organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hex­yl(meth­yl)ammonium {bis­­[cyclo­hex­yl(meth­yl)amino]­phosphor­yl}(4-methyl­phenyl­sulfon­yl)aza­nide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 18 August 2011; accepted 26 September 2011; online 30 September 2011)

In the anion of the title salt, C7H16N+·C21H35N3O3PS, the P and S atoms are both in distorted tetra­hedral environments and the angles at the tertiary N atoms confirm their sp2 character. The two S=O groups are in syn and gauche conformations with respect to the phosphoryl group. In the crystal, N—H⋯O(=S) and N—H⋯O(=P) hydrogen bonds involving two anions and two cations form a centrosymmetric four-component cluster.

Related literature

For related structures see: Yazdanbakhsh et al. (2009[Yazdanbakhsh, M., Eshtiagh-Hosseini, H. & Sabbaghi, F. (2009). Acta Cryst. E65, o78.]); Pourayoubi et al. (2011[Pourayoubi, M., Sadeghi Seraji, S., Bruno, G. & Amiri Rudbari, H. (2011). Acta Cryst. E67, o1285.]).

[Scheme 1]

Experimental

Crystal data
  • C7H16N+·C21H35N3O3PS

  • Mr = 554.76

  • Triclinic, [P \overline 1]

  • a = 10.6514 (5) Å

  • b = 11.5984 (5) Å

  • c = 13.5681 (6) Å

  • α = 103.738 (3)°

  • β = 97.201 (2)°

  • γ = 107.584 (2)°

  • V = 1516.59 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.11 × 0.10 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer with APEXII CCD

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.979, Tmax = 0.998

  • 24576 measured reflections

  • 7401 independent reflections

  • 4499 reflections with I > 2σ(I)

  • Rint = 0.160

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.189

  • S = 1.07

  • 7401 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H42⋯O2 0.92 1.98 2.864 (4) 160
N4—H41⋯O1i 0.92 1.76 2.648 (4) 163
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The proton transfer compound, {C6H11NH2CH3}+.{4-CH3C6H4S(O)2NP(O)[N(CH3)(C6H11)]2}-, contains an N-methylcyclohexyl ammonium cation and a deprotonated N,N'-dicyclohexyl-N,N' -dimethyl-N"-(p-toluenesulfonyl)phosphoric triamide (Fig. 1).

The PO and P—N bond lengths and the P—N—C bond angles are comparable to those in a similar previously reported proton transfer compound, {C6H11NH2CH3}+{CF3C(O)NP(O)[N(CH3)(C6H11)]2}- (Yazdanbakhsh et al., 2009).

The P—N1 bond (1.608 (3) Å) is shorter than the P—N2 (1.668 (3) Å) and P—N3 (1.654 (3) Å) bonds and the P1—N1—S1 bond angle is 133.1 (2)°. The SO bond lengths of 1.449 (3) Å & 1.466 (3) Å are standard for sulfonamide compounds (Pourayoubi et al., 2011).

Each of the phosphorus and sulfur atoms has a distorted tetrahedral configuration. The bond angles around the P and S atoms are in the range of 103.00 (16)° to 118.19 (15)° and 103.78 (17)° to 114.45 (16)°, respectively.

In the crystal, two phosphonic triamide anions and two N-methylcyclohexyl ammonium cations are hydrogen-bonded into a centrosymmetric four-component cluster via N—H···O(S) and N—H···O(P) hydrogen bonds (Fig. 2).

Related literature top

For related structures see: Yazdanbakhsh et al. (2009); Pourayoubi et al. (2011).

Experimental top

Synthesis of 4-CH3C6H4S(O)2NHP(O)Cl2: 4-CH3C6H4S(O)2NHP(O)Cl2 was synthesized from the reaction between phosphorus pentachloride (19 mmol) and p-toluenesulfonamide (19 mmol) in dry CCl4 (20 ml) at 353 K (4 h) and then treated with formic acid (19 mmol) at ice bath temperature.

Synthesis of the title salt: To a solution of 4-CH3C6H4S(O)2NHP(O)Cl2 (1.9 mmol) in dry chloroform (20 ml), a solution of N-methylcyclohexylamine (9.5 mmol) in dry chloroform (10 ml) was added at 273 K. After 4 h stirring, the solvent was removed and the obtained product was washed with deionized water and recrystallized from methanol at room temperature.

Refinement top

H-atoms were included in geometrically idealized positions with C—H = 0.95 - 1.00 Å and N—H = 0.92 Å and included in the refinement with Uiso(H) = 1.2Ueq(C/N).

Structure description top

The proton transfer compound, {C6H11NH2CH3}+.{4-CH3C6H4S(O)2NP(O)[N(CH3)(C6H11)]2}-, contains an N-methylcyclohexyl ammonium cation and a deprotonated N,N'-dicyclohexyl-N,N' -dimethyl-N"-(p-toluenesulfonyl)phosphoric triamide (Fig. 1).

The PO and P—N bond lengths and the P—N—C bond angles are comparable to those in a similar previously reported proton transfer compound, {C6H11NH2CH3}+{CF3C(O)NP(O)[N(CH3)(C6H11)]2}- (Yazdanbakhsh et al., 2009).

The P—N1 bond (1.608 (3) Å) is shorter than the P—N2 (1.668 (3) Å) and P—N3 (1.654 (3) Å) bonds and the P1—N1—S1 bond angle is 133.1 (2)°. The SO bond lengths of 1.449 (3) Å & 1.466 (3) Å are standard for sulfonamide compounds (Pourayoubi et al., 2011).

Each of the phosphorus and sulfur atoms has a distorted tetrahedral configuration. The bond angles around the P and S atoms are in the range of 103.00 (16)° to 118.19 (15)° and 103.78 (17)° to 114.45 (16)°, respectively.

In the crystal, two phosphonic triamide anions and two N-methylcyclohexyl ammonium cations are hydrogen-bonded into a centrosymmetric four-component cluster via N—H···O(S) and N—H···O(P) hydrogen bonds (Fig. 2).

For related structures see: Yazdanbakhsh et al. (2009); Pourayoubi et al. (2011).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the hydrogen-bonded centrosymmetric cluster, containing two phosphonic triamide anions and two N-methylcyclohexyl ammonium cations. The N—H···O hydrogen bonds are shown as dotted lines. The H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
Cyclohexyl(methyl)ammonium {bis[cyclohexyl(methyl)amino]phosphoryl}(4-methylphenylsulfonyl)azanide top
Crystal data top
C7H16N+·C21H35N3O3PSZ = 2
Mr = 554.76F(000) = 604
Triclinic, P1Dx = 1.215 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6514 (5) ÅCell parameters from 4260 reflections
b = 11.5984 (5) Åθ = 1.6–28.3°
c = 13.5681 (6) ŵ = 0.19 mm1
α = 103.738 (3)°T = 173 K
β = 97.201 (2)°Prism, colorless
γ = 107.584 (2)°0.11 × 0.10 × 0.01 mm
V = 1516.59 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD
7401 independent reflections
Radiation source: fine-focus sealed tube4499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.160
ω and φ scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1414
Tmin = 0.979, Tmax = 0.998k = 1515
24576 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.P)2 + 3.380P]
where P = (Fo2 + 2Fc2)/3
7401 reflections(Δ/σ)max = 0.003
338 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C7H16N+·C21H35N3O3PSγ = 107.584 (2)°
Mr = 554.76V = 1516.59 (12) Å3
Triclinic, P1Z = 2
a = 10.6514 (5) ÅMo Kα radiation
b = 11.5984 (5) ŵ = 0.19 mm1
c = 13.5681 (6) ÅT = 173 K
α = 103.738 (3)°0.11 × 0.10 × 0.01 mm
β = 97.201 (2)°
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD
7401 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4499 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.998Rint = 0.160
24576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
7401 reflectionsΔρmin = 0.48 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70329 (9)0.92657 (8)0.36570 (7)0.0249 (2)
P10.79120 (10)0.92027 (9)0.17273 (7)0.0240 (2)
O10.9263 (3)0.9142 (2)0.20889 (19)0.0309 (6)
O20.8350 (2)0.9315 (2)0.41750 (19)0.0292 (6)
O30.6634 (3)1.0300 (2)0.4178 (2)0.0337 (6)
N10.6862 (3)0.9065 (3)0.2483 (2)0.0254 (7)
N20.7991 (3)1.0530 (3)0.1422 (2)0.0271 (7)
N30.7199 (3)0.8094 (3)0.0606 (2)0.0291 (7)
C10.5849 (4)0.7865 (3)0.3761 (3)0.0261 (8)
C20.5958 (4)0.6703 (4)0.3313 (3)0.0355 (10)
H20.66420.66560.29340.043*
C30.5076 (5)0.5618 (4)0.3417 (3)0.0412 (10)
H30.51650.48280.31110.049*
C40.4056 (4)0.5647 (4)0.3959 (3)0.0374 (10)
C50.3963 (4)0.6819 (4)0.4392 (3)0.0415 (11)
H50.32710.68660.47620.050*
C60.4843 (4)0.7921 (4)0.4303 (3)0.0334 (9)
H60.47590.87130.46120.040*
C70.3111 (5)0.4448 (5)0.4076 (4)0.0595 (14)
H7A0.23760.46270.43760.071*
H7B0.36040.41190.45340.071*
H7C0.27380.38190.33930.071*
C80.8916 (4)1.0830 (4)0.0727 (3)0.0364 (10)
H8A0.86601.13810.03560.044*
H8B0.88671.00460.02250.044*
H8C0.98401.12630.11370.044*
C90.7912 (4)1.1622 (3)0.2199 (3)0.0263 (8)
H90.71911.12820.25660.032*
C100.7481 (4)1.2506 (4)0.1686 (3)0.0350 (9)
H10A0.66271.20240.11680.042*
H10B0.81751.28680.13160.042*
C110.7284 (5)1.3574 (4)0.2483 (4)0.0432 (11)
H11A0.65471.32180.28200.052*
H11B0.70251.41490.21300.052*
C120.8583 (5)1.4315 (4)0.3306 (4)0.0530 (13)
H12A0.92991.47330.29770.064*
H12B0.84301.49790.38360.064*
C130.9034 (5)1.3434 (4)0.3824 (4)0.0473 (12)
H13A0.83561.30840.42100.057*
H13B0.98991.39210.43290.057*
C140.9211 (4)1.2349 (4)0.3028 (3)0.0340 (9)
H14A0.94501.17680.33840.041*
H14B0.99581.26910.26940.041*
C150.5777 (4)0.7821 (4)0.0194 (3)0.0363 (9)
H15A0.55910.75240.05660.044*
H15B0.55550.85900.04150.044*
H15C0.52280.71640.04570.044*
C160.7784 (4)0.7114 (3)0.0248 (3)0.0295 (8)
H160.87790.75040.05310.035*
C170.7285 (7)0.5975 (5)0.0641 (5)0.075 (2)
H17A0.63010.55560.03710.089*
H17B0.74530.62530.14090.089*
C180.7997 (9)0.5038 (6)0.0296 (5)0.096 (3)
H18A0.89630.54270.06400.115*
H18B0.76090.42790.05210.115*
C190.7873 (6)0.4648 (4)0.0850 (5)0.0689 (17)
H19A0.69220.41370.11920.083*
H19B0.84290.41130.10270.083*
C200.8317 (5)0.5767 (4)0.1252 (4)0.0472 (12)
H20A0.81470.54760.20190.057*
H20B0.92990.62110.09870.057*
C210.7576 (5)0.6686 (4)0.0922 (3)0.0388 (10)
H21A0.79160.74290.11780.047*
H21B0.66010.62670.12330.047*
N40.9037 (3)1.0830 (3)0.6297 (2)0.0253 (7)
H410.97131.07800.67600.030*
H420.89161.02320.56770.030*
C220.7756 (4)1.0497 (3)0.6696 (3)0.0274 (8)
H220.70161.05410.61900.033*
C230.7914 (4)1.1430 (4)0.7748 (3)0.0331 (9)
H23A0.86851.14400.82450.040*
H23B0.81051.22910.76740.040*
C240.6636 (4)1.1058 (4)0.8168 (3)0.0411 (10)
H24A0.67851.16330.88730.049*
H24B0.58941.11580.77170.049*
C250.6227 (5)0.9703 (4)0.8216 (3)0.0453 (11)
H25A0.53530.94760.84330.054*
H25B0.69090.96280.87400.054*
C260.6099 (4)0.8787 (4)0.7162 (3)0.0426 (11)
H26A0.58940.79210.72260.051*
H26B0.53440.87880.66560.051*
C270.7398 (4)0.9157 (4)0.6762 (3)0.0346 (9)
H27A0.81400.90890.72360.042*
H27B0.72780.85720.60670.042*
C280.9490 (4)1.2093 (4)0.6132 (3)0.0357 (9)
H28A0.87431.22030.57100.043*
H28B1.02401.21670.57710.043*
H28C0.97901.27450.68050.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (5)0.0258 (5)0.0231 (5)0.0096 (4)0.0021 (4)0.0033 (4)
P10.0224 (5)0.0250 (5)0.0216 (5)0.0097 (4)0.0008 (4)0.0024 (4)
O10.0244 (14)0.0409 (15)0.0249 (14)0.0162 (12)0.0014 (11)0.0021 (12)
O20.0231 (14)0.0383 (15)0.0215 (13)0.0109 (12)0.0012 (11)0.0030 (11)
O30.0385 (17)0.0281 (14)0.0351 (15)0.0163 (12)0.0072 (13)0.0040 (12)
N10.0211 (16)0.0304 (16)0.0250 (16)0.0092 (13)0.0027 (13)0.0094 (13)
N20.0262 (17)0.0276 (16)0.0267 (16)0.0089 (13)0.0067 (14)0.0065 (13)
N30.0247 (17)0.0291 (17)0.0270 (17)0.0129 (14)0.0058 (14)0.0023 (14)
C10.0237 (19)0.034 (2)0.0203 (18)0.0117 (16)0.0006 (15)0.0075 (16)
C20.041 (3)0.029 (2)0.037 (2)0.0111 (18)0.018 (2)0.0093 (18)
C30.052 (3)0.030 (2)0.040 (2)0.013 (2)0.012 (2)0.0072 (19)
C40.030 (2)0.042 (2)0.035 (2)0.0017 (18)0.0061 (19)0.015 (2)
C50.027 (2)0.059 (3)0.044 (3)0.014 (2)0.017 (2)0.021 (2)
C60.026 (2)0.039 (2)0.036 (2)0.0147 (18)0.0085 (18)0.0075 (18)
C70.049 (3)0.056 (3)0.061 (3)0.005 (2)0.011 (3)0.024 (3)
C80.042 (3)0.036 (2)0.031 (2)0.0106 (19)0.0165 (19)0.0087 (18)
C90.031 (2)0.0207 (18)0.0281 (19)0.0106 (15)0.0094 (17)0.0048 (15)
C100.035 (2)0.034 (2)0.038 (2)0.0140 (18)0.0060 (19)0.0136 (19)
C110.055 (3)0.038 (2)0.052 (3)0.027 (2)0.025 (2)0.019 (2)
C120.068 (4)0.029 (2)0.060 (3)0.016 (2)0.028 (3)0.003 (2)
C130.052 (3)0.039 (3)0.038 (2)0.013 (2)0.006 (2)0.005 (2)
C140.036 (2)0.029 (2)0.028 (2)0.0079 (17)0.0038 (18)0.0011 (17)
C150.030 (2)0.036 (2)0.035 (2)0.0099 (18)0.0003 (18)0.0016 (18)
C160.030 (2)0.030 (2)0.027 (2)0.0127 (17)0.0027 (17)0.0039 (16)
C170.139 (6)0.066 (4)0.074 (4)0.069 (4)0.077 (4)0.049 (3)
C180.194 (8)0.079 (4)0.089 (5)0.103 (5)0.088 (5)0.060 (4)
C190.089 (4)0.035 (3)0.089 (4)0.027 (3)0.050 (4)0.006 (3)
C200.060 (3)0.044 (3)0.036 (2)0.019 (2)0.020 (2)0.003 (2)
C210.044 (3)0.039 (2)0.032 (2)0.015 (2)0.010 (2)0.0062 (19)
N40.0235 (16)0.0256 (16)0.0245 (16)0.0090 (13)0.0020 (13)0.0036 (13)
C220.0214 (19)0.031 (2)0.0277 (19)0.0089 (16)0.0008 (16)0.0072 (16)
C230.032 (2)0.031 (2)0.038 (2)0.0147 (17)0.0093 (18)0.0076 (18)
C240.036 (2)0.056 (3)0.034 (2)0.023 (2)0.010 (2)0.008 (2)
C250.033 (2)0.065 (3)0.039 (3)0.011 (2)0.013 (2)0.022 (2)
C260.031 (2)0.047 (3)0.044 (3)0.0015 (19)0.005 (2)0.018 (2)
C270.033 (2)0.032 (2)0.033 (2)0.0078 (17)0.0027 (18)0.0044 (18)
C280.039 (2)0.031 (2)0.041 (2)0.0134 (18)0.007 (2)0.0161 (19)
Geometric parameters (Å, º) top
S1—O31.449 (3)C14—H14B0.9900
S1—O21.466 (3)C15—H15A0.9800
S1—N11.533 (3)C15—H15B0.9800
S1—C11.779 (4)C15—H15C0.9800
P1—O11.489 (3)C16—C211.512 (5)
P1—N11.608 (3)C16—C171.515 (6)
P1—N31.654 (3)C16—H161.0000
P1—N21.668 (3)C17—C181.523 (7)
N2—C81.471 (5)C17—H17A0.9900
N2—C91.475 (4)C17—H17B0.9900
N3—C151.456 (5)C18—C191.489 (8)
N3—C161.469 (5)C18—H18A0.9900
C1—C61.382 (5)C18—H18B0.9900
C1—C21.386 (5)C19—C201.495 (6)
C2—C31.375 (5)C19—H19A0.9900
C2—H20.9500C19—H19B0.9900
C3—C41.391 (6)C20—C211.526 (6)
C3—H30.9500C20—H20A0.9900
C4—C51.385 (6)C20—H20B0.9900
C4—C71.506 (6)C21—H21A0.9900
C5—C61.381 (6)C21—H21B0.9900
C5—H50.9500N4—C281.478 (4)
C6—H60.9500N4—C221.506 (5)
C7—H7A0.9800N4—H410.9200
C7—H7B0.9800N4—H420.9200
C7—H7C0.9800C22—C271.511 (5)
C8—H8A0.9800C22—C231.528 (5)
C8—H8B0.9800C22—H221.0000
C8—H8C0.9800C23—C241.523 (6)
C9—C101.512 (5)C23—H23A0.9900
C9—C141.532 (5)C23—H23B0.9900
C9—H91.0000C24—C251.519 (6)
C10—C111.525 (5)C24—H24A0.9900
C10—H10A0.9900C24—H24B0.9900
C10—H10B0.9900C25—C261.528 (6)
C11—C121.529 (7)C25—H25A0.9900
C11—H11A0.9900C25—H25B0.9900
C11—H11B0.9900C26—C271.527 (6)
C12—C131.524 (7)C26—H26A0.9900
C12—H12A0.9900C26—H26B0.9900
C12—H12B0.9900C27—H27A0.9900
C13—C141.527 (5)C27—H27B0.9900
C13—H13A0.9900C28—H28A0.9800
C13—H13B0.9900C28—H28B0.9800
C14—H14A0.9900C28—H28C0.9800
O3—S1—O2112.95 (16)N3—C15—H15C109.5
O3—S1—N1112.97 (16)H15A—C15—H15C109.5
O2—S1—N1114.45 (16)H15B—C15—H15C109.5
O3—S1—C1106.07 (17)N3—C16—C21112.2 (3)
O2—S1—C1105.50 (16)N3—C16—C17113.7 (3)
N1—S1—C1103.78 (17)C21—C16—C17109.6 (4)
O1—P1—N1118.19 (15)N3—C16—H16107.0
O1—P1—N3107.98 (15)C21—C16—H16107.0
N1—P1—N3108.32 (16)C17—C16—H16107.0
O1—P1—N2113.12 (16)C16—C17—C18110.8 (4)
N1—P1—N2105.11 (15)C16—C17—H17A109.5
N3—P1—N2103.00 (16)C18—C17—H17A109.5
S1—N1—P1133.1 (2)C16—C17—H17B109.5
C8—N2—C9115.9 (3)C18—C17—H17B109.5
C8—N2—P1113.6 (2)H17A—C17—H17B108.1
C9—N2—P1120.2 (2)C19—C18—C17112.5 (5)
C15—N3—C16118.1 (3)C19—C18—H18A109.1
C15—N3—P1117.7 (3)C17—C18—H18A109.1
C16—N3—P1120.2 (2)C19—C18—H18B109.1
C6—C1—C2119.6 (4)C17—C18—H18B109.1
C6—C1—S1120.9 (3)H18A—C18—H18B107.8
C2—C1—S1119.5 (3)C18—C19—C20111.6 (4)
C3—C2—C1120.0 (4)C18—C19—H19A109.3
C3—C2—H2120.0C20—C19—H19A109.3
C1—C2—H2120.0C18—C19—H19B109.3
C2—C3—C4121.7 (4)C20—C19—H19B109.3
C2—C3—H3119.2H19A—C19—H19B108.0
C4—C3—H3119.2C19—C20—C21111.6 (4)
C5—C4—C3117.2 (4)C19—C20—H20A109.3
C5—C4—C7122.0 (4)C21—C20—H20A109.3
C3—C4—C7120.8 (4)C19—C20—H20B109.3
C6—C5—C4122.1 (4)C21—C20—H20B109.3
C6—C5—H5118.9H20A—C20—H20B108.0
C4—C5—H5118.9C16—C21—C20110.4 (4)
C5—C6—C1119.5 (4)C16—C21—H21A109.6
C5—C6—H6120.3C20—C21—H21A109.6
C1—C6—H6120.3C16—C21—H21B109.6
C4—C7—H7A109.5C20—C21—H21B109.6
C4—C7—H7B109.5H21A—C21—H21B108.1
H7A—C7—H7B109.5C28—N4—C22115.7 (3)
C4—C7—H7C109.5C28—N4—H41108.3
H7A—C7—H7C109.5C22—N4—H41108.3
H7B—C7—H7C109.5C28—N4—H42108.3
N2—C8—H8A109.5C22—N4—H42108.3
N2—C8—H8B109.5H41—N4—H42107.4
H8A—C8—H8B109.5N4—C22—C27108.8 (3)
N2—C8—H8C109.5N4—C22—C23110.7 (3)
H8A—C8—H8C109.5C27—C22—C23111.4 (3)
H8B—C8—H8C109.5N4—C22—H22108.6
N2—C9—C10111.3 (3)C27—C22—H22108.6
N2—C9—C14113.7 (3)C23—C22—H22108.6
C10—C9—C14110.6 (3)C24—C23—C22110.5 (3)
N2—C9—H9106.9C24—C23—H23A109.5
C10—C9—H9106.9C22—C23—H23A109.5
C14—C9—H9106.9C24—C23—H23B109.5
C9—C10—C11111.2 (3)C22—C23—H23B109.5
C9—C10—H10A109.4H23A—C23—H23B108.1
C11—C10—H10A109.4C25—C24—C23112.0 (3)
C9—C10—H10B109.4C25—C24—H24A109.2
C11—C10—H10B109.4C23—C24—H24A109.2
H10A—C10—H10B108.0C25—C24—H24B109.2
C10—C11—C12110.4 (4)C23—C24—H24B109.2
C10—C11—H11A109.6H24A—C24—H24B107.9
C12—C11—H11A109.6C24—C25—C26111.1 (3)
C10—C11—H11B109.6C24—C25—H25A109.4
C12—C11—H11B109.6C26—C25—H25A109.4
H11A—C11—H11B108.1C24—C25—H25B109.4
C13—C12—C11110.4 (4)C26—C25—H25B109.4
C13—C12—H12A109.6H25A—C25—H25B108.0
C11—C12—H12A109.6C27—C26—C25111.1 (3)
C13—C12—H12B109.6C27—C26—H26A109.4
C11—C12—H12B109.6C25—C26—H26A109.4
H12A—C12—H12B108.1C27—C26—H26B109.4
C12—C13—C14111.5 (4)C25—C26—H26B109.4
C12—C13—H13A109.3H26A—C26—H26B108.0
C14—C13—H13A109.3C22—C27—C26110.2 (3)
C12—C13—H13B109.3C22—C27—H27A109.6
C14—C13—H13B109.3C26—C27—H27A109.6
H13A—C13—H13B108.0C22—C27—H27B109.6
C13—C14—C9110.6 (3)C26—C27—H27B109.6
C13—C14—H14A109.5H27A—C27—H27B108.1
C9—C14—H14A109.5N4—C28—H28A109.5
C13—C14—H14B109.5N4—C28—H28B109.5
C9—C14—H14B109.5H28A—C28—H28B109.5
H14A—C14—H14B108.1N4—C28—H28C109.5
N3—C15—H15A109.5H28A—C28—H28C109.5
N3—C15—H15B109.5H28B—C28—H28C109.5
H15A—C15—H15B109.5
O3—S1—N1—P1114.9 (3)C8—N2—C9—C1058.5 (4)
O2—S1—N1—P116.2 (3)P1—N2—C9—C10158.7 (3)
C1—S1—N1—P1130.6 (3)C8—N2—C9—C1467.3 (4)
O1—P1—N1—S121.6 (3)P1—N2—C9—C1475.6 (4)
N3—P1—N1—S1144.7 (3)N2—C9—C10—C11175.2 (3)
N2—P1—N1—S1105.7 (3)C14—C9—C10—C1157.4 (4)
O1—P1—N2—C849.5 (3)C9—C10—C11—C1257.8 (5)
N1—P1—N2—C8179.8 (3)C10—C11—C12—C1356.6 (5)
N3—P1—N2—C866.8 (3)C11—C12—C13—C1456.2 (5)
O1—P1—N2—C994.2 (3)C12—C13—C14—C955.7 (5)
N1—P1—N2—C936.2 (3)N2—C9—C14—C13178.0 (3)
N3—P1—N2—C9149.5 (3)C10—C9—C14—C1355.9 (4)
O1—P1—N3—C15169.1 (3)C15—N3—C16—C2155.4 (5)
N1—P1—N3—C1540.0 (3)P1—N3—C16—C21147.6 (3)
N2—P1—N3—C1571.0 (3)C15—N3—C16—C1769.7 (5)
O1—P1—N3—C1612.0 (3)P1—N3—C16—C1787.4 (4)
N1—P1—N3—C16117.1 (3)N3—C16—C17—C18176.5 (5)
N2—P1—N3—C16131.9 (3)C21—C16—C17—C1857.0 (6)
O3—S1—C1—C62.8 (4)C16—C17—C18—C1955.0 (8)
O2—S1—C1—C6117.3 (3)C17—C18—C19—C2053.1 (8)
N1—S1—C1—C6122.0 (3)C18—C19—C20—C2154.1 (7)
O3—S1—C1—C2178.9 (3)N3—C16—C21—C20174.4 (3)
O2—S1—C1—C261.1 (3)C17—C16—C21—C2058.3 (5)
N1—S1—C1—C259.6 (3)C19—C20—C21—C1657.2 (5)
C6—C1—C2—C30.5 (6)C28—N4—C22—C27176.8 (3)
S1—C1—C2—C3177.9 (3)C28—N4—C22—C2360.4 (4)
C1—C2—C3—C40.4 (7)N4—C22—C23—C24177.7 (3)
C2—C3—C4—C50.1 (7)C27—C22—C23—C2456.5 (4)
C2—C3—C4—C7179.2 (4)C22—C23—C24—C2554.5 (5)
C3—C4—C5—C60.5 (7)C23—C24—C25—C2654.2 (5)
C7—C4—C5—C6178.8 (4)C24—C25—C26—C2755.2 (5)
C4—C5—C6—C10.4 (6)N4—C22—C27—C26179.8 (3)
C2—C1—C6—C50.1 (6)C23—C22—C27—C2657.8 (4)
S1—C1—C6—C5178.3 (3)C25—C26—C27—C2257.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H42···O20.921.982.864 (4)160
N4—H41···O1i0.921.762.648 (4)163
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H16N+·C21H35N3O3PS
Mr554.76
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.6514 (5), 11.5984 (5), 13.5681 (6)
α, β, γ (°)103.738 (3), 97.201 (2), 107.584 (2)
V3)1516.59 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.11 × 0.10 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer with APEXII CCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.979, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
24576, 7401, 4499
Rint0.160
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.189, 1.07
No. of reflections7401
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.48

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H42···O20.921.982.864 (4)160.4
N4—H41···O1i0.921.762.648 (4)162.7
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Sadeghi Seraji, S., Bruno, G. & Amiri Rudbari, H. (2011). Acta Cryst. E67, o1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYazdanbakhsh, M., Eshtiagh-Hosseini, H. & Sabbaghi, F. (2009). Acta Cryst. E65, o78.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds