organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­ethyl-N′′-(2-fluoro­benzo­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 6 August 2011; accepted 12 September 2011; online 14 September 2011)

In the title compound, C15H25FN3O2P, the phosphoryl group is in an anti and syn orientation to the C=O and N—H groups, respectively. The P atom is in a distorted tetra­hedral environment. One of the ethyl groups is disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). In addition, the F atom was refined as disordered with occupancies fixed at 0.9 and 0.1. This disorder corresponds to a rotation of approximately 180° of the fluoro­benzene ring about its connecting C—C bond. In the crystal, pairs of inter­molecular N—H⋯O(=P) hydrogen bonds form centrosymmetric dimers.

Related literature

For background to phospho­ric triamide compounds containing a C(=O)NHP(=O) skeleton, see: Pourayoubi et al. (2011a[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011a). Acta Cryst. E67, o934.],b[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011b). Acta Cryst. C67, o265-o272.]); Tarahhomi et al. (2011[Tarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201-210.]). For the synthesis of the starting material 2-F—C6H4C(=O)NHP(=O)Cl2, see: Pourayoubi et al. (2011a[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011a). Acta Cryst. E67, o934.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H25FN3O2P

  • Mr = 329.35

  • Monoclinic, P 21 /c

  • a = 10.9296 (9) Å

  • b = 12.2221 (10) Å

  • c = 12.3423 (10) Å

  • β = 91.443 (1)°

  • V = 1648.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.937

  • 11336 measured reflections

  • 3741 independent reflections

  • 3056 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.08

  • 3741 reflections

  • 236 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 1.93 (2) 2.7714 (19) 167 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Following our previous work on phosphoric triamides containing an XC(O)NHP(O) moiety, X = 2-F—C6H4 (Pourayoubi et al., 2011a), 4-F—C6H4 (Tarahhomi et al., 2011) and 2,6-F2—C6H3 (Pourayoubi et al., 2011b), herein, we report the synthesis and crystal structure of the title compound, P(O)[2-F—C6H4C(O)NH][N(C2H5)2]2 (Fig. 1).

One of the —CH2CH3 groups in the diethylamido substituent N2 is disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). The fluorine atom of the aromatic ring is disordered over two sets of sites with occupancies of 0.9 and 0.1.

In the C(O)NHP(O) skeleton of the title phosphoric triamide, the phosphoryl group adopts the anti orientation with respect to the carbonyl group; whereas it is in a syn position relative to the N—H unit. The tetrahedral environment at the P atom is distorted as has been noted for the other phosphoric triamides. The PO, CO and P—N bond lengths are within the expected values (Pourayoubi et al. (2011b) and Tarahhomi et al. (2011)).

In the crystal, pairs of intermolecular N—H···O(P) hydrogen bonds form a hydrogen-bonded dimer with R22(8) graph-set notation (Bernstein et al., 1995).

Related literature top

For background to phosphoric triamide compounds containing a C(O)NHP( O) skeleton, see: Pourayoubi et al. (2011a,b); Tarahhomi et al. (2011). For the synthesis of the starting material 2-F—C6H4C(O)NHP(O)Cl2, see: Pourayoubi et al. (2011a). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-F—C6H4C(O)NHP(O)Cl2 was prepared according to the literature method reported by Pourayoubi et al. (2011a).

The title compound was synthesized from the reaction of 0.40 g (1.56 mmol) 2-F—C6H4C(O)NHP(O)Cl2 with 0.456 g (6.24 mmol) of diethyl amine in dry chloroform (30 ml). The amine was added dropwise to a solution of 2-F—C6H4C(O)NHP(O)Cl2 at 273 K, with continuous stirring. After 17 h, the solvent was evaporated; the obtained solid was washed with distilled water and dissolved in a mixture of CH3OH/DMF [4:1 (v/v)]. Single crystals were obtained from this solution after a few days at room temperature. IR (KBr, ν, cm-1): 3061 (NH), 2970, 2886, 1675 (CO), 1457, 1196, 1048, 946, 766.

Refinement top

Atoms C8 and C9 are disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). The fluorine atom is disordered over two positions and refined with the occupancy F1 and F1A fixed at 0.9 and 0.1 and the corresponding hydrogen atoms H1A and H5A were also treated as disordered. Hydrogen H1N was found in a Fourier difference map and refined with a N1—H1N distance was set at 0.87 (0.02) Å and allowed to refine with Uiso at 1.2 of parent N atom. All other hydrogen atoms were placed in calculated positions with C—H distances for CH2 of 0.99 Å, CH3 of 0.98 Å and C(Ar)H of 0.95 Å and with Uiso of 1.20 (or 1.5 for methyl H atoms) that of the parent C atom.

Structure description top

Following our previous work on phosphoric triamides containing an XC(O)NHP(O) moiety, X = 2-F—C6H4 (Pourayoubi et al., 2011a), 4-F—C6H4 (Tarahhomi et al., 2011) and 2,6-F2—C6H3 (Pourayoubi et al., 2011b), herein, we report the synthesis and crystal structure of the title compound, P(O)[2-F—C6H4C(O)NH][N(C2H5)2]2 (Fig. 1).

One of the —CH2CH3 groups in the diethylamido substituent N2 is disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). The fluorine atom of the aromatic ring is disordered over two sets of sites with occupancies of 0.9 and 0.1.

In the C(O)NHP(O) skeleton of the title phosphoric triamide, the phosphoryl group adopts the anti orientation with respect to the carbonyl group; whereas it is in a syn position relative to the N—H unit. The tetrahedral environment at the P atom is distorted as has been noted for the other phosphoric triamides. The PO, CO and P—N bond lengths are within the expected values (Pourayoubi et al. (2011b) and Tarahhomi et al. (2011)).

In the crystal, pairs of intermolecular N—H···O(P) hydrogen bonds form a hydrogen-bonded dimer with R22(8) graph-set notation (Bernstein et al., 1995).

For background to phosphoric triamide compounds containing a C(O)NHP( O) skeleton, see: Pourayoubi et al. (2011a,b); Tarahhomi et al. (2011). For the synthesis of the starting material 2-F—C6H4C(O)NHP(O)Cl2, see: Pourayoubi et al. (2011a). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii. Disordered atoms are labeled with the suffix 'A'.
N,N,N',N'-Tetraethyl-N''-(2- fluorobenzoyl)phosphoric triamide top
Crystal data top
C15H25FN3O2PF(000) = 704
Mr = 329.35Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6938 reflections
a = 10.9296 (9) Åθ = 2.5–27.9°
b = 12.2221 (10) ŵ = 0.19 mm1
c = 12.3423 (10) ÅT = 100 K
β = 91.443 (1)°Block, colourless
V = 1648.2 (2) Å30.45 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3741 independent reflections
Radiation source: fine-focus sealed tube3056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 147
Tmin = 0.920, Tmax = 0.937k = 1614
11336 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7763P]
where P = (Fo2 + 2Fc2)/3
3741 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H25FN3O2PV = 1648.2 (2) Å3
Mr = 329.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9296 (9) ŵ = 0.19 mm1
b = 12.2221 (10) ÅT = 100 K
c = 12.3423 (10) Å0.45 × 0.40 × 0.35 mm
β = 91.443 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3056 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.937Rint = 0.051
11336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.55 e Å3
3741 reflectionsΔρmin = 0.42 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.62104 (4)0.64819 (4)0.52994 (4)0.01901 (14)
F10.88953 (13)0.41423 (11)0.83105 (10)0.0338 (3)0.90
F1A0.7449 (9)0.3460 (7)0.4748 (4)0.019 (2)0.10
O10.83305 (12)0.57884 (11)0.68306 (10)0.0259 (3)
O20.52742 (11)0.62160 (11)0.44464 (10)0.0230 (3)
N10.66071 (13)0.52777 (13)0.58794 (12)0.0199 (3)
H1N0.6116 (17)0.4741 (15)0.5750 (16)0.024*
N20.57927 (14)0.72748 (13)0.62914 (12)0.0260 (4)
N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)
C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)
H1A0.88110.39680.80660.030*0.10
C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)
H20.95570.21940.81670.036*
C30.89453 (18)0.17367 (17)0.66716 (17)0.0300 (4)
H30.92650.10140.67040.036*
C40.82999 (18)0.20843 (16)0.57575 (16)0.0289 (4)
H40.81760.16030.51610.035*
C50.78342 (17)0.31405 (16)0.57156 (15)0.0243 (4)
H5A0.73740.33660.50920.029*0.90
C60.80224 (15)0.38782 (15)0.65610 (14)0.0200 (4)
C70.76718 (16)0.50656 (15)0.64574 (13)0.0203 (4)
C80.5579 (3)0.8451 (2)0.6092 (2)0.0279 (7)0.755 (6)
H8A0.58290.86290.53470.034*0.755 (6)
H8B0.61030.88800.66010.034*0.755 (6)
C90.4260 (3)0.8792 (3)0.6222 (3)0.0463 (10)0.755 (6)
H9A0.41640.95620.60160.069*0.755 (6)
H9B0.40330.86980.69800.069*0.755 (6)
H9C0.37280.83380.57560.069*0.755 (6)
C8A0.4916 (9)0.8158 (7)0.5807 (7)0.032 (2)0.245 (6)
H8AA0.50860.82800.50320.038*0.245 (6)
H8AB0.40540.79220.58670.038*0.245 (6)
C9A0.5141 (8)0.9196 (7)0.6449 (7)0.033 (3)0.245 (6)
H9AA0.46290.97850.61470.049*0.245 (6)
H9AB0.60050.94030.64090.049*0.245 (6)
H9AC0.49350.90730.72080.049*0.245 (6)
C100.54246 (19)0.68425 (18)0.73515 (15)0.0297 (4)
H10A0.53700.74590.78680.036*
H10B0.60710.63410.76290.036*
C110.4206 (2)0.6232 (2)0.7324 (2)0.0485 (6)
H11A0.35620.67130.70290.073*
H11B0.40020.60100.80610.073*
H11C0.42710.55820.68650.073*
C120.78030 (17)0.66718 (17)0.37025 (15)0.0260 (4)
H12A0.82110.72760.33180.031*
H12B0.70770.64500.32590.031*
C130.86787 (19)0.57083 (18)0.37903 (18)0.0358 (5)
H13A0.93650.58970.42810.054*
H13B0.89890.55360.30720.054*
H13C0.82470.50710.40740.054*
C140.82939 (17)0.77616 (15)0.53521 (15)0.0241 (4)
H14A0.91050.74030.53290.029*
H14B0.80620.78120.61210.029*
C150.8391 (2)0.89111 (17)0.48869 (18)0.0343 (5)
H15A0.85540.88670.41110.051*
H15B0.90600.93040.52590.051*
H15C0.76200.93030.49910.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0162 (2)0.0221 (3)0.0187 (2)0.00183 (17)0.00024 (16)0.00116 (17)
F10.0485 (8)0.0294 (7)0.0229 (6)0.0034 (6)0.0118 (6)0.0017 (5)
F1A0.025 (5)0.014 (5)0.018 (5)0.003 (4)0.003 (4)0.003 (4)
O10.0268 (7)0.0235 (7)0.0271 (7)0.0039 (6)0.0082 (5)0.0007 (5)
O20.0172 (6)0.0280 (7)0.0236 (6)0.0007 (5)0.0028 (5)0.0052 (5)
N10.0158 (7)0.0218 (8)0.0220 (7)0.0009 (6)0.0011 (5)0.0005 (6)
N20.0284 (8)0.0253 (8)0.0245 (8)0.0068 (7)0.0064 (6)0.0005 (6)
N30.0192 (7)0.0224 (8)0.0186 (7)0.0011 (6)0.0006 (5)0.0006 (6)
C10.0255 (9)0.0283 (10)0.0221 (9)0.0044 (8)0.0043 (7)0.0018 (7)
C20.0247 (9)0.0319 (11)0.0338 (11)0.0001 (8)0.0069 (8)0.0140 (9)
C30.0236 (10)0.0250 (10)0.0414 (12)0.0022 (8)0.0037 (8)0.0071 (9)
C40.0309 (10)0.0237 (10)0.0323 (10)0.0007 (8)0.0043 (8)0.0004 (8)
C50.0254 (9)0.0253 (10)0.0222 (9)0.0001 (8)0.0007 (7)0.0025 (7)
C60.0152 (8)0.0223 (9)0.0223 (9)0.0007 (7)0.0006 (6)0.0043 (7)
C70.0198 (8)0.0241 (9)0.0170 (8)0.0002 (7)0.0011 (6)0.0021 (7)
C80.0256 (16)0.0286 (15)0.0294 (15)0.0069 (12)0.0018 (12)0.0034 (11)
C90.0295 (17)0.0396 (19)0.069 (2)0.0107 (14)0.0061 (14)0.0157 (16)
C8A0.036 (5)0.033 (5)0.026 (4)0.020 (4)0.017 (4)0.011 (4)
C9A0.038 (5)0.029 (5)0.031 (4)0.013 (4)0.003 (4)0.007 (4)
C100.0339 (11)0.0328 (11)0.0229 (10)0.0025 (9)0.0099 (8)0.0048 (8)
C110.0439 (14)0.0531 (16)0.0498 (14)0.0144 (12)0.0241 (11)0.0154 (12)
C120.0223 (9)0.0356 (11)0.0203 (9)0.0060 (8)0.0034 (7)0.0037 (8)
C130.0316 (11)0.0344 (12)0.0420 (12)0.0005 (9)0.0155 (9)0.0062 (9)
C140.0246 (9)0.0221 (9)0.0255 (9)0.0045 (8)0.0025 (7)0.0002 (7)
C150.0424 (12)0.0231 (10)0.0375 (11)0.0042 (9)0.0012 (9)0.0017 (9)
Geometric parameters (Å, º) top
P1—O21.4855 (13)C9—H9A0.9800
P1—N21.6354 (16)C9—H9B0.9800
P1—N31.6387 (15)C9—H9C0.9800
P1—N11.6885 (16)C8A—C9A1.513 (11)
O1—C71.222 (2)C8A—H8AA0.9900
N1—C71.374 (2)C8A—H8AB0.9900
N1—H1N0.860 (15)C9A—H9AA0.9800
N2—C81.476 (3)C9A—H9AB0.9800
N2—C101.476 (2)C9A—H9AC0.9800
N2—C8A1.553 (7)C10—C111.526 (3)
N3—C141.473 (2)C10—H10A0.9900
N3—C121.478 (2)C10—H10B0.9900
C1—C21.382 (3)C11—H11A0.9800
C1—C61.396 (2)C11—H11B0.9800
C1—H1A0.9500C11—H11C0.9800
C2—C31.373 (3)C12—C131.520 (3)
C2—H20.9500C12—H12A0.9900
C3—C41.382 (3)C12—H12B0.9900
C3—H30.9500C13—H13A0.9800
C4—C51.388 (3)C13—H13B0.9800
C4—H40.9500C13—H13C0.9800
C5—C61.390 (3)C14—C151.522 (3)
C5—H5A0.9500C14—H14A0.9900
C6—C71.506 (3)C14—H14B0.9900
C8—C91.514 (4)C15—H15A0.9800
C8—H8A0.9900C15—H15B0.9800
C8—H8B0.9900C15—H15C0.9800
O2—P1—N2117.38 (8)N2—C8A—H8AA110.3
O2—P1—N3110.11 (7)C9A—C8A—H8AB110.3
N2—P1—N3106.10 (8)N2—C8A—H8AB110.3
O2—P1—N1105.95 (8)H8AA—C8A—H8AB108.6
N2—P1—N1105.82 (8)C8A—C9A—H9AA109.5
N3—P1—N1111.47 (8)C8A—C9A—H9AB109.5
C7—N1—P1126.13 (13)H9AA—C9A—H9AB109.5
C7—N1—H1N118.0 (14)C8A—C9A—H9AC109.5
P1—N1—H1N115.7 (14)H9AA—C9A—H9AC109.5
C8—N2—C10116.79 (17)H9AB—C9A—H9AC109.5
C8—N2—C8A33.4 (4)N2—C10—C11114.35 (18)
C10—N2—C8A114.2 (4)N2—C10—H10A108.7
C8—N2—P1119.88 (15)C11—C10—H10A108.7
C10—N2—P1122.61 (14)N2—C10—H10B108.7
C8A—N2—P1107.7 (3)C11—C10—H10B108.7
C14—N3—C12114.42 (14)H10A—C10—H10B107.6
C14—N3—P1125.08 (12)C10—C11—H11A109.5
C12—N3—P1117.98 (12)C10—C11—H11B109.5
C2—C1—C6122.54 (18)H11A—C11—H11B109.5
C2—C1—H1A118.7C10—C11—H11C109.5
C6—C1—H1A118.7H11A—C11—H11C109.5
C3—C2—C1119.41 (18)H11B—C11—H11C109.5
C3—C2—H2120.3N3—C12—C13113.92 (16)
C1—C2—H2120.3N3—C12—H12A108.8
C2—C3—C4120.08 (19)C13—C12—H12A108.8
C2—C3—H3120.0N3—C12—H12B108.8
C4—C3—H3120.0C13—C12—H12B108.8
C3—C4—C5119.69 (19)H12A—C12—H12B107.7
C3—C4—H4120.2C12—C13—H13A109.5
C5—C4—H4120.2C12—C13—H13B109.5
C4—C5—C6121.87 (17)H13A—C13—H13B109.5
C4—C5—H5A119.1C12—C13—H13C109.5
C6—C5—H5A119.1H13A—C13—H13C109.5
C5—C6—C1116.39 (17)H13B—C13—H13C109.5
C5—C6—C7121.92 (15)N3—C14—C15112.69 (16)
C1—C6—C7121.34 (16)N3—C14—H14A109.1
O1—C7—N1122.84 (17)C15—C14—H14A109.1
O1—C7—C6121.22 (15)N3—C14—H14B109.1
N1—C7—C6115.87 (15)C15—C14—H14B109.1
N2—C8—C9113.5 (2)H14A—C14—H14B107.8
N2—C8—H8A108.9C14—C15—H15A109.5
C9—C8—H8A108.9C14—C15—H15B109.5
N2—C8—H8B108.9H15A—C15—H15B109.5
C9—C8—H8B108.9C14—C15—H15C109.5
H8A—C8—H8B107.7H15A—C15—H15C109.5
C9A—C8A—N2106.9 (6)H15B—C15—H15C109.5
C9A—C8A—H8AA110.3
O2—P1—N1—C7158.75 (14)C4—C5—C6—C7171.39 (17)
N2—P1—N1—C775.93 (16)C2—C1—C6—C50.7 (3)
N3—P1—N1—C738.97 (17)C2—C1—C6—C7172.59 (17)
O2—P1—N2—C872.0 (2)P1—N1—C7—O117.5 (3)
N3—P1—N2—C851.5 (2)P1—N1—C7—C6159.56 (12)
N1—P1—N2—C8170.05 (18)C5—C6—C7—O1139.50 (18)
O2—P1—N2—C1097.97 (16)C1—C6—C7—O133.4 (3)
N3—P1—N2—C10138.49 (15)C5—C6—C7—N137.6 (2)
N1—P1—N2—C1019.96 (17)C1—C6—C7—N1149.49 (17)
O2—P1—N2—C8A37.8 (5)C10—N2—C8—C956.1 (3)
N3—P1—N2—C8A85.7 (5)C8A—N2—C8—C937.9 (6)
N1—P1—N2—C8A155.7 (5)P1—N2—C8—C9114.5 (2)
O2—P1—N3—C14159.56 (14)C8—N2—C8A—C9A28.3 (5)
N2—P1—N3—C1431.58 (16)C10—N2—C8A—C9A74.1 (8)
N1—P1—N3—C1483.15 (16)P1—N2—C8A—C9A146.0 (6)
O2—P1—N3—C1239.48 (15)C8—N2—C10—C11100.8 (2)
N2—P1—N3—C12167.46 (13)C8A—N2—C10—C1163.7 (5)
N1—P1—N3—C1277.81 (15)P1—N2—C10—C1169.5 (2)
C6—C1—C2—C30.7 (3)C14—N3—C12—C1377.6 (2)
C1—C2—C3—C41.0 (3)P1—N3—C12—C1385.37 (18)
C2—C3—C4—C50.1 (3)C12—N3—C14—C1575.8 (2)
C3—C4—C5—C61.6 (3)P1—N3—C14—C15122.62 (16)
C4—C5—C6—C11.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)1.93 (2)2.7714 (19)167 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H25FN3O2P
Mr329.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9296 (9), 12.2221 (10), 12.3423 (10)
β (°) 91.443 (1)
V3)1648.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.920, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
11336, 3741, 3056
Rint0.051
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.08
No. of reflections3741
No. of parameters236
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.860 (15)1.928 (16)2.7714 (19)167 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011a). Acta Cryst. E67, o934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011b). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201–210.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds