metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra-μ3-acetato-hexa-μ2-acetato­di­aqua-μ2-oxalato-tetra­lanthanum(III)] dihydrate]

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: liangyunxiao@nbu.edu.cn

(Received 10 August 2011; accepted 17 September 2011; online 30 September 2011)

The title compound, {[La4(CH3CO2)10(C2O4)(H2O)2]·2H2O}n, exhibits a two-dimensional layered structure with the oxalate and acetate ligands acting as bridges. The asymmetric unit contains two crystallographically independent lanthanum(III) ions, half of an oxalate ligand, five acetate ligands, one coordinated water mol­ecule and one uncoordinated water mol­ecule. The coordination numbers of the two La ions are 9 and 10. Adjacent layers of the structure, which extend parallel to (100), are linked by O–H⋯O hydrogen bonds and are also held together by van der Waals inter­actions between the CH3 groups of the acetate anions.

Related literature

For properties of lanthanide compounds with metal-organic framework structures, see: Zhu et al. (2006[Zhu, W. H., Wang, Z. M. & Gao, S. (2006). Dalton Trans. pp. 765-768.]); Deng et al. (2009[Deng, H., Qiu, Y. C., Li, Y. H., Liu, Z. H. & Guillou, O. (2009). Inorg. Chim. Acta, 362, 1797-1804.]); Bünzli & Piguet (2005[Bünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.]); Zhang et al. (2008[Zhang, X. J., Xing, Y. H., Han, J., Ge, M. F. & Niu, S. Y. (2008). Z. Anorg. Allg. Chem. 634, 1765-1769.]). For metal oxalates, see: Kustaryono et al. (2010[Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775-781.]); Roméro & Trombe (1999[Roméro, S. & Trombe, J. C. (1999). Polyhedron, 18, 1653-1659.]); Yu et al. (2006[Yu, J. H., Hou, Q., Bi, M. H., Lü, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69-73.]); Ohba et al. (1993[Ohba, M., Tamaki, H., Matsumoto, N. & Okawa, H. (1993). Inorg. Chem. 32, 5385-5390.]). For lanthanide oxalates obtained from oxalate-containing starting materials, see: Zhang et al. (2009[Zhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058-1064.]); Trombe et al. (2005[Trombe, J. C., Jaud, J. & Galy, J. (2005). J. Solid State Chem. 178, 1094-1103.]). For lanthanide oxalates with oxalate formed in the course of the synthesis by decomposition of organic compounds or other unconventional reactions, see: Koner & Goldberg (2009[Koner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160-m164.]); Li et al. (2003[Li, X., Cao, R., Sun, D. F., Shi, Q., Bi, W. H. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 815-818.]); Min & Lee (2002[Min, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978-983.]); Mohapatra et al. (2009[Mohapatra, S., Vayasmudri, S., Mostafa, G. & Maji, T. K. (2009). J. Mol. Struct. 932, 123-128.]). For oxidation of acetate to oxalate, see: Zieliński (1983[Zieliński, M. (1983). J. Radioanal. Chem., 80, 237-246.]). For La—O bond lengths, see: Trombe & Roméro (2000[Trombe, J. C. & Roméro, S. (2000). Solid State Sci. 2, 279-283.]); Deng et al. (2009[Deng, H., Qiu, Y. C., Li, Y. H., Liu, Z. H. & Guillou, O. (2009). Inorg. Chim. Acta, 362, 1797-1804.]). For coordination modes of acetate groups, see: Zhang et al. (2009[Zhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058-1064.]); Dan et al. (2006[Dan, M., Cheetham, A. K. & Rao, C. N. R. (2006). Inorg. Chem. 45, 8227-8238.]); Koner & Goldberg (2009[Koner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160-m164.]); Mazurek et al. (1985[Mazurek, W., Kennedy, B. J., Murray, K. S., O'connor, M. J., Rodgers, J. R., Snow, M. R., Wedd, A. G. & Zwack, P. R. (1985). Inorg. Chem. 24, 3258-3264.]).

[Scheme 1]

Experimental

Crystal data
  • [La4(C2H3O2)10(C2O4)(H2O)2]·2H2O

  • Mr = 653.08

  • Monoclinic, P 21 /c

  • a = 9.4139 (19) Å

  • b = 13.310 (3) Å

  • c = 16.087 (3) Å

  • β = 103.10 (3)°

  • V = 1963.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.36 mm−1

  • T = 295 K

  • 0.19 × 0.18 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.454, Tmax = 0.456

  • 14917 measured reflections

  • 3432 independent reflections

  • 3185 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.042

  • S = 1.12

  • 3432 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O14 0.82 1.84 2.654 (4) 176
O13—H13B⋯O9i 0.82 2.01 2.831 (3) 176
O14—H14B⋯O9ii 0.87 2.12 2.921 (4) 152.9
O14—H14A⋯O5iii 0.86 1.90 2.761 (4) 174.3
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg & Putz, 2008[Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, lanthanide metal-organic frameworks have attracted considerable attention due to their interesting properties, such as porosity (Zhu et al., 2006), luminescence (Deng et al., 2009; Bünzli & Piguet, 2005) and magnetism (Zhang et al., 2008). The interest in mixed-ligand lanthanide oxalates is due to: first, lanthanide ions have large size, high and variable coordination numbers and flexible coordination environments; second, oxalate, as a bisbidentate ligand, has a strong coordination ability to metal ions (Kustaryono et al., 2010; Roméro & Trombe, 1999; Yu et al., 2006; Ohba et al., 1993). Most of the known lanthanide oxalates were prepared by hydrothermal reactions of various oxalate salts or of mixtures containing free oxalic acid and other reagents (Zhang et al., 2009; Trombe et al., 2005), while in a few instances the oxalate was generated by chance via an in situ decomposition of organic reagents (Koner & Goldberg, 2009; Li et al., 2003; Mohapatra et al., 2009). In one case a metal-assisted reduction of CO2 was invoked to explain an unexpected oxalate formation (Min & Lee, 2002).

We report here the synthesis and crystal structure of a new lanthanum oxalate acetate, where the oxalate was formed in situ under hydrothermal conditions presumably by an redox reaction of copper(II) acetate under concomitant formation of Cu2O (see Experimental). When the reaction was carried out without copper(II) acetate, different products were obtained. Oxidation of acetate to oxalate has been reported (Zieliński, 1983).

As shown in Fig. 1, the asymmetric unit of (I) contains two La ions, a half oxalate anion, five acetate groups, one coordinated water molecule, and one noncoordinated water molecule. The two crystallographically independent lanthanum atoms, La1 and La2, are nine- and ten-coordinated by oxygen atoms. The La1 ion is coordinated by seven acetate oxygen atoms (one acetate in chelating fashion) and two oxygen atoms O1 and O2 of a chelating centrosymmetric oxalate group. The La—O bond distances vary from 2.476 (3) to 2.727 (2) Å (see supplementary materials). The La1—O bond distances of the oxalate group are 2.505 (2) Å and 2.519 (2) Å. The La2 ion is coordinated by nine acetate oxygen atoms (three acetate groups in chelating fashion) and by a water molecule (H2O13) in terminal position. The La2—O bond distances vary from 2.427 (3) to 2.802 (2) Å. The La—O bond distance of the coordinating water molecule is 2.517 (3) Å. All La—O bond distances of (I) are in the normal range for La(III) ions (Trombe & Roméro, 2000; Deng et al., 2009). In the crystal structure of (I), each centrosymmetric bisbidentate oxalate ligand bridges two neighbouring La1 ions. The acetate groups have three different coordination modes: Firstly, the acetate group is µ3-η2-η2-bridging (the group chelates one La and links with each oxygen to a second and third La). Such coordination has been observed previously (Zhang et al., 2009; Dan et al., 2006). Secondly, the acetate group chelates one La ion and binds with one of its two O to a second La. Such coordination mode of lanthanide acetates has been previously observed (Koner & Goldberg, 2009; Dan et al., 2006). Thirdly, an acetate ion bridges two metal ions with each oxygen bonded to one La. Such coordination mode has also been reported previously (Mazurek et al., 1985).

As shown in Fig. 2, the title compound possesses a two-dimensional polymeric layered structure parallel to (100). The layer contains as a characteristic feature 10-membered oval rings of La atoms linked by the acetate groups. Each of these rings is subdivided in two centrosymmetric halves by a central oxalate bridge, which reinforces the layer. While the central parts of the layers are formed by the La ions and the carboxyl groups of acetate and oxalate anions, the outer parts of the layers are formed by the CH3 groups of the acetate groups and by the La-coordinating water molecules. Therefore, perpendicular to (100) the layers are mutually held together by van der Waals contacts between the CH3 groups and by the noncoordinating water molecule H2O14, each of which links two layers via one accepted and two donated O—H···O hydrogen bonds (Table 1). This leads to the formation of a three-dimensional supramolecular network shown in Fig. 3.

Related literature top

For properties of lanthanide metal-organic frameworks, see: Zhu et al. (2006); Deng et al. (2009); Bünzli & Piguet (2005); Zhang et al. (2008). For metal oxalates, see: Kustaryono et al. (2010); Roméro & Trombe (1999); Yu et al. (2006); Ohba et al. (1993). For lanthanide oxalates obtained from oxalate-containing starting material, see: Zhang et al. (2009); Trombe et al. (2005). For lanthanide oxalates with oxalate formed in the course of the synthesis by decomposition of organic compounds or other unconventional reactions, see: Koner & Goldberg (2009); Li et al. (2003); Min & Lee (2002); Mohapatra et al. (2009). For oxidation of acetate to oxalate, see: Zieliński (1983). For La—O bond lengths, see: Trombe & Roméro (2000); Deng et al. (2009). For coordination modes of acetate groups, see: Zhang et al. (2009); Dan et al. (2006); Koner & Goldberg (2009); Mazurek et al. (1985).

Experimental top

Copper acetate monohydrate (>98%, Shanghai Zhenxing Reagent Factory), lanthanum acetate hydrate (99.99%, Crystal Pure Reagent Co., Ltd. Shanghai), borax(>99.5%, Chemical Co., Ltd. Wuxi Jiani), acetic acid (>99.5%, Sinopharm Chemical Reagent Co., Ltd.) were used without further purification.

The mixture of copper acetate monohydrate (0.097 g, 0.5 mmol), lanthanum acetate hydrate (0.318 g, 1 mmol), borax (0.381 g, 1 mmol), acetic acid (0.2 ml) and deionized water (7 ml), was placed in a 23 ml Teflon reactor and stirred for 20 min in air, then heated at 453 K for 5 d, followed by cooling to room temperature at a rate of 5K/h. Colorless transparent X-ray quality single crystals of compound (I) and red single crystals of Cu2O were obtained, which were used for X-ray diffraction analysis.

Refinement top

The H atoms of the methyl groups were located from the difference Fourier map and were constrained to ride on their parent atoms with C—H = 0.96 Å, and with Uiso = 1.5 Ueq(parent atom). The water H atoms were placed in geometric positions and refined with a riding model, O—H = 0.82 Å for the coordinated water, O—H 0.86 Å for the noncoordinated water.

Structure description top

Recently, lanthanide metal-organic frameworks have attracted considerable attention due to their interesting properties, such as porosity (Zhu et al., 2006), luminescence (Deng et al., 2009; Bünzli & Piguet, 2005) and magnetism (Zhang et al., 2008). The interest in mixed-ligand lanthanide oxalates is due to: first, lanthanide ions have large size, high and variable coordination numbers and flexible coordination environments; second, oxalate, as a bisbidentate ligand, has a strong coordination ability to metal ions (Kustaryono et al., 2010; Roméro & Trombe, 1999; Yu et al., 2006; Ohba et al., 1993). Most of the known lanthanide oxalates were prepared by hydrothermal reactions of various oxalate salts or of mixtures containing free oxalic acid and other reagents (Zhang et al., 2009; Trombe et al., 2005), while in a few instances the oxalate was generated by chance via an in situ decomposition of organic reagents (Koner & Goldberg, 2009; Li et al., 2003; Mohapatra et al., 2009). In one case a metal-assisted reduction of CO2 was invoked to explain an unexpected oxalate formation (Min & Lee, 2002).

We report here the synthesis and crystal structure of a new lanthanum oxalate acetate, where the oxalate was formed in situ under hydrothermal conditions presumably by an redox reaction of copper(II) acetate under concomitant formation of Cu2O (see Experimental). When the reaction was carried out without copper(II) acetate, different products were obtained. Oxidation of acetate to oxalate has been reported (Zieliński, 1983).

As shown in Fig. 1, the asymmetric unit of (I) contains two La ions, a half oxalate anion, five acetate groups, one coordinated water molecule, and one noncoordinated water molecule. The two crystallographically independent lanthanum atoms, La1 and La2, are nine- and ten-coordinated by oxygen atoms. The La1 ion is coordinated by seven acetate oxygen atoms (one acetate in chelating fashion) and two oxygen atoms O1 and O2 of a chelating centrosymmetric oxalate group. The La—O bond distances vary from 2.476 (3) to 2.727 (2) Å (see supplementary materials). The La1—O bond distances of the oxalate group are 2.505 (2) Å and 2.519 (2) Å. The La2 ion is coordinated by nine acetate oxygen atoms (three acetate groups in chelating fashion) and by a water molecule (H2O13) in terminal position. The La2—O bond distances vary from 2.427 (3) to 2.802 (2) Å. The La—O bond distance of the coordinating water molecule is 2.517 (3) Å. All La—O bond distances of (I) are in the normal range for La(III) ions (Trombe & Roméro, 2000; Deng et al., 2009). In the crystal structure of (I), each centrosymmetric bisbidentate oxalate ligand bridges two neighbouring La1 ions. The acetate groups have three different coordination modes: Firstly, the acetate group is µ3-η2-η2-bridging (the group chelates one La and links with each oxygen to a second and third La). Such coordination has been observed previously (Zhang et al., 2009; Dan et al., 2006). Secondly, the acetate group chelates one La ion and binds with one of its two O to a second La. Such coordination mode of lanthanide acetates has been previously observed (Koner & Goldberg, 2009; Dan et al., 2006). Thirdly, an acetate ion bridges two metal ions with each oxygen bonded to one La. Such coordination mode has also been reported previously (Mazurek et al., 1985).

As shown in Fig. 2, the title compound possesses a two-dimensional polymeric layered structure parallel to (100). The layer contains as a characteristic feature 10-membered oval rings of La atoms linked by the acetate groups. Each of these rings is subdivided in two centrosymmetric halves by a central oxalate bridge, which reinforces the layer. While the central parts of the layers are formed by the La ions and the carboxyl groups of acetate and oxalate anions, the outer parts of the layers are formed by the CH3 groups of the acetate groups and by the La-coordinating water molecules. Therefore, perpendicular to (100) the layers are mutually held together by van der Waals contacts between the CH3 groups and by the noncoordinating water molecule H2O14, each of which links two layers via one accepted and two donated O—H···O hydrogen bonds (Table 1). This leads to the formation of a three-dimensional supramolecular network shown in Fig. 3.

For properties of lanthanide metal-organic frameworks, see: Zhu et al. (2006); Deng et al. (2009); Bünzli & Piguet (2005); Zhang et al. (2008). For metal oxalates, see: Kustaryono et al. (2010); Roméro & Trombe (1999); Yu et al. (2006); Ohba et al. (1993). For lanthanide oxalates obtained from oxalate-containing starting material, see: Zhang et al. (2009); Trombe et al. (2005). For lanthanide oxalates with oxalate formed in the course of the synthesis by decomposition of organic compounds or other unconventional reactions, see: Koner & Goldberg (2009); Li et al. (2003); Min & Lee (2002); Mohapatra et al. (2009). For oxidation of acetate to oxalate, see: Zieliński (1983). For La—O bond lengths, see: Trombe & Roméro (2000); Deng et al. (2009). For coordination modes of acetate groups, see: Zhang et al. (2009); Dan et al. (2006); Koner & Goldberg (2009); Mazurek et al. (1985).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres. [Symmetry codes: (i) –x+1, –y+1, –z+2; (ii) x, –y+3/2, z–1/2; (iii) –x+1, y–1/2, –z+3/2; (iv) –x+1, y + 1/2, –z+3/2; (v) –x+1, –y+2, –z+2.
[Figure 2] Fig. 2. A view, along the a axis, showing the two-dimensional layered structure. H atoms and noncoordinated water molecules between the layers have been omitted for clarity.
[Figure 3] Fig. 3. The three-dimensional structure of (I), viewed down the c axis. Hydrogen bonds are indicated by dashed lines.
Poly[[tetra-µ3-acetato-hexa-µ2-acetato-diaqua-µ2-oxalato- tetralanthanum(III)] dihydrate] top
Crystal data top
[La4(C2H3O2)10(C2O4)(H2O)2]·2H2OF(000) = 1244
Mr = 653.08Dx = 2.210 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3432 reflections
a = 9.4139 (19) Åθ = 3.0–25.0°
b = 13.310 (3) ŵ = 4.36 mm1
c = 16.087 (3) ÅT = 295 K
β = 103.10 (3)°Block, colourless
V = 1963.2 (7) Å30.19 × 0.18 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3432 independent reflections
Radiation source: fine-focus sealed tube3185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
h = 1111
Tmin = 0.454, Tmax = 0.456k = 1515
14917 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.014P)2 + 3.2282P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
3432 reflectionsΔρmax = 0.56 e Å3
245 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00041 (8)
Crystal data top
[La4(C2H3O2)10(C2O4)(H2O)2]·2H2OV = 1963.2 (7) Å3
Mr = 653.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4139 (19) ŵ = 4.36 mm1
b = 13.310 (3) ÅT = 295 K
c = 16.087 (3) Å0.19 × 0.18 × 0.18 mm
β = 103.10 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3432 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
3185 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.456Rint = 0.023
14917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.12Δρmax = 0.56 e Å3
3432 reflectionsΔρmin = 0.40 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.49400 (2)0.626091 (13)0.826328 (11)0.01839 (7)
La20.43860 (2)0.927787 (13)0.868342 (11)0.01851 (7)
O10.3617 (3)0.57173 (19)0.93738 (15)0.0334 (6)
O20.3667 (3)0.4876 (2)1.05838 (16)0.0388 (6)
O30.7514 (3)0.6156 (2)0.81474 (18)0.0488 (8)
O40.7413 (4)0.4615 (3)0.76263 (18)0.0636 (10)
O50.2212 (3)0.64689 (19)0.75919 (16)0.0370 (6)
O60.2988 (3)0.76927 (17)0.84850 (14)0.0282 (5)
O70.4657 (3)0.89359 (17)1.16394 (13)0.0291 (6)
O80.4577 (3)0.91183 (17)1.02914 (13)0.0267 (5)
O90.7158 (3)0.90241 (17)0.93121 (15)0.0299 (6)
O100.6023 (3)0.75914 (17)0.93639 (13)0.0272 (5)
O110.5756 (3)0.95427 (17)0.73455 (15)0.0335 (6)
O120.5291 (3)0.80015 (16)0.76449 (14)0.0275 (5)
O130.2161 (3)1.0002 (2)0.90822 (16)0.0474 (8)
H13B0.24001.02780.95490.071*
H13A0.12700.99980.89190.071*
O140.0721 (3)1.0087 (3)0.8562 (2)0.0745 (12)
H14B0.10850.96870.88920.050*
H14A0.12411.05010.82080.050*
C10.4214 (4)0.5171 (2)0.9990 (2)0.0258 (7)
C20.8037 (4)0.5293 (3)0.8105 (2)0.0347 (9)
C30.9496 (5)0.5054 (4)0.8655 (3)0.0589 (13)
H3A0.97490.43720.85560.088*
H3B0.94670.51340.92440.088*
H3C1.02120.55000.85200.088*
C40.1955 (4)0.7242 (3)0.7973 (2)0.0268 (8)
C50.0446 (5)0.7640 (3)0.7823 (3)0.0584 (13)
H5A0.04690.83600.77970.088*
H5B0.00110.74360.82810.088*
H5C0.01190.73810.72930.088*
C60.4177 (4)0.8653 (2)1.08777 (19)0.0206 (7)
C70.3107 (5)0.7813 (3)1.0678 (2)0.0392 (9)
H7A0.28630.76971.00740.059*
H7B0.22410.79851.08670.059*
H7C0.35280.72151.09660.059*
C80.7178 (4)0.8098 (3)0.95129 (19)0.0257 (8)
C90.8593 (5)0.7623 (3)0.9952 (3)0.0455 (10)
H9A0.85950.69300.97880.068*
H9B0.87050.76691.05580.068*
H9C0.93850.79670.97890.068*
C100.5884 (4)0.8614 (2)0.72301 (19)0.0229 (7)
C110.6738 (4)0.8243 (3)0.6616 (2)0.0365 (9)
H11A0.62500.84300.60470.055*
H11B0.68180.75250.66550.055*
H11C0.76950.85360.67520.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02665 (12)0.01320 (10)0.01550 (10)0.00021 (7)0.00519 (7)0.00054 (6)
La20.02568 (12)0.01433 (10)0.01519 (10)0.00034 (7)0.00396 (7)0.00131 (6)
O10.0374 (16)0.0368 (15)0.0278 (13)0.0104 (12)0.0111 (11)0.0146 (11)
O20.0411 (17)0.0468 (17)0.0327 (14)0.0106 (13)0.0172 (12)0.0183 (12)
O30.0396 (18)0.060 (2)0.0522 (18)0.0180 (15)0.0222 (14)0.0200 (14)
O40.067 (2)0.084 (3)0.0305 (16)0.0347 (19)0.0072 (14)0.0020 (15)
O50.0349 (16)0.0358 (15)0.0365 (15)0.0001 (12)0.0004 (11)0.0111 (11)
O60.0304 (14)0.0234 (13)0.0297 (13)0.0051 (10)0.0046 (10)0.0019 (10)
O70.0483 (16)0.0218 (12)0.0159 (12)0.0054 (11)0.0047 (10)0.0012 (9)
O80.0405 (15)0.0239 (12)0.0173 (12)0.0002 (11)0.0096 (10)0.0007 (9)
O90.0332 (15)0.0246 (13)0.0314 (13)0.0015 (11)0.0067 (11)0.0018 (10)
O100.0318 (15)0.0261 (13)0.0221 (12)0.0036 (11)0.0029 (10)0.0047 (9)
O110.0561 (18)0.0160 (12)0.0325 (14)0.0026 (11)0.0183 (12)0.0011 (10)
O120.0460 (16)0.0160 (12)0.0240 (12)0.0007 (11)0.0152 (11)0.0013 (9)
O130.0280 (16)0.072 (2)0.0382 (15)0.0102 (14)0.0003 (11)0.0260 (14)
O140.0296 (18)0.093 (3)0.097 (3)0.0079 (17)0.0056 (17)0.062 (2)
C10.035 (2)0.0217 (18)0.0212 (17)0.0014 (15)0.0080 (14)0.0011 (13)
C20.033 (2)0.052 (3)0.0205 (18)0.0039 (19)0.0083 (15)0.0007 (16)
C30.045 (3)0.052 (3)0.069 (3)0.007 (2)0.009 (2)0.011 (2)
C40.029 (2)0.0226 (18)0.0282 (18)0.0024 (15)0.0064 (15)0.0049 (14)
C50.030 (3)0.044 (3)0.099 (4)0.002 (2)0.011 (2)0.006 (3)
C60.0277 (19)0.0150 (16)0.0190 (17)0.0046 (13)0.0055 (13)0.0003 (12)
C70.049 (3)0.035 (2)0.033 (2)0.0146 (19)0.0088 (17)0.0027 (16)
C80.031 (2)0.029 (2)0.0175 (16)0.0030 (16)0.0068 (13)0.0052 (13)
C90.040 (3)0.045 (3)0.048 (2)0.010 (2)0.0007 (19)0.0001 (19)
C100.034 (2)0.0177 (17)0.0168 (16)0.0020 (14)0.0047 (13)0.0012 (12)
C110.044 (2)0.032 (2)0.040 (2)0.0031 (18)0.0233 (18)0.0015 (16)
Geometric parameters (Å, º) top
La1—O32.476 (3)O8—La2v2.739 (2)
La1—O12.505 (2)O9—C81.273 (4)
La1—O11i2.515 (2)O10—C81.256 (4)
La1—O2ii2.519 (2)O11—C101.260 (4)
La1—O102.548 (2)O11—La1iv2.515 (2)
La1—O52.565 (3)O12—C101.261 (4)
La1—O122.572 (2)O13—H13B0.8200
La1—O7iii2.578 (2)O13—H13A0.8200
La1—O62.727 (2)O14—H14B0.8733
La2—O4iv2.427 (3)O14—H14A0.8611
La2—O62.469 (2)C1—C1ii1.542 (7)
La2—O132.517 (3)C2—C31.490 (6)
La2—O82.561 (2)C3—H3A0.9600
La2—O92.598 (3)C3—H3B0.9600
La2—O7v2.636 (2)C3—H3C0.9600
La2—O122.655 (2)C4—C51.484 (5)
La2—O8v2.739 (2)C5—H5A0.9600
La2—O112.771 (2)C5—H5B0.9600
La2—O102.802 (2)C5—H5C0.9600
O1—C11.254 (4)C6—C71.491 (5)
O2—C11.247 (4)C7—H7A0.9600
O2—La1ii2.519 (2)C7—H7B0.9600
O3—C21.258 (5)C7—H7C0.9600
O4—C21.244 (5)C8—C91.498 (5)
O4—La2i2.427 (3)C9—H9A0.9600
O5—C41.250 (4)C9—H9B0.9600
O6—C41.272 (4)C9—H9C0.9600
O7—C61.263 (4)C10—C111.491 (5)
O7—La1vi2.578 (2)C11—H11A0.9600
O7—La2v2.636 (2)C11—H11B0.9600
O8—C61.255 (4)C11—H11C0.9600
O3—La1—O1133.67 (9)C4—O5—La199.7 (2)
O3—La1—O11i95.29 (10)C4—O6—La2142.5 (2)
O1—La1—O11i83.53 (8)C4—O6—La191.4 (2)
O3—La1—O2ii70.52 (9)La2—O6—La1105.00 (8)
O1—La1—O2ii63.98 (8)C6—O7—La1vi152.2 (2)
O11i—La1—O2ii77.69 (9)C6—O7—La2v98.07 (18)
O3—La1—O1081.21 (10)La1vi—O7—La2v109.26 (8)
O1—La1—O1083.72 (8)C6—O8—La2146.7 (2)
O11i—La1—O10158.48 (8)C6—O8—La2v93.35 (18)
O2ii—La1—O1081.16 (9)La2—O8—La2v118.52 (8)
O3—La1—O5151.38 (9)C8—O9—La2100.4 (2)
O1—La1—O573.70 (9)C8—O10—La1134.3 (2)
O11i—La1—O577.68 (8)C8—O10—La291.1 (2)
O2ii—La1—O5132.77 (9)La1—O10—La2100.79 (8)
O10—La1—O5114.99 (8)C10—O11—La1iv149.3 (2)
O3—La1—O1278.93 (9)C10—O11—La293.83 (19)
O1—La1—O12131.63 (8)La1iv—O11—La2106.98 (8)
O11i—La1—O12135.50 (7)C10—O12—La1153.9 (2)
O2ii—La1—O12137.28 (9)C10—O12—La299.38 (18)
O10—La1—O1264.94 (7)La1—O12—La2104.19 (8)
O5—La1—O1286.80 (8)La2—O13—H13B109.5
O3—La1—O7iii78.23 (9)La2—O13—H13A139.9
O1—La1—O7iii137.68 (9)H13B—O13—H13A110.2
O11i—La1—O7iii63.59 (7)H14B—O14—H14A123.3
O2ii—La1—O7iii127.01 (8)O2—C1—O1126.8 (3)
O10—La1—O7iii135.05 (8)O2—C1—C1ii116.8 (4)
O5—La1—O7iii73.79 (9)O1—C1—C1ii116.4 (4)
O12—La1—O7iii72.09 (7)O4—C2—O3124.0 (4)
O3—La1—O6138.55 (9)O4—C2—C3117.1 (4)
O1—La1—O669.50 (7)O3—C2—C3118.9 (4)
O11i—La1—O6124.24 (8)C2—C3—H3A109.5
O2ii—La1—O6125.26 (8)C2—C3—H3B109.5
O10—La1—O666.35 (7)H3A—C3—H3B109.5
O5—La1—O648.66 (7)C2—C3—H3C109.5
O12—La1—O664.57 (7)H3A—C3—H3C109.5
O7iii—La1—O6106.60 (7)H3B—C3—H3C109.5
O4iv—La2—O678.42 (11)O5—C4—O6120.1 (3)
O4iv—La2—O1372.15 (10)O5—C4—C5119.9 (3)
O6—La2—O1384.84 (9)O6—C4—C5120.0 (3)
O4iv—La2—O8140.15 (10)O5—C4—La156.36 (18)
O6—La2—O888.45 (8)O6—C4—La163.83 (18)
O13—La2—O869.29 (9)C5—C4—La1175.4 (3)
O4iv—La2—O9143.46 (10)C4—C5—H5A109.5
O6—La2—O9113.47 (8)C4—C5—H5B109.5
O13—La2—O9140.44 (8)H5A—C5—H5B109.5
O8—La2—O976.21 (8)C4—C5—H5C109.5
O4iv—La2—O7v82.21 (11)H5A—C5—H5C109.5
O6—La2—O7v160.30 (7)H5B—C5—H5C109.5
O13—La2—O7v92.65 (9)O8—C6—O7118.7 (3)
O8—La2—O7v108.97 (7)O8—C6—C7120.8 (3)
O9—La2—O7v80.56 (8)O7—C6—C7120.5 (3)
O4iv—La2—O1280.35 (9)O8—C6—La2v62.63 (16)
O6—La2—O1267.02 (7)O7—C6—La2v57.95 (16)
O13—La2—O12144.06 (8)C7—C6—La2v163.9 (2)
O8—La2—O12128.57 (7)C6—C7—H7A109.5
O9—La2—O1274.00 (8)C6—C7—H7B109.5
O7v—La2—O12106.28 (7)H7A—C7—H7B109.5
O4iv—La2—O8v117.51 (10)C6—C7—H7C109.5
O6—La2—O8v148.30 (7)H7A—C7—H7C109.5
O13—La2—O8v75.62 (8)H7B—C7—H7C109.5
O8—La2—O8v61.48 (8)O10—C8—O9120.6 (3)
O9—La2—O8v71.19 (8)O10—C8—C9120.1 (3)
O7v—La2—O8v47.50 (7)O9—C8—C9119.2 (3)
O12—La2—O8v139.14 (7)O10—C8—La264.91 (18)
O4iv—La2—O1170.01 (10)O9—C8—La255.73 (17)
O6—La2—O11109.68 (7)C9—C8—La2174.4 (3)
O13—La2—O11135.23 (9)C8—C9—H9A109.5
O8—La2—O11148.94 (8)C8—C9—H9B109.5
O9—La2—O1173.48 (8)H9A—C9—H9B109.5
O7v—La2—O1159.48 (7)C8—C9—H9C109.5
O12—La2—O1147.18 (7)H9A—C9—H9C109.5
O8v—La2—O11101.74 (7)H9B—C9—H9C109.5
O4iv—La2—O10134.52 (9)O11—C10—O12119.2 (3)
O6—La2—O1066.16 (7)O11—C10—C11120.4 (3)
O13—La2—O10128.54 (9)O12—C10—C11120.4 (3)
O8—La2—O1068.43 (7)O11—C10—La262.41 (17)
O9—La2—O1047.82 (7)O12—C10—La257.11 (16)
O7v—La2—O10128.13 (8)C11—C10—La2173.2 (2)
O12—La2—O1060.43 (7)C10—C11—H11A109.5
O8v—La2—O10107.45 (7)C10—C11—H11B109.5
O11—La2—O1095.38 (7)H11A—C11—H11B109.5
C1—O1—La1121.6 (2)C10—C11—H11C109.5
C1—O2—La1ii121.1 (2)H11A—C11—H11C109.5
C2—O3—La1117.3 (3)H11B—C11—H11C109.5
C2—O4—La2i144.2 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+2, z+2; (vi) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O140.821.842.654 (4)176
O13—H13B···O9v0.822.012.831 (3)176
O14—H14B···O9vii0.872.122.921 (4)152.9
O14—H14A···O5viii0.861.902.761 (4)174.3
Symmetry codes: (v) x+1, y+2, z+2; (vii) x1, y, z; (viii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[La4(C2H3O2)10(C2O4)(H2O)2]·2H2O
Mr653.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.4139 (19), 13.310 (3), 16.087 (3)
β (°) 103.10 (3)
V3)1963.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.36
Crystal size (mm)0.19 × 0.18 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi,1995)
Tmin, Tmax0.454, 0.456
No. of measured, independent and
observed [I > 2σ(I)] reflections
14917, 3432, 3185
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 1.12
No. of reflections3432
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.40

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O140.821.842.654 (4)176.0
O13—H13B···O9i0.822.012.831 (3)176.1
O14—H14B···O9ii0.872.122.921 (4)152.9
O14—H14A···O5iii0.861.902.761 (4)174.3
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y, z; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (grant No. 2009 A610052) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationBrandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077.  Web of Science PubMed Google Scholar
First citationDan, M., Cheetham, A. K. & Rao, C. N. R. (2006). Inorg. Chem. 45, 8227–8238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeng, H., Qiu, Y. C., Li, Y. H., Liu, Z. H. & Guillou, O. (2009). Inorg. Chim. Acta, 362, 1797–1804.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKoner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160–m164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Cao, R., Sun, D. F., Shi, Q., Bi, W. H. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 815–818.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazurek, W., Kennedy, B. J., Murray, K. S., O'connor, M. J., Rodgers, J. R., Snow, M. R., Wedd, A. G. & Zwack, P. R. (1985). Inorg. Chem. 24, 3258–3264.  CSD CrossRef CAS Web of Science Google Scholar
First citationMin, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978–983.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohapatra, S., Vayasmudri, S., Mostafa, G. & Maji, T. K. (2009). J. Mol. Struct. 932, 123–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhba, M., Tamaki, H., Matsumoto, N. & Okawa, H. (1993). Inorg. Chem. 32, 5385–5390.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRoméro, S. & Trombe, J. C. (1999). Polyhedron, 18, 1653–1659.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrombe, J. C., Jaud, J. & Galy, J. (2005). J. Solid State Chem. 178, 1094–1103.  CrossRef CAS Google Scholar
First citationTrombe, J. C. & Roméro, S. (2000). Solid State Sci. 2, 279–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J. H., Hou, Q., Bi, M. H., Lü, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. J., Xing, Y. H., Han, J., Ge, M. F. & Niu, S. Y. (2008). Z. Anorg. Allg. Chem. 634, 1765–1769.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058–1064.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, W. H., Wang, Z. M. & Gao, S. (2006). Dalton Trans. pp. 765–768.  Web of Science CSD CrossRef Google Scholar
First citationZieliński, M. (1983). J. Radioanal. Chem., 80, 237–246.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds