metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of bis­­(2,2′-bi­pyridine-κ2N,N′)di­iodido­manganese(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 4 September 2011; accepted 4 September 2011; online 14 September 2011)

The MnII ion in the title complex, [MnI2(C10H8N2)2], is six-coordinated in a distorted cis-N4I2Mn octa­hedral environment by four N atoms of the two chelating 2,2′-bipyridine ligands and two iodide anions. As a result of the different trans effects of the N and I atoms, the Mn—N bonds trans to the I atom are slightly longer than the Mn—N bonds trans to the N atom. The dihedral angle between the approximately planar ligands [maximum deviation = 0.064 (7) Å] is 75.0 (1)°. Numerous inter- and intra­molecular ππ inter­actions between the pyridyl rings are present, the shortest centroid–centroid distance being 3.905 (5) Å. The structure reported herein represents a new monoclinic polymorph of the previously reported monoclinic (P21/c) form [Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 187-188.]). Z. Kristallogr. New Cryst. Struct. 226, 187–188].

Related literature

For the P21/c polymorph, see: Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 187-188.]).

[Scheme 1]

Experimental

Crystal data
  • [MnI2(C10H8N2)2]

  • Mr = 621.11

  • Monoclinic, C 2/c

  • a = 16.491 (4) Å

  • b = 15.403 (4) Å

  • c = 17.719 (4) Å

  • β = 110.187 (5)°

  • V = 4224.6 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 200 K

  • 0.16 × 0.13 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 1.000

  • 15547 measured reflections

  • 5222 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.101

  • S = 0.89

  • 5222 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title complex, [MnI2(bipy)2] (bipy = 2,2'-bipyridine, C10H8N2), was previously reported in the monoclinic space group P21/c (Ha, 2011). The structure presented herein is essentially the same as the published structure and represents a new monoclinic polymorph with the space group C2/c.

The MnII ion in the complex is six-coordinated in a considerably distorted octahedral environment by four N atoms of the two chelating bipy ligands and two iodide anions in a cis-N4I2 coordination geometry (Fig. 1). The tight N—Mn—N chelating angles and the I—I repelling (Table 1) contribute the distortion of the ocataheron, which results in non-linear trans axes [<I1—Mn1—N1 = 169.67 (14)°, <I2—Mn1—N3 = 166.94 (15)° and <N2—Mn1—N4 = 153.33 (19)°]. The Mn—I bond lengths are nearly equal, but the Mn—N bond distances occur in two distinct sets, because of the different trans effects of the N and I atoms (Table 1). The Mn—N bonds trans to the I atom are slightly longer than the Mn—N bonds trans to the N atom. The dihedral angle between the nearly planar bipy ligands [maximum deviation = 0.064 (7) Å] is 75.0 (1)°. The dihedral angles between the pyridyl rings containing N1 and N2 as well as N3 and N4 are 4.5 (5)° and 4.1 (5)°, respectively. In the crystal structure, the complex displays numerous inter- and intramolecular π-π interactions between the pyridyl rings, the shortest ring centroid-centroid distance being 3.905 (5) Å (Fig. 2).

Related literature top

For the P21/c polymorph, see: Ha (2011).

Experimental top

To a solution of MnI2 (0.3078 g, 0.997 mmol) in EtOH (30 ml) was added 2,2'-bipyridine (0.3131 g, 2.005 mmol) and stirred for 3 h at room temperature. The precipitate was separated by filtration, washed with acetone and dried at 50 °C, to give a yellow powder (0.0854 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.21 e Å-3) and the deepest hole (-0.83 e Å-3) in the difference Fourier map are located 1.46 Å and 0.84 Å from the atoms H14 and Mn1, respectively.

Structure description top

The crystal structure of the title complex, [MnI2(bipy)2] (bipy = 2,2'-bipyridine, C10H8N2), was previously reported in the monoclinic space group P21/c (Ha, 2011). The structure presented herein is essentially the same as the published structure and represents a new monoclinic polymorph with the space group C2/c.

The MnII ion in the complex is six-coordinated in a considerably distorted octahedral environment by four N atoms of the two chelating bipy ligands and two iodide anions in a cis-N4I2 coordination geometry (Fig. 1). The tight N—Mn—N chelating angles and the I—I repelling (Table 1) contribute the distortion of the ocataheron, which results in non-linear trans axes [<I1—Mn1—N1 = 169.67 (14)°, <I2—Mn1—N3 = 166.94 (15)° and <N2—Mn1—N4 = 153.33 (19)°]. The Mn—I bond lengths are nearly equal, but the Mn—N bond distances occur in two distinct sets, because of the different trans effects of the N and I atoms (Table 1). The Mn—N bonds trans to the I atom are slightly longer than the Mn—N bonds trans to the N atom. The dihedral angle between the nearly planar bipy ligands [maximum deviation = 0.064 (7) Å] is 75.0 (1)°. The dihedral angles between the pyridyl rings containing N1 and N2 as well as N3 and N4 are 4.5 (5)° and 4.1 (5)°, respectively. In the crystal structure, the complex displays numerous inter- and intramolecular π-π interactions between the pyridyl rings, the shortest ring centroid-centroid distance being 3.905 (5) Å (Fig. 2).

For the P21/c polymorph, see: Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex.
Bis(2,2'-bipyridine-κ2N,N')diiodidomanganese(II) top
Crystal data top
[MnI2(C10H8N2)2]F(000) = 2360
Mr = 621.11Dx = 1.953 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2551 reflections
a = 16.491 (4) Åθ = 2.5–25.9°
b = 15.403 (4) ŵ = 3.56 mm1
c = 17.719 (4) ÅT = 200 K
β = 110.187 (5)°Block, yellow
V = 4224.6 (18) Å30.16 × 0.13 × 0.06 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
5222 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2122
Tmin = 0.804, Tmax = 1.000k = 2014
15547 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.023P)2]
where P = (Fo2 + 2Fc2)/3
5222 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[MnI2(C10H8N2)2]V = 4224.6 (18) Å3
Mr = 621.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.491 (4) ŵ = 3.56 mm1
b = 15.403 (4) ÅT = 200 K
c = 17.719 (4) Å0.16 × 0.13 × 0.06 mm
β = 110.187 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5222 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2330 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 1.000Rint = 0.089
15547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.89Δρmax = 1.21 e Å3
5222 reflectionsΔρmin = 0.83 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.12615 (3)0.15566 (3)0.39194 (3)0.03965 (16)
I20.37597 (3)0.15176 (3)0.36880 (3)0.04233 (17)
Mn10.24841 (7)0.03413 (6)0.37953 (6)0.0274 (3)
N10.3267 (4)0.0774 (3)0.3538 (3)0.0293 (14)
N20.1883 (4)0.0017 (3)0.2492 (3)0.0290 (16)
N30.1705 (4)0.0801 (3)0.4074 (4)0.0318 (15)
N40.3034 (4)0.0032 (3)0.5106 (3)0.0300 (15)
C10.3998 (5)0.1097 (4)0.4070 (5)0.039 (2)
H10.42230.08380.45870.047*
C20.4434 (5)0.1786 (4)0.3898 (5)0.040 (2)
H20.49450.20010.42930.048*
C30.4128 (5)0.2159 (4)0.3154 (5)0.042 (2)
H30.44200.26340.30200.051*
C40.3378 (5)0.1823 (5)0.2600 (5)0.044 (2)
H40.31440.20750.20800.053*
C50.2973 (4)0.1128 (4)0.2799 (4)0.0311 (18)
C60.2205 (4)0.0702 (4)0.2211 (4)0.0313 (18)
C70.1840 (5)0.0976 (5)0.1429 (4)0.043 (2)
H70.20690.14650.12460.052*
C80.1139 (5)0.0538 (6)0.0911 (5)0.057 (3)
H80.08870.07140.03660.069*
C90.0816 (7)0.0153 (6)0.1198 (5)0.060 (3)
H90.03320.04660.08550.072*
C100.1194 (5)0.0384 (5)0.1975 (5)0.039 (2)
H100.09560.08610.21680.046*
C110.1033 (5)0.1199 (5)0.3543 (4)0.045 (2)
H110.08460.09850.30080.054*
C120.0594 (5)0.1872 (5)0.3691 (5)0.052 (2)
H120.01000.21030.32850.063*
C130.0888 (6)0.2208 (5)0.4448 (5)0.058 (3)
H130.06070.26920.45820.070*
C140.1609 (6)0.1833 (5)0.5026 (5)0.058 (3)
H140.18290.20610.55560.069*
C150.1993 (4)0.1125 (4)0.4812 (4)0.0303 (18)
C160.2741 (4)0.0669 (4)0.5397 (4)0.0304 (17)
C170.3099 (5)0.0904 (5)0.6189 (4)0.043 (2)
H170.28780.13880.63880.052*
C180.3771 (5)0.0440 (5)0.6689 (5)0.047 (2)
H180.40380.06200.72320.057*
C190.4071 (5)0.0288 (6)0.6417 (5)0.052 (2)
H190.45310.06280.67620.063*
C200.3669 (5)0.0496 (5)0.5623 (4)0.043 (2)
H200.38540.10040.54260.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0403 (3)0.0408 (3)0.0426 (3)0.0101 (2)0.0204 (3)0.0079 (3)
I20.0444 (3)0.0424 (3)0.0452 (4)0.0141 (3)0.0218 (3)0.0070 (3)
Mn10.0275 (6)0.0282 (6)0.0252 (6)0.0012 (5)0.0073 (5)0.0008 (5)
N10.026 (4)0.031 (3)0.030 (4)0.001 (3)0.008 (3)0.000 (3)
N20.030 (4)0.028 (4)0.026 (4)0.003 (2)0.006 (3)0.005 (3)
N30.029 (4)0.031 (3)0.037 (4)0.006 (3)0.013 (3)0.001 (3)
N40.038 (4)0.031 (4)0.020 (3)0.004 (3)0.010 (3)0.003 (3)
C10.044 (5)0.027 (4)0.043 (5)0.007 (4)0.010 (4)0.002 (4)
C20.033 (5)0.033 (5)0.049 (6)0.001 (4)0.008 (4)0.005 (4)
C30.032 (5)0.030 (4)0.059 (6)0.010 (4)0.008 (4)0.002 (4)
C40.034 (5)0.045 (5)0.051 (6)0.002 (4)0.013 (4)0.015 (4)
C50.027 (4)0.031 (4)0.035 (5)0.001 (3)0.011 (4)0.000 (4)
C60.026 (4)0.032 (4)0.038 (5)0.002 (3)0.014 (4)0.005 (3)
C70.047 (5)0.053 (5)0.024 (5)0.000 (4)0.005 (4)0.016 (4)
C80.040 (5)0.091 (7)0.023 (5)0.009 (5)0.011 (4)0.015 (5)
C90.080 (8)0.071 (6)0.027 (5)0.027 (5)0.017 (5)0.002 (4)
C100.038 (5)0.038 (5)0.044 (5)0.009 (4)0.019 (4)0.002 (4)
C110.036 (5)0.075 (6)0.024 (5)0.028 (4)0.009 (4)0.003 (4)
C120.041 (5)0.066 (6)0.040 (6)0.033 (4)0.002 (4)0.004 (4)
C130.056 (6)0.065 (6)0.054 (6)0.021 (5)0.019 (5)0.013 (5)
C140.060 (6)0.067 (6)0.037 (5)0.027 (5)0.007 (5)0.013 (4)
C150.029 (4)0.033 (4)0.025 (4)0.005 (3)0.006 (4)0.008 (3)
C160.022 (4)0.037 (4)0.031 (5)0.003 (3)0.008 (3)0.001 (3)
C170.044 (5)0.054 (5)0.034 (5)0.008 (4)0.018 (4)0.004 (4)
C180.039 (5)0.065 (6)0.029 (5)0.004 (4)0.000 (4)0.015 (4)
C190.045 (6)0.077 (6)0.028 (5)0.025 (5)0.003 (4)0.004 (5)
C200.048 (5)0.054 (5)0.022 (5)0.018 (4)0.007 (4)0.002 (4)
Geometric parameters (Å, º) top
I1—Mn12.8149 (13)C7—C81.378 (10)
I2—Mn12.8322 (13)C7—H70.9500
Mn1—N42.233 (6)C8—C91.365 (10)
Mn1—N22.245 (6)C8—H80.9500
Mn1—N12.288 (6)C9—C101.349 (10)
Mn1—N32.330 (5)C9—H90.9500
N1—C11.343 (8)C10—H100.9500
N1—C51.345 (8)C11—C121.340 (10)
N2—C101.339 (8)C11—H110.9500
N2—C61.350 (8)C12—C131.362 (10)
N3—C151.325 (8)C12—H120.9500
N3—C111.330 (8)C13—C141.399 (10)
N4—C201.336 (8)C13—H130.9500
N4—C161.354 (8)C14—C151.378 (9)
C1—C21.375 (10)C14—H140.9500
C1—H10.9500C15—C161.486 (9)
C2—C31.364 (10)C16—C171.371 (9)
C2—H20.9500C17—C181.358 (9)
C3—C41.387 (9)C17—H170.9500
C3—H30.9500C18—C191.378 (10)
C4—C51.370 (9)C18—H180.9500
C4—H40.9500C19—C201.371 (10)
C5—C61.487 (9)C19—H190.9500
C6—C71.373 (9)C20—H200.9500
N4—Mn1—N2153.33 (19)C7—C6—C5122.8 (7)
N4—Mn1—N189.6 (2)C6—C7—C8119.8 (7)
N2—Mn1—N171.9 (2)C6—C7—H7120.1
N4—Mn1—N371.0 (2)C8—C7—H7120.1
N2—Mn1—N387.3 (2)C9—C8—C7118.7 (8)
N1—Mn1—N382.28 (19)C9—C8—H8120.7
N4—Mn1—I196.05 (16)C7—C8—H8120.7
N2—Mn1—I199.78 (15)C10—C9—C8118.9 (8)
N1—Mn1—I1169.67 (14)C10—C9—H9120.6
N3—Mn1—I191.33 (15)C8—C9—H9120.6
N4—Mn1—I299.33 (16)N2—C10—C9124.1 (7)
N2—Mn1—I299.38 (15)N2—C10—H10117.9
N1—Mn1—I289.07 (14)C9—C10—H10117.9
N3—Mn1—I2166.94 (15)N3—C11—C12126.4 (7)
I1—Mn1—I298.54 (4)N3—C11—H11116.8
C1—N1—C5117.9 (6)C12—C11—H11116.8
C1—N1—Mn1124.8 (5)C11—C12—C13116.9 (7)
C5—N1—Mn1117.4 (4)C11—C12—H12121.5
C10—N2—C6117.2 (6)C13—C12—H12121.5
C10—N2—Mn1124.0 (5)C12—C13—C14119.2 (8)
C6—N2—Mn1118.7 (5)C12—C13—H13120.4
C15—N3—C11116.8 (6)C14—C13—H13120.4
C15—N3—Mn1117.2 (5)C15—C14—C13118.7 (8)
C11—N3—Mn1125.7 (5)C15—C14—H14120.6
C20—N4—C16117.6 (6)C13—C14—H14120.6
C20—N4—Mn1122.7 (5)N3—C15—C14121.8 (7)
C16—N4—Mn1119.7 (5)N3—C15—C16116.0 (6)
N1—C1—C2122.8 (7)C14—C15—C16122.1 (7)
N1—C1—H1118.6N4—C16—C17121.1 (7)
C2—C1—H1118.6N4—C16—C15115.5 (6)
C3—C2—C1119.4 (7)C17—C16—C15123.4 (7)
C3—C2—H2120.3C18—C17—C16119.7 (7)
C1—C2—H2120.3C18—C17—H17120.2
C2—C3—C4118.0 (7)C16—C17—H17120.2
C2—C3—H3121.0C17—C18—C19120.7 (7)
C4—C3—H3121.0C17—C18—H18119.7
C5—C4—C3120.3 (8)C19—C18—H18119.7
C5—C4—H4119.9C20—C19—C18116.4 (7)
C3—C4—H4119.9C20—C19—H19121.8
N1—C5—C4121.5 (7)C18—C19—H19121.8
N1—C5—C6115.9 (6)N4—C20—C19124.5 (7)
C4—C5—C6122.5 (7)N4—C20—H20117.8
N2—C6—C7121.4 (7)C19—C20—H20117.8
N2—C6—C5115.8 (6)
N4—Mn1—N1—C124.5 (6)Mn1—N1—C5—C4177.2 (6)
N2—Mn1—N1—C1175.1 (6)C1—N1—C5—C6175.0 (6)
N3—Mn1—N1—C195.3 (6)Mn1—N1—C5—C64.8 (8)
I1—Mn1—N1—C1147.5 (7)C3—C4—C5—N12.4 (12)
I2—Mn1—N1—C174.9 (5)C3—C4—C5—C6175.4 (7)
N4—Mn1—N1—C5155.7 (5)C10—N2—C6—C70.1 (11)
N2—Mn1—N1—C54.7 (5)Mn1—N2—C6—C7177.1 (6)
N3—Mn1—N1—C584.9 (5)C10—N2—C6—C5179.6 (6)
I1—Mn1—N1—C532.7 (12)Mn1—N2—C6—C53.2 (8)
I2—Mn1—N1—C5104.9 (5)N1—C5—C6—N21.1 (10)
N4—Mn1—N2—C10133.0 (6)C4—C5—C6—N2179.1 (7)
N1—Mn1—N2—C10178.9 (6)N1—C5—C6—C7178.6 (7)
N3—Mn1—N2—C1098.4 (6)C4—C5—C6—C70.6 (12)
I1—Mn1—N2—C107.5 (6)N2—C6—C7—C81.1 (13)
I2—Mn1—N2—C1093.0 (6)C5—C6—C7—C8178.6 (7)
N4—Mn1—N2—C643.9 (9)C6—C7—C8—C91.2 (14)
N1—Mn1—N2—C64.2 (5)C7—C8—C9—C100.2 (15)
N3—Mn1—N2—C678.6 (5)C6—N2—C10—C90.9 (12)
I1—Mn1—N2—C6169.5 (5)Mn1—N2—C10—C9177.9 (7)
I2—Mn1—N2—C690.1 (5)C8—C9—C10—N20.9 (15)
N4—Mn1—N3—C156.2 (5)C15—N3—C11—C123.3 (13)
N2—Mn1—N3—C15158.2 (5)Mn1—N3—C11—C12178.0 (7)
N1—Mn1—N3—C1586.0 (5)N3—C11—C12—C133.3 (14)
I1—Mn1—N3—C15102.1 (5)C11—C12—C13—C141.1 (14)
I2—Mn1—N3—C1537.1 (11)C12—C13—C14—C150.7 (14)
N4—Mn1—N3—C11179.2 (7)C11—N3—C15—C141.1 (11)
N2—Mn1—N3—C1116.5 (6)Mn1—N3—C15—C14176.2 (6)
N1—Mn1—N3—C1188.6 (6)C11—N3—C15—C16179.7 (7)
I1—Mn1—N3—C1183.2 (6)Mn1—N3—C15—C165.1 (8)
I2—Mn1—N3—C11137.6 (7)C13—C14—C15—N30.8 (13)
N2—Mn1—N4—C20147.4 (6)C13—C14—C15—C16177.7 (8)
N1—Mn1—N4—C20102.3 (6)C20—N4—C16—C171.5 (11)
N3—Mn1—N4—C20175.7 (6)Mn1—N4—C16—C17176.3 (6)
I1—Mn1—N4—C2086.4 (6)C20—N4—C16—C15175.8 (7)
I2—Mn1—N4—C2013.3 (6)Mn1—N4—C16—C156.4 (8)
N2—Mn1—N4—C1630.4 (9)N3—C15—C16—N40.6 (10)
N1—Mn1—N4—C1675.4 (5)C14—C15—C16—N4178.0 (7)
N3—Mn1—N4—C166.6 (5)N3—C15—C16—C17177.8 (7)
I1—Mn1—N4—C1695.9 (5)C14—C15—C16—C170.8 (12)
I2—Mn1—N4—C16164.4 (5)N4—C16—C17—C181.5 (12)
C5—N1—C1—C22.2 (11)C15—C16—C17—C18178.6 (7)
Mn1—N1—C1—C2178.0 (5)C16—C17—C18—C193.1 (13)
N1—C1—C2—C30.9 (12)C17—C18—C19—C201.6 (14)
C1—C2—C3—C40.3 (12)C16—N4—C20—C193.2 (12)
C2—C3—C4—C51.0 (12)Mn1—N4—C20—C19174.5 (7)
C1—N1—C5—C43.0 (11)C18—C19—C20—N41.7 (14)

Experimental details

Crystal data
Chemical formula[MnI2(C10H8N2)2]
Mr621.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)16.491 (4), 15.403 (4), 17.719 (4)
β (°) 110.187 (5)
V3)4224.6 (18)
Z8
Radiation typeMo Kα
µ (mm1)3.56
Crystal size (mm)0.16 × 0.13 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.804, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15547, 5222, 2330
Rint0.089
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.101, 0.89
No. of reflections5222
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.83

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 187–188.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds