that alkyl-substituted tetracenes possess interesting chromophore properties. Depending on the length, shape, and the number of alkyl side chains, the solid-state color of the tetetracenes varies through yellow, orange and red (Kitamura, Abe et al., 2010; Kitamura, Tsukuda et al., 2010). The difference in color can be attributed to crystallochromy (Klebe, et al., 1989), i.e. to a color change caused by different molecular interactions based on different molecular arrangements induced by the substituents. Very recently, we have prepared anti/syn-regioisomeric mixtures of alkyl-substituted tetracenes and reported that the solid-state color of the mixtures changed before and after recrystallization from Et2O (Kitamura, et al., 2011). To further investigate the effects of alkyl side chains on the solid-state colorations, we have synthesized an anti/syn mixture of ethyl/isopropyl-substituted tetracene (anti isomer – the title compound; syn isomer – 1,10-diethyl-4,7-diisopropyltetracene). The molecular arrangement in the crystal of the anti isomer is shown on Fig. 2.

For applications of tetracene derivatives, see: Anthony (2008). For crystallochromy, see: Klebe et al. (1989). For the synthesis, see: Kitamura et al. (2011). For structures of related alkyl-substituted tetracene derivatives, see: Kitamura, Abe et al. (2010); Kitamura, Tsukuda et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering numbering and 30% probability displacement ellipsoids for non-H atoms. Symmetry code: (i) -x, -y + 1, -z.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydrogen atoms are omitted for clarity.
1,7-Diethyl-4,10-diisopropyltetracene top
Crystal data top
C28H32F(000) = 400
Mr = 368.54Dx = 1.154 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3820 reflections
a = 12.901 (4) Åθ = 3.3–27.5°
b = 5.057 (2) ŵ = 0.06 mm1
c = 16.962 (6) ÅT = 203 K
β = 106.513 (9)°Prism, yellow
V = 1061.0 (7) Å30.25 × 0.13 × 0.1 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1318 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 10 pixels mm-1h = 1616
ω scansk = 66
9469 measured reflectionsl = 2222
2423 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.282 w = 1/[σ2(Fo2) + (0.1483P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2423 reflectionsΔρmax = 0.26 e Å3
130 parametersΔρmin = 0.42 e Å3
0 restraints
Crystal data top
C28H32V = 1061.0 (7) Å3
Mr = 368.54Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.901 (4) ŵ = 0.06 mm1
b = 5.057 (2) ÅT = 203 K
c = 16.962 (6) Å0.25 × 0.13 × 0.1 mm
β = 106.513 (9)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1318 reflections with I > 2σ(I)
9469 measured reflectionsRint = 0.083
2423 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.282H-atom parameters constrained
S = 1.10Δρmax = 0.26 e Å3
2423 reflectionsΔρmin = 0.42 e Å3
130 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2359 (2)0.9140 (5)0.04992 (16)0.0445 (7)
C20.3434 (2)0.8926 (5)0.01162 (17)0.0475 (7)
H20.39181.00270.02860.057*
C30.3853 (2)0.7094 (5)0.05323 (17)0.0492 (7)
H30.46060.70050.07660.059*
C40.32137 (19)0.5464 (5)0.08311 (16)0.0436 (7)
C50.20585 (18)0.5603 (5)0.04493 (15)0.0418 (7)
C60.16283 (19)0.7463 (4)0.02117 (16)0.0428 (7)
C70.05225 (19)0.7561 (5)0.05762 (16)0.0457 (7)
H70.0250.87650.10080.055*
C80.02107 (19)0.5923 (5)0.03256 (16)0.0429 (7)
C90.13335 (19)0.6016 (5)0.06961 (16)0.0446 (7)
H90.16060.7220.11280.054*
C100.1906 (2)1.0987 (5)0.12112 (17)0.0501 (7)
H10A0.13951.21880.10630.06*
H10B0.14970.99370.16830.06*
C110.2731 (2)1.2644 (6)0.14795 (19)0.0597 (8)
H11A0.3221.14860.16580.09*
H11B0.3141.37120.10210.09*
H11C0.2361.37890.1930.09*
C120.36829 (19)0.3617 (5)0.15477 (17)0.0470 (7)
H120.32690.19430.14370.056*
C130.4870 (2)0.2951 (6)0.16758 (19)0.0586 (8)
H13A0.53060.4520.18550.088*
H13B0.49740.23240.11630.088*
H13C0.50880.15830.20910.088*
C140.3535 (2)0.4794 (6)0.23422 (18)0.0586 (8)
H14A0.27720.5090.22760.088*
H14B0.3920.64620.2460.088*
H14C0.38190.35760.27940.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (14)0.0452 (14)0.0469 (16)0.0039 (11)0.0144 (11)0.0033 (11)
C20.0424 (14)0.0539 (15)0.0479 (16)0.0092 (12)0.0153 (12)0.0026 (12)
C30.0405 (14)0.0496 (15)0.0564 (18)0.0035 (11)0.0120 (12)0.0034 (12)
C40.0399 (13)0.0459 (14)0.0436 (15)0.0020 (11)0.0099 (11)0.0050 (11)
C50.0383 (13)0.0444 (14)0.0422 (15)0.0013 (10)0.0108 (10)0.0027 (11)
C60.0423 (14)0.0432 (14)0.0435 (16)0.0015 (10)0.0134 (11)0.0016 (11)
C70.0408 (14)0.0498 (15)0.0461 (16)0.0001 (11)0.0117 (11)0.0043 (11)
C80.0389 (14)0.0438 (14)0.0465 (16)0.0009 (10)0.0129 (11)0.0001 (10)
C90.0398 (13)0.0459 (14)0.0454 (16)0.0013 (11)0.0074 (11)0.0048 (11)
C100.0486 (16)0.0493 (15)0.0515 (18)0.0053 (11)0.0125 (13)0.0029 (12)
C110.0577 (18)0.0622 (18)0.061 (2)0.0058 (14)0.0193 (15)0.0121 (14)
C120.0398 (14)0.0497 (15)0.0491 (17)0.0002 (11)0.0087 (11)0.0013 (12)
C130.0436 (16)0.0650 (18)0.063 (2)0.0063 (13)0.0088 (13)0.0059 (14)
C140.0576 (18)0.0711 (19)0.0466 (17)0.0016 (14)0.0140 (13)0.0007 (14)
Geometric parameters (Å, º) top
C1—C21.359 (3)C9—H90.94
C1—C61.451 (3)C10—C111.522 (3)
C1—C101.507 (4)C10—H10A0.98
C2—C31.422 (4)C10—H10B0.98
C2—H20.94C11—H11A0.97
C3—C41.362 (3)C11—H11B0.97
C3—H30.94C11—H11C0.97
C4—C51.448 (3)C12—C131.522 (3)
C4—C121.516 (3)C12—C141.534 (4)
C5—C9i1.394 (3)C12—H120.99
C5—C61.448 (3)C13—H13A0.97
C6—C71.385 (3)C13—H13B0.97
C7—C81.411 (3)C13—H13C0.97
C7—H70.94C14—H14A0.97
C8—C91.406 (3)C14—H14B0.97
C8—C8i1.430 (5)C14—H14C0.97
C9—C5i1.394 (3)
C2—C1—C6117.7 (2)C11—C10—H10A108.3
C2—C1—C10122.9 (2)C1—C10—H10B108.3
C6—C1—C10119.4 (2)C11—C10—H10B108.3
C1—C2—C3122.2 (2)H10A—C10—H10B107.4
C1—C2—H2118.9C10—C11—H11A109.5
C3—C2—H2118.9C10—C11—H11B109.5
C4—C3—C2123.0 (2)H11A—C11—H11B109.5
C4—C3—H3118.5C10—C11—H11C109.5
C2—C3—H3118.5H11A—C11—H11C109.5
C3—C4—C5117.4 (2)H11B—C11—H11C109.5
C3—C4—C12121.7 (2)C4—C12—C13114.0 (2)
C5—C4—C12120.9 (2)C4—C12—C14110.1 (2)
C9i—C5—C6118.2 (2)C13—C12—C14109.4 (2)
C9i—C5—C4122.0 (2)C4—C12—H12107.7
C6—C5—C4119.8 (2)C13—C12—H12107.7
C7—C6—C5119.2 (2)C14—C12—H12107.7
C7—C6—C1120.9 (2)C12—C13—H13A109.5
C5—C6—C1119.8 (2)C12—C13—H13B109.5
C6—C7—C8122.6 (2)H13A—C13—H13B109.5
C6—C7—H7118.7C12—C13—H13C109.5
C8—C7—H7118.7H13A—C13—H13C109.5
C9—C8—C7122.6 (2)H13B—C13—H13C109.5
C9—C8—C8i119.0 (3)C12—C14—H14A109.5
C7—C8—C8i118.4 (3)C12—C14—H14B109.5
C5i—C9—C8122.7 (2)H14A—C14—H14B109.5
C5i—C9—H9118.7C12—C14—H14C109.5
C8—C9—H9118.7H14A—C14—H14C109.5
C1—C10—C11115.9 (2)H14B—C14—H14C109.5
C1—C10—H10A108.3
C6—C1—C2—C31.5 (4)C2—C1—C6—C51.4 (4)
C10—C1—C2—C3177.3 (2)C10—C1—C6—C5177.4 (2)
C1—C2—C3—C41.5 (4)C5—C6—C7—C80.4 (4)
C2—C3—C4—C51.3 (4)C1—C6—C7—C8178.6 (2)
C2—C3—C4—C12177.3 (2)C6—C7—C8—C9179.9 (2)
C3—C4—C5—C9i178.6 (2)C6—C7—C8—C8i0.6 (5)
C12—C4—C5—C9i2.7 (4)C7—C8—C9—C5i179.9 (2)
C3—C4—C5—C61.2 (4)C8i—C8—C9—C5i0.7 (5)
C12—C4—C5—C6177.4 (2)C2—C1—C10—C110.4 (4)
C9i—C5—C6—C70.4 (4)C6—C1—C10—C11179.2 (2)
C4—C5—C6—C7179.5 (2)C3—C4—C12—C1322.5 (4)
C9i—C5—C6—C1178.6 (2)C5—C4—C12—C13158.9 (2)
C4—C5—C6—C11.3 (4)C3—C4—C12—C14100.9 (3)
C2—C1—C6—C7179.6 (2)C5—C4—C12—C1477.7 (3)
C10—C1—C6—C70.7 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H32
Mr368.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)203
a, b, c (Å)12.901 (4), 5.057 (2), 16.962 (6)
β (°) 106.513 (9)
V3)1061.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.25 × 0.13 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9469, 2423, 1318
Rint0.083
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.282, 1.10
No. of reflections2423
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1999), PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 23550161) from JSPS and a Grant-in-Aid for Scientific Research on Innovative Areas (No. 23108720, "pi-Space") from MEXT.

References

First citationAnthony, J. E. (2008). Angew. Chem. Int. Ed. 47, 452–483.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKitamura, C., Abe, Y., Ohara, T., Yoneda, A., Kawase, T., Kobayashi, A. & Naito, H. (2010). Chem. Eur. J. 16, 890–898.  CrossRef PubMed CAS Google Scholar
First citationKitamura, C., Kano, H., Tsukuda, H., Kawase, T., Kobayashi, A. & Naito, H. (2011). Heterocycles, 83, 1621–1629.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitamura, C., Tsukuda, H., Yoneda, A., Kawase, T., Kobayashi, A. & Naito, H. (2010). Eur. J. Org. Chem. pp. 3033–3040.  Web of Science CSD CrossRef Google Scholar
First citationKlebe, G., Graser, F., Hädicke, E. & Berndt, J. (1989). Acta Cryst. B45, 69–77.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds