organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Benzoyl­phen­yl)(2-meth­­oxy-1-naphth­yl)methanone

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 13 September 2011; accepted 17 September 2011; online 30 September 2011)

In the title compound C25H18O3, the central benzene ring forms dihedral angles of 87.4 (5) and 85.4 (4)° with the phenyl ring and the naphthalene ring system, respectively. The carbonyl O atoms deviate significantly from the phenyl ring and the meth­oxy-substituted naphthalene ring system [by 0.508 (1) and 0.821 (1) Å, respectively]. The crystal packing is stabilized by C—H⋯O hydrogen bonds, which generate C(6) chains, and C—H⋯π inter­actions.

Related literature

For chelating reagents of metallic systems, see: Liang et al. (2003[Liang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 1935-1937.]). For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]). For related structures, see: Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]); Jagadeesan et al. (2011[Jagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2177.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18O3

  • Mr = 366.39

  • Monoclinic, P 21 /c

  • a = 15.0592 (7) Å

  • b = 7.6768 (3) Å

  • c = 16.9274 (8) Å

  • β = 106.137 (2)°

  • V = 1879.81 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEX II CCD diffractometer

  • 22918 measured reflections

  • 5339 independent reflections

  • 3546 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.142

  • S = 1.00

  • 5339 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.58 3.288 (2) 134
C19—H19⋯Cg1ii 0.93 2.77 3.585 (3) 147
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diketones are employed as effective chelating reagents for a large number of metallic systems (Liang et al., 2003). They are also popular in organic synthesis, for their applications in biology, medicine and also known to exhibit antioxidant, antitumour and antibacterial activities (Bennett et al., 1999).

The molecular structure of the title compound C25H18O3, is shown at Fig. 1. The central phenyl ring (C8–C13) forms dihedral angles of 87.4 (5)° and 85.4 (4)° with the phenyl ring (C1–C6) and naphthalene moiety (C15–C24), respectively. The central phenyl ring (C8–C13) forms dihedral angles of 70.2 (5)° and 18.9 (5)° with the mean plane of the ketone groups (C6–C8/O1) and (C13–C15/O2), respectively. The dihedral angles between the naphthalene moiety (C15–C24) and phenyl ring (C1–C6) is 26.9 (4)°. The bond lengths and bond angles are normal and correspond to those observed in (2-benzoylphenyl)- (3,4-dimethylphenyl)-methanone (Jagadeesan et al., 2011).

The two benzene rings (C15/16/C21–C24) and (C16–C21) are almost coplanar with dihedral angle of 1.54 (6)° between them. The atoms C25, O2 and O3 are having deviations of 0.213 (2)Å, 0.821 (1)Å and -0.013 (1)Å from the mean plane of the methoxy substituted naphthalene moiety (C15–C24), respectively. The atom O1 deviates by 0.508 (1)Å from the plane of the phenyl ring (C1–C6). The title compound exhibits the structural similarities with the reported related structures (Tsumuki et al., 2011; Jagadeesan et al., 2011).

In crystal packing, the molecules are linked via C10–H10···O1i intermolecular interaction, which generates a C(6) chain. The crystal packing further stabilized by C19—H19···Cg1ii interaction, where Cg1 is center of gravity of (C8–C13) ring (Table 1). Symmetry codes: (i) x, y+1, z; (ii) x, -y+1/2, z-3/2. The packing view of the compound is shown in (Fig. 2).

Related literature top

For chelating reagents of metallic systems, see: Liang et al. (2003). For the uses and biological importance of diketones, see: Bennett et al. (1999). For related structures, see: Tsumuki et al. (2011); Jagadeesan et al. (2011).

Experimental top

To a stirred suspension of 1-(2-methoxy-1-naphthyl)-3-phenyl-2-benzofuran (1 g, 3.22 mmol) in dry THF (20 ml), lead tetraaccetate (1.52 g, 3.42 mmol) was added and refluxed at 343 K for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2×20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo afforded crude product. The crude product upon crystallization from methanol furnished the tittle compound as a colourless solid.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å & 0.96Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for aryl groups.

Structure description top

Diketones are employed as effective chelating reagents for a large number of metallic systems (Liang et al., 2003). They are also popular in organic synthesis, for their applications in biology, medicine and also known to exhibit antioxidant, antitumour and antibacterial activities (Bennett et al., 1999).

The molecular structure of the title compound C25H18O3, is shown at Fig. 1. The central phenyl ring (C8–C13) forms dihedral angles of 87.4 (5)° and 85.4 (4)° with the phenyl ring (C1–C6) and naphthalene moiety (C15–C24), respectively. The central phenyl ring (C8–C13) forms dihedral angles of 70.2 (5)° and 18.9 (5)° with the mean plane of the ketone groups (C6–C8/O1) and (C13–C15/O2), respectively. The dihedral angles between the naphthalene moiety (C15–C24) and phenyl ring (C1–C6) is 26.9 (4)°. The bond lengths and bond angles are normal and correspond to those observed in (2-benzoylphenyl)- (3,4-dimethylphenyl)-methanone (Jagadeesan et al., 2011).

The two benzene rings (C15/16/C21–C24) and (C16–C21) are almost coplanar with dihedral angle of 1.54 (6)° between them. The atoms C25, O2 and O3 are having deviations of 0.213 (2)Å, 0.821 (1)Å and -0.013 (1)Å from the mean plane of the methoxy substituted naphthalene moiety (C15–C24), respectively. The atom O1 deviates by 0.508 (1)Å from the plane of the phenyl ring (C1–C6). The title compound exhibits the structural similarities with the reported related structures (Tsumuki et al., 2011; Jagadeesan et al., 2011).

In crystal packing, the molecules are linked via C10–H10···O1i intermolecular interaction, which generates a C(6) chain. The crystal packing further stabilized by C19—H19···Cg1ii interaction, where Cg1 is center of gravity of (C8–C13) ring (Table 1). Symmetry codes: (i) x, y+1, z; (ii) x, -y+1/2, z-3/2. The packing view of the compound is shown in (Fig. 2).

For chelating reagents of metallic systems, see: Liang et al. (2003). For the uses and biological importance of diketones, see: Bennett et al. (1999). For related structures, see: Tsumuki et al. (2011); Jagadeesan et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing arrangement of the title compound in the unit cell showing C10—H10···O1i intermolecular interactions. Symmetry code: (i) x, y+1, z.
(2-Benzoylphenyl)(2-methoxy-1-naphthyl)methanone top
Crystal data top
C25H18O3F(000) = 768
Mr = 366.39Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3546 reflections
a = 15.0592 (7) Åθ = 1.4–29.8°
b = 7.6768 (3) ŵ = 0.08 mm1
c = 16.9274 (8) ÅT = 295 K
β = 106.137 (2)°Block, colourless
V = 1879.81 (15) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEX II CCD
diffractometer
3546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 29.8°, θmin = 2.5°
φ– and ω–scansh = 2120
22918 measured reflectionsk = 710
5339 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4893P]
where P = (Fo2 + 2Fc2)/3
5339 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H18O3V = 1879.81 (15) Å3
Mr = 366.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0592 (7) ŵ = 0.08 mm1
b = 7.6768 (3) ÅT = 295 K
c = 16.9274 (8) Å0.30 × 0.25 × 0.20 mm
β = 106.137 (2)°
Data collection top
Bruker Kappa APEX II CCD
diffractometer
3546 reflections with I > 2σ(I)
22918 measured reflectionsRint = 0.026
5339 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
5339 reflectionsΔρmin = 0.17 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32655 (11)0.5102 (2)0.64285 (10)0.0489 (4)
H10.28150.58940.61590.059*
C20.33289 (13)0.4623 (3)0.72296 (11)0.0645 (5)
H20.29150.50750.74940.077*
C30.40028 (15)0.3480 (3)0.76349 (12)0.0694 (5)
H30.40440.31550.81730.083*
C40.46149 (16)0.2816 (3)0.72472 (12)0.0716 (6)
H40.50760.20570.75280.086*
C50.45535 (12)0.3264 (2)0.64411 (10)0.0537 (4)
H50.49690.28020.61810.064*
C60.38683 (9)0.44093 (17)0.60238 (9)0.0383 (3)
C70.37750 (8)0.48647 (16)0.51530 (8)0.0339 (3)
C80.33986 (8)0.66384 (16)0.48624 (8)0.0315 (3)
C90.39631 (10)0.80583 (18)0.51630 (9)0.0407 (3)
H90.45180.78930.55670.049*
C100.37067 (11)0.97165 (19)0.48663 (10)0.0456 (3)
H100.40911.06560.50710.055*
C110.28879 (11)0.99841 (18)0.42712 (10)0.0452 (3)
H110.27191.11010.40730.054*
C120.23162 (10)0.85857 (17)0.39690 (9)0.0390 (3)
H120.17630.87670.35650.047*
C130.25602 (8)0.69061 (15)0.42638 (8)0.0308 (3)
C140.18976 (8)0.54380 (17)0.39884 (8)0.0329 (3)
C150.11451 (9)0.57010 (17)0.32057 (8)0.0353 (3)
C160.13622 (10)0.57056 (18)0.24428 (9)0.0402 (3)
C170.22628 (12)0.5324 (2)0.23795 (11)0.0529 (4)
H170.27350.50740.28520.063*
C180.24417 (16)0.5322 (3)0.16352 (13)0.0714 (5)
H180.30330.50530.16030.086*
C190.1752 (2)0.5716 (3)0.09233 (13)0.0819 (7)
H190.18880.57270.04200.098*
C200.08820 (18)0.6083 (3)0.09543 (11)0.0717 (6)
H200.04290.63480.04710.086*
C210.06502 (12)0.6069 (2)0.17118 (9)0.0492 (4)
C220.02422 (13)0.6403 (2)0.17769 (11)0.0572 (5)
H220.07100.66620.13030.069*
C230.04461 (11)0.6362 (2)0.25055 (11)0.0533 (4)
H230.10480.65710.25260.064*
C240.02565 (9)0.60013 (19)0.32376 (9)0.0417 (3)
C250.08045 (13)0.6050 (3)0.40589 (14)0.0703 (5)
H25A0.10930.71200.38280.105*
H25B0.07970.59810.46270.105*
H25C0.11460.50830.37640.105*
O10.40464 (7)0.39130 (13)0.46951 (6)0.0455 (3)
O20.19662 (7)0.41118 (13)0.43910 (7)0.0480 (3)
O30.01160 (7)0.60000 (18)0.39966 (7)0.0601 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (8)0.0565 (9)0.0468 (9)0.0060 (7)0.0086 (6)0.0080 (7)
C20.0571 (11)0.0871 (14)0.0491 (10)0.0011 (10)0.0148 (8)0.0082 (9)
C30.0752 (13)0.0791 (13)0.0457 (10)0.0029 (11)0.0034 (9)0.0149 (9)
C40.0811 (14)0.0612 (11)0.0543 (11)0.0194 (10)0.0114 (10)0.0121 (9)
C50.0537 (9)0.0470 (9)0.0500 (9)0.0148 (7)0.0029 (7)0.0000 (7)
C60.0346 (7)0.0327 (6)0.0415 (7)0.0008 (5)0.0004 (5)0.0008 (5)
C70.0245 (6)0.0307 (6)0.0424 (7)0.0018 (5)0.0023 (5)0.0020 (5)
C80.0296 (6)0.0302 (6)0.0345 (6)0.0002 (5)0.0087 (5)0.0015 (5)
C90.0352 (7)0.0374 (7)0.0455 (8)0.0046 (5)0.0043 (6)0.0055 (6)
C100.0493 (8)0.0324 (7)0.0544 (9)0.0093 (6)0.0132 (7)0.0070 (6)
C110.0584 (9)0.0273 (6)0.0512 (9)0.0015 (6)0.0172 (7)0.0035 (6)
C120.0416 (7)0.0351 (7)0.0373 (7)0.0042 (5)0.0058 (6)0.0040 (5)
C130.0312 (6)0.0292 (6)0.0311 (6)0.0004 (5)0.0069 (5)0.0008 (5)
C140.0278 (6)0.0347 (6)0.0345 (7)0.0002 (5)0.0058 (5)0.0010 (5)
C150.0315 (6)0.0334 (6)0.0357 (7)0.0017 (5)0.0005 (5)0.0007 (5)
C160.0460 (8)0.0334 (7)0.0373 (7)0.0054 (6)0.0053 (6)0.0002 (5)
C170.0548 (9)0.0566 (9)0.0504 (9)0.0036 (8)0.0199 (7)0.0007 (7)
C180.0841 (14)0.0756 (13)0.0664 (13)0.0067 (11)0.0404 (11)0.0011 (10)
C190.119 (2)0.0822 (15)0.0550 (12)0.0156 (14)0.0412 (13)0.0003 (10)
C200.1073 (17)0.0608 (11)0.0361 (9)0.0140 (11)0.0019 (10)0.0057 (8)
C210.0609 (10)0.0378 (7)0.0388 (8)0.0070 (7)0.0028 (7)0.0028 (6)
C220.0588 (10)0.0436 (8)0.0500 (10)0.0019 (7)0.0167 (8)0.0052 (7)
C230.0327 (7)0.0482 (9)0.0669 (11)0.0017 (6)0.0063 (7)0.0003 (7)
C240.0334 (7)0.0407 (7)0.0460 (8)0.0009 (6)0.0027 (6)0.0014 (6)
C250.0454 (10)0.0783 (13)0.0950 (15)0.0089 (9)0.0326 (10)0.0045 (11)
O10.0449 (6)0.0386 (5)0.0523 (6)0.0062 (4)0.0124 (5)0.0055 (4)
O20.0410 (6)0.0397 (5)0.0546 (6)0.0075 (4)0.0011 (5)0.0132 (5)
O30.0362 (6)0.0881 (9)0.0573 (7)0.0048 (6)0.0153 (5)0.0010 (6)
Geometric parameters (Å, º) top
C1—C21.382 (2)C14—O21.2135 (16)
C1—C61.386 (2)C14—C151.4986 (17)
C1—H10.9300C15—C241.3737 (19)
C2—C31.373 (3)C15—C161.417 (2)
C2—H20.9300C16—C171.420 (2)
C3—C41.370 (3)C16—C211.422 (2)
C3—H30.9300C17—C181.360 (2)
C4—C51.385 (3)C17—H170.9300
C4—H40.9300C18—C191.388 (3)
C5—C61.390 (2)C18—H180.9300
C5—H50.9300C19—C201.355 (3)
C6—C71.483 (2)C19—H190.9300
C7—O11.2156 (16)C20—C211.419 (3)
C7—C81.5041 (17)C20—H200.9300
C8—C91.3891 (18)C21—C221.402 (3)
C8—C131.3971 (18)C22—C231.352 (3)
C9—C101.383 (2)C22—H220.9300
C9—H90.9300C23—C241.415 (2)
C10—C111.374 (2)C23—H230.9300
C10—H100.9300C24—O31.3589 (19)
C11—C121.382 (2)C25—O31.420 (2)
C11—H110.9300C25—H25A0.9600
C12—C131.3945 (17)C25—H25B0.9600
C12—H120.9300C25—H25C0.9600
C13—C141.4915 (17)
C2—C1—C6120.42 (15)O2—C14—C15122.34 (11)
C2—C1—H1119.8C13—C14—C15116.77 (11)
C6—C1—H1119.8C24—C15—C16120.62 (12)
C3—C2—C1120.02 (18)C24—C15—C14119.56 (12)
C3—C2—H2120.0C16—C15—C14119.78 (12)
C1—C2—H2120.0C15—C16—C17122.35 (13)
C4—C3—C2120.05 (18)C15—C16—C21118.97 (14)
C4—C3—H3120.0C17—C16—C21118.66 (14)
C2—C3—H3120.0C18—C17—C16120.63 (17)
C3—C4—C5120.67 (17)C18—C17—H17119.7
C3—C4—H4119.7C16—C17—H17119.7
C5—C4—H4119.7C17—C18—C19120.7 (2)
C4—C5—C6119.65 (17)C17—C18—H18119.6
C4—C5—H5120.2C19—C18—H18119.6
C6—C5—H5120.2C20—C19—C18120.66 (19)
C1—C6—C5119.15 (14)C20—C19—H19119.7
C1—C6—C7120.43 (12)C18—C19—H19119.7
C5—C6—C7120.41 (13)C19—C20—C21121.09 (18)
O1—C7—C6122.44 (12)C19—C20—H20119.5
O1—C7—C8119.89 (12)C21—C20—H20119.5
C6—C7—C8117.48 (11)C22—C21—C20123.45 (16)
C9—C8—C13119.21 (12)C22—C21—C16118.35 (15)
C9—C8—C7117.00 (11)C20—C21—C16118.19 (18)
C13—C8—C7123.56 (11)C23—C22—C21122.22 (14)
C10—C9—C8120.56 (13)C23—C22—H22118.9
C10—C9—H9119.7C21—C22—H22118.9
C8—C9—H9119.7C22—C23—C24119.96 (15)
C11—C10—C9120.46 (13)C22—C23—H23120.0
C11—C10—H10119.8C24—C23—H23120.0
C9—C10—H10119.8O3—C24—C15116.51 (12)
C10—C11—C12119.67 (13)O3—C24—C23123.58 (14)
C10—C11—H11120.2C15—C24—C23119.86 (15)
C12—C11—H11120.2O3—C25—H25A109.5
C11—C12—C13120.70 (13)O3—C25—H25B109.5
C11—C12—H12119.6H25A—C25—H25B109.5
C13—C12—H12119.6O3—C25—H25C109.5
C12—C13—C8119.39 (11)H25A—C25—H25C109.5
C12—C13—C14120.00 (11)H25B—C25—H25C109.5
C8—C13—C14120.45 (11)C24—O3—C25118.82 (14)
O2—C14—C13120.88 (11)
C6—C1—C2—C31.2 (3)O2—C14—C15—C2473.13 (18)
C1—C2—C3—C40.2 (3)C13—C14—C15—C24105.93 (14)
C2—C3—C4—C51.1 (3)O2—C14—C15—C16109.33 (16)
C3—C4—C5—C60.5 (3)C13—C14—C15—C1671.61 (16)
C2—C1—C6—C51.8 (2)C24—C15—C16—C17177.12 (14)
C2—C1—C6—C7177.37 (15)C14—C15—C16—C175.4 (2)
C4—C5—C6—C10.9 (2)C24—C15—C16—C211.5 (2)
C4—C5—C6—C7178.24 (15)C14—C15—C16—C21175.97 (12)
C1—C6—C7—O1154.41 (14)C15—C16—C17—C18179.22 (16)
C5—C6—C7—O124.7 (2)C21—C16—C17—C180.6 (2)
C1—C6—C7—C830.61 (18)C16—C17—C18—C190.9 (3)
C5—C6—C7—C8150.25 (13)C17—C18—C19—C201.1 (3)
O1—C7—C8—C9104.93 (15)C18—C19—C20—C210.3 (3)
C6—C7—C8—C970.18 (16)C19—C20—C21—C22178.64 (18)
O1—C7—C8—C1369.48 (17)C19—C20—C21—C161.7 (3)
C6—C7—C8—C13115.41 (14)C15—C16—C21—C220.2 (2)
C13—C8—C9—C100.9 (2)C17—C16—C21—C22178.51 (14)
C7—C8—C9—C10173.74 (13)C15—C16—C21—C20179.46 (14)
C8—C9—C10—C110.2 (2)C17—C16—C21—C201.8 (2)
C9—C10—C11—C120.1 (2)C20—C21—C22—C23179.24 (16)
C10—C11—C12—C130.2 (2)C16—C21—C22—C231.1 (2)
C11—C12—C13—C80.9 (2)C21—C22—C23—C241.1 (2)
C11—C12—C13—C14174.35 (13)C16—C15—C24—O3178.97 (12)
C9—C8—C13—C121.28 (19)C14—C15—C24—O31.45 (19)
C7—C8—C13—C12173.02 (12)C16—C15—C24—C231.6 (2)
C9—C8—C13—C14174.00 (12)C14—C15—C24—C23175.93 (13)
C7—C8—C13—C1411.71 (19)C22—C23—C24—O3177.46 (15)
C12—C13—C14—O2158.80 (14)C22—C23—C24—C150.3 (2)
C8—C13—C14—O216.44 (19)C15—C24—O3—C25170.97 (15)
C12—C13—C14—C1520.27 (18)C23—C24—O3—C2511.8 (2)
C8—C13—C14—C15164.48 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.583.288 (2)134
C19—H19···Cg1ii0.932.773.585 (3)147
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC25H18O3
Mr366.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.0592 (7), 7.6768 (3), 16.9274 (8)
β (°) 106.137 (2)
V3)1879.81 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEX II CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22918, 5339, 3546
Rint0.026
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.00
No. of reflections5339
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.583.288 (2)134
C19—H19···Cg1ii0.932.773.585 (3)147
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z3/2.
 

Acknowledgements

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 1935–1937.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds