organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­benzo­yl)-3-{2-[3-(4-methyl­benzo­yl)thio­ureido]phen­yl}thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 26 August 2011; accepted 1 September 2011; online 14 September 2011)

In the title compound, C24H22N4O2S2, the dihedral angles formed by the thio­ureido groups with the attached benzene ring are 43.81 (13) and 75.25 (13)°. The dihedral angle between the thio­ureido groups is 85.48 (10)°. The mol­ecule is stabilized by intra­molecular N—H⋯S, N—H⋯O and C—H⋯S hydrogen bonds. In the crystal, molecules are linked by intermolecular N—H⋯S hydrogen bonds together with C—H⋯π inter­actions.

Related literature

For the structure of related bis-carbomothioyl thio­ureas, see: Yamin & Osman (2011[Yamin, B. M. & Osman, U. M. (2011). Acta Cryst. E67, o1286.]); Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N4O2S2

  • Mr = 462.58

  • Triclinic, [P \overline 1]

  • a = 7.1565 (18) Å

  • b = 11.394 (3) Å

  • c = 14.332 (4) Å

  • α = 96.414 (5)°

  • β = 99.066 (6)°

  • γ = 94.085 (6)°

  • V = 1142.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.50 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.984

  • 13125 measured reflections

  • 4472 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.143

  • S = 1.02

  • 4472 reflections

  • 294 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.86 2.83 3.476 (3) 134
N1—H1⋯O1 0.86 1.95 2.651 (3) 138
N3—H3⋯O2 0.86 1.97 2.640 (3) 134
C2—H2A⋯S1 0.93 2.79 3.223 (3) 110
N4—H4⋯S2i 0.86 2.71 3.533 (3) 161
C15—H15BCg1ii 0.96 2.76 3.509 (4) 136
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, 1,2-bis(N'-4-methylbenzoylthioureido)benzene (systematic name: 1-(4-methylbenzoyl)-3-{2-[3-(4-methylbenzoyl)thioureido]phenyl}thiourea), is similar to 1,2-bis(N'-benzoylthioureido)benzene (Thiam et al., 2008) except for the presence of methyl groups at para position of the benzoyl group (Fig. 1). Both thioureido groups S1/N1/N2/C7/C1 and S2/N3/N4/C16/C6 are planar with maximum deviation from the least square planes of 0.033 (2)Å for the N1 atom. The thioureido groups form dihedral angles of 43.81 (13) and 75.25 (13) Å, respectively, with the central benzene ring. The dihedral between the two thioureido groups is 85.58 (10)°. There are four intramolecular hydrogen bonds forming three six-membered ring [O1···H1—N1—C7—N2—C8], [O2···H3A—N3—C16—N4—C17] and [H2A···S1—C7—N1—C1—C2], and one seven-membered ring [H1···S2—C16—N3—C6—C1—N1] as compared to two intramolecular hydrogen bonds observed in 1,2-bis(N'-benzoylthioureido) benzene. The introduction of chloro atom to the bridging benzene ring in 1,2-bis(N'-benzoylthioureido)-4-chlorobenzene (Yamin & Osman, 2011) allowed four intramolecular hydrogen bonds. In the crystal structure, the molecules are linked by N1—H1A···S1 intermolecular hydrogen bonds (symmetry codes as in Table 1) to form centrosymmetric dimers (Fig. 2). In addition, a C—H···π interaction with distance of 2.760Å and an angle of 136° is also present.

Related literature top

For the structure of related bis-carbomothioyl thioureas, see: Yamin & Osman (2011); Thiam et al. (2008).

Experimental top

To a stirred acetone solution (75 ml) of para-benzoyl chloride (0.04 mol) and ammonium thiocyanate (0.04 mol) 1,2-phenylenediamine (0.02 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice cubes. The white precipitate formed was filtered off, washed with distilled water and cold ethanol and then dried under vacuum. Good quality crystals were obtained by recrystallization from ethanol.

Refinement top

The hydrogen atom attached to the N2 atom was refined freely, with the N—H distance restrained to be 0.86 Å and Uiso(H) = 1.2 Ueq(N). All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H(aromatic) = 0.93 Å, CH(alkyl) = 0.96 Å, N—H = 0.86 Å, and with Uiso(H) = x Ueq(parent atom) where x = 1.2 for both CH(aromatic) and NH groups, and x = 1.5 for CH(methyl) groups. A rotating group model was applied to the methyl groups.

Structure description top

The title compound, 1,2-bis(N'-4-methylbenzoylthioureido)benzene (systematic name: 1-(4-methylbenzoyl)-3-{2-[3-(4-methylbenzoyl)thioureido]phenyl}thiourea), is similar to 1,2-bis(N'-benzoylthioureido)benzene (Thiam et al., 2008) except for the presence of methyl groups at para position of the benzoyl group (Fig. 1). Both thioureido groups S1/N1/N2/C7/C1 and S2/N3/N4/C16/C6 are planar with maximum deviation from the least square planes of 0.033 (2)Å for the N1 atom. The thioureido groups form dihedral angles of 43.81 (13) and 75.25 (13) Å, respectively, with the central benzene ring. The dihedral between the two thioureido groups is 85.58 (10)°. There are four intramolecular hydrogen bonds forming three six-membered ring [O1···H1—N1—C7—N2—C8], [O2···H3A—N3—C16—N4—C17] and [H2A···S1—C7—N1—C1—C2], and one seven-membered ring [H1···S2—C16—N3—C6—C1—N1] as compared to two intramolecular hydrogen bonds observed in 1,2-bis(N'-benzoylthioureido) benzene. The introduction of chloro atom to the bridging benzene ring in 1,2-bis(N'-benzoylthioureido)-4-chlorobenzene (Yamin & Osman, 2011) allowed four intramolecular hydrogen bonds. In the crystal structure, the molecules are linked by N1—H1A···S1 intermolecular hydrogen bonds (symmetry codes as in Table 1) to form centrosymmetric dimers (Fig. 2). In addition, a C—H···π interaction with distance of 2.760Å and an angle of 136° is also present.

For the structure of related bis-carbomothioyl thioureas, see: Yamin & Osman (2011); Thiam et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
1-(4-Methylbenzoyl)-3-{2-[3-(4-methylbenzoyl)thioureido]phenyl}thiourea top
Crystal data top
C24H22N4O2S2Z = 2
Mr = 462.58F(000) = 484
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Melting point = 475.4–476.6 K
a = 7.1565 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.394 (3) ÅCell parameters from 1550 reflections
c = 14.332 (4) Åθ = 1.8–26.0°
α = 96.414 (5)°µ = 0.26 mm1
β = 99.066 (6)°T = 298 K
γ = 94.085 (6)°Slab, colourless
V = 1142.1 (5) Å30.50 × 0.12 × 0.06 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4472 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1414
Tmin = 0.880, Tmax = 0.984l = 1717
13125 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1876P]
where P = (Fo2 + 2Fc2)/3
4472 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C24H22N4O2S2γ = 94.085 (6)°
Mr = 462.58V = 1142.1 (5) Å3
Triclinic, P1Z = 2
a = 7.1565 (18) ÅMo Kα radiation
b = 11.394 (3) ŵ = 0.26 mm1
c = 14.332 (4) ÅT = 298 K
α = 96.414 (5)°0.50 × 0.12 × 0.06 mm
β = 99.066 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2810 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.984Rint = 0.053
13125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
4472 reflectionsΔρmin = 0.19 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.23642 (15)1.02145 (9)0.41453 (8)0.0810 (4)
S21.21023 (12)0.60423 (7)0.10031 (6)0.0488 (3)
O10.9229 (3)0.6795 (2)0.25909 (17)0.0661 (7)
O20.9013 (3)0.87729 (19)0.05615 (16)0.0638 (7)
N11.2155 (3)0.8412 (2)0.27623 (17)0.0438 (6)
H11.15240.77640.24830.053*
N21.0044 (4)0.8279 (2)0.38102 (18)0.0457 (6)
H20.968 (4)0.868 (2)0.4283 (14)0.055*
N31.1759 (3)0.8295 (2)0.07633 (17)0.0467 (6)
H31.10880.88200.05260.056*
N40.9377 (3)0.6947 (2)0.00916 (17)0.0447 (6)
H40.88820.62240.01910.054*
C11.3716 (4)0.8820 (2)0.2346 (2)0.0403 (7)
C21.5444 (4)0.9285 (3)0.2888 (2)0.0489 (8)
H2A1.55950.93580.35490.059*
C31.6929 (5)0.9638 (3)0.2455 (3)0.0566 (9)
H3A1.80680.99700.28260.068*
C41.6755 (5)0.9508 (3)0.1478 (3)0.0598 (9)
H4A1.77770.97360.11900.072*
C51.5054 (5)0.9036 (3)0.0931 (2)0.0534 (8)
H51.49260.89430.02700.064*
C61.3535 (4)0.8699 (2)0.1363 (2)0.0418 (7)
C71.1550 (4)0.8911 (3)0.3530 (2)0.0456 (8)
C80.8930 (4)0.7289 (3)0.3340 (2)0.0454 (8)
C90.7318 (4)0.6900 (2)0.3800 (2)0.0416 (7)
C100.5718 (4)0.6305 (3)0.3223 (2)0.0509 (8)
H100.57120.61240.25730.061*
C110.4137 (5)0.5981 (3)0.3605 (2)0.0557 (9)
H110.30790.55750.32090.067*
C120.4092 (4)0.6245 (3)0.4563 (2)0.0475 (8)
C130.5708 (5)0.6804 (3)0.5143 (2)0.0541 (9)
H130.57220.69650.57950.065*
C140.7305 (4)0.7125 (3)0.4766 (2)0.0492 (8)
H140.83820.74980.51670.059*
C150.2339 (5)0.5942 (3)0.4979 (3)0.0646 (10)
H15A0.18030.66580.51780.097*
H15B0.26710.55230.55170.097*
H15C0.14250.54520.45060.097*
C161.1071 (4)0.7164 (3)0.05479 (19)0.0409 (7)
C170.8385 (5)0.7739 (3)0.0587 (2)0.0466 (8)
C180.6482 (4)0.7287 (3)0.1130 (2)0.0442 (7)
C190.5775 (5)0.7814 (3)0.1920 (2)0.0528 (9)
H190.65310.83970.21260.063*
C200.3966 (5)0.7482 (3)0.2401 (2)0.0578 (9)
H200.35270.78350.29390.069*
C210.2779 (5)0.6637 (3)0.2106 (2)0.0513 (8)
C220.3506 (5)0.6101 (3)0.1326 (2)0.0547 (9)
H220.27500.55150.11230.066*
C230.5325 (5)0.6415 (3)0.0843 (2)0.0503 (8)
H230.57820.60390.03200.060*
C240.0761 (5)0.6314 (4)0.2600 (3)0.0761 (11)
H24A0.00740.58850.22030.114*
H24B0.07550.58280.31930.114*
H24C0.01670.70240.27210.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0742 (7)0.0602 (6)0.1025 (8)0.0252 (5)0.0373 (6)0.0290 (6)
S20.0552 (5)0.0405 (5)0.0473 (5)0.0033 (4)0.0002 (4)0.0039 (4)
O10.0648 (16)0.0619 (15)0.0678 (16)0.0208 (12)0.0280 (13)0.0159 (13)
O20.0678 (16)0.0420 (13)0.0732 (16)0.0071 (12)0.0106 (13)0.0107 (11)
N10.0438 (15)0.0411 (14)0.0438 (15)0.0100 (12)0.0060 (12)0.0034 (12)
N20.0462 (16)0.0428 (15)0.0469 (16)0.0064 (12)0.0118 (13)0.0008 (12)
N30.0494 (16)0.0390 (15)0.0488 (16)0.0002 (12)0.0002 (13)0.0070 (12)
N40.0502 (16)0.0328 (13)0.0467 (15)0.0025 (12)0.0009 (13)0.0022 (11)
C10.0391 (18)0.0312 (15)0.0496 (19)0.0006 (13)0.0049 (15)0.0065 (13)
C20.0435 (19)0.0444 (18)0.055 (2)0.0012 (15)0.0011 (16)0.0055 (15)
C30.0372 (19)0.0426 (19)0.088 (3)0.0026 (15)0.0047 (19)0.0097 (18)
C40.046 (2)0.054 (2)0.085 (3)0.0001 (17)0.026 (2)0.0114 (19)
C50.058 (2)0.0463 (19)0.059 (2)0.0030 (17)0.0173 (18)0.0077 (16)
C60.0395 (18)0.0321 (16)0.052 (2)0.0014 (13)0.0055 (15)0.0043 (14)
C70.0423 (18)0.0441 (18)0.049 (2)0.0020 (15)0.0043 (15)0.0058 (15)
C80.0479 (19)0.0369 (17)0.050 (2)0.0011 (15)0.0086 (16)0.0014 (15)
C90.0405 (18)0.0346 (16)0.0495 (19)0.0004 (14)0.0083 (15)0.0059 (14)
C100.053 (2)0.0518 (19)0.0471 (19)0.0055 (16)0.0095 (17)0.0091 (15)
C110.046 (2)0.059 (2)0.058 (2)0.0091 (17)0.0009 (17)0.0098 (17)
C120.0408 (19)0.0436 (18)0.062 (2)0.0070 (15)0.0136 (16)0.0132 (16)
C130.057 (2)0.056 (2)0.051 (2)0.0006 (17)0.0200 (18)0.0030 (16)
C140.0460 (19)0.0492 (19)0.049 (2)0.0034 (15)0.0070 (16)0.0034 (15)
C150.050 (2)0.072 (2)0.078 (3)0.0047 (18)0.0217 (19)0.022 (2)
C160.0430 (18)0.0446 (18)0.0347 (17)0.0015 (14)0.0105 (14)0.0012 (14)
C170.054 (2)0.0427 (19)0.0406 (18)0.0033 (16)0.0030 (15)0.0030 (15)
C180.0486 (19)0.0390 (17)0.0423 (18)0.0040 (15)0.0038 (15)0.0015 (14)
C190.065 (2)0.0398 (18)0.050 (2)0.0036 (16)0.0046 (18)0.0063 (15)
C200.068 (2)0.049 (2)0.051 (2)0.0066 (18)0.0066 (18)0.0041 (16)
C210.050 (2)0.054 (2)0.046 (2)0.0082 (17)0.0033 (16)0.0092 (16)
C220.052 (2)0.060 (2)0.052 (2)0.0020 (17)0.0153 (17)0.0035 (17)
C230.050 (2)0.056 (2)0.0448 (19)0.0074 (17)0.0068 (16)0.0087 (15)
C240.059 (2)0.101 (3)0.063 (2)0.002 (2)0.0022 (19)0.001 (2)
Geometric parameters (Å, º) top
S1—C71.656 (3)C9—C101.386 (4)
S2—C161.665 (3)C10—C111.378 (4)
O1—C81.213 (3)C10—H100.9300
O2—C171.225 (3)C11—C121.377 (4)
N1—C71.329 (4)C11—H110.9300
N1—C11.421 (4)C12—C131.382 (4)
N1—H10.8600C12—C151.506 (4)
N2—C81.377 (4)C13—C141.383 (4)
N2—C71.390 (4)C13—H130.9300
N2—H20.859 (10)C14—H140.9300
N3—C161.331 (3)C15—H15A0.9600
N3—C61.432 (4)C15—H15B0.9600
N3—H30.8600C15—H15C0.9600
N4—C171.378 (4)C17—C181.484 (4)
N4—C161.389 (4)C18—C191.382 (4)
N4—H40.8600C18—C231.387 (4)
C1—C61.385 (4)C19—C201.373 (4)
C1—C21.387 (4)C19—H190.9300
C2—C31.371 (4)C20—C211.384 (5)
C2—H2A0.9300C20—H200.9300
C3—C41.376 (5)C21—C221.380 (4)
C3—H3A0.9300C21—C241.506 (4)
C4—C51.378 (4)C22—C231.378 (4)
C4—H4A0.9300C22—H220.9300
C5—C61.385 (4)C23—H230.9300
C5—H50.9300C24—H24A0.9600
C8—C91.481 (4)C24—H24B0.9600
C9—C141.381 (4)C24—H24C0.9600
C7—N1—C1127.9 (2)C11—C12—C13118.3 (3)
C7—N1—H1116.1C11—C12—C15121.6 (3)
C1—N1—H1116.1C13—C12—C15120.1 (3)
C8—N2—C7129.1 (3)C12—C13—C14120.7 (3)
C8—N2—H2120 (2)C12—C13—H13119.6
C7—N2—H2110 (2)C14—C13—H13119.6
C16—N3—C6124.7 (3)C9—C14—C13120.8 (3)
C16—N3—H3117.7C9—C14—H14119.6
C6—N3—H3117.7C13—C14—H14119.6
C17—N4—C16128.4 (3)C12—C15—H15A109.5
C17—N4—H4115.8C12—C15—H15B109.5
C16—N4—H4115.8H15A—C15—H15B109.5
C6—C1—C2118.8 (3)C12—C15—H15C109.5
C6—C1—N1118.7 (3)H15A—C15—H15C109.5
C2—C1—N1122.4 (3)H15B—C15—H15C109.5
C3—C2—C1120.4 (3)N3—C16—N4115.9 (3)
C3—C2—H2A119.8N3—C16—S2124.1 (2)
C1—C2—H2A119.8N4—C16—S2120.0 (2)
C2—C3—C4120.8 (3)O2—C17—N4121.9 (3)
C2—C3—H3A119.6O2—C17—C18121.5 (3)
C4—C3—H3A119.6N4—C17—C18116.6 (3)
C3—C4—C5119.4 (3)C19—C18—C23118.4 (3)
C3—C4—H4A120.3C19—C18—C17118.6 (3)
C5—C4—H4A120.3C23—C18—C17122.8 (3)
C4—C5—C6120.1 (3)C20—C19—C18120.5 (3)
C4—C5—H5119.9C20—C19—H19119.7
C6—C5—H5119.9C18—C19—H19119.7
C5—C6—C1120.4 (3)C19—C20—C21121.6 (3)
C5—C6—N3117.9 (3)C19—C20—H20119.2
C1—C6—N3121.5 (3)C21—C20—H20119.2
N1—C7—N2115.5 (3)C22—C21—C20117.5 (3)
N1—C7—S1126.3 (2)C22—C21—C24120.6 (3)
N2—C7—S1118.1 (2)C20—C21—C24121.9 (3)
O1—C8—N2121.9 (3)C23—C22—C21121.5 (3)
O1—C8—C9122.9 (3)C23—C22—H22119.3
N2—C8—C9115.2 (3)C21—C22—H22119.3
C14—C9—C10118.4 (3)C22—C23—C18120.4 (3)
C14—C9—C8123.6 (3)C22—C23—H23119.8
C10—C9—C8117.9 (3)C18—C23—H23119.8
C11—C10—C9120.4 (3)C21—C24—H24A109.5
C11—C10—H10119.8C21—C24—H24B109.5
C9—C10—H10119.8H24A—C24—H24B109.5
C12—C11—C10121.3 (3)C21—C24—H24C109.5
C12—C11—H11119.3H24A—C24—H24C109.5
C10—C11—H11119.3H24B—C24—H24C109.5
C7—N1—C1—C6141.4 (3)C10—C11—C12—C132.6 (5)
C7—N1—C1—C241.6 (4)C10—C11—C12—C15177.2 (3)
C6—C1—C2—C31.3 (4)C11—C12—C13—C142.2 (5)
N1—C1—C2—C3178.2 (3)C15—C12—C13—C14177.6 (3)
C1—C2—C3—C41.9 (5)C10—C9—C14—C132.3 (4)
C2—C3—C4—C51.1 (5)C8—C9—C14—C13175.9 (3)
C3—C4—C5—C60.1 (5)C12—C13—C14—C90.3 (5)
C4—C5—C6—C10.7 (5)C6—N3—C16—N4176.2 (3)
C4—C5—C6—N3175.5 (3)C6—N3—C16—S24.4 (4)
C2—C1—C6—C50.0 (4)C17—N4—C16—N35.3 (4)
N1—C1—C6—C5177.0 (3)C17—N4—C16—S2175.3 (2)
C2—C1—C6—N3176.1 (3)C16—N4—C17—O25.6 (5)
N1—C1—C6—N36.9 (4)C16—N4—C17—C18172.4 (3)
C16—N3—C6—C5103.2 (3)O2—C17—C18—C1928.5 (5)
C16—N3—C6—C180.6 (4)N4—C17—C18—C19153.4 (3)
C1—N1—C7—N2176.4 (3)O2—C17—C18—C23146.9 (3)
C1—N1—C7—S15.9 (5)N4—C17—C18—C2331.1 (4)
C8—N2—C7—N19.3 (5)C23—C18—C19—C200.4 (5)
C8—N2—C7—S1168.5 (3)C17—C18—C19—C20175.2 (3)
C7—N2—C8—O13.7 (5)C18—C19—C20—C211.4 (5)
C7—N2—C8—C9174.4 (3)C19—C20—C21—C222.4 (5)
O1—C8—C9—C14155.4 (3)C19—C20—C21—C24176.8 (3)
N2—C8—C9—C1426.5 (4)C20—C21—C22—C231.7 (5)
O1—C8—C9—C1026.4 (4)C24—C21—C22—C23177.6 (3)
N2—C8—C9—C10151.7 (3)C21—C22—C23—C180.1 (5)
C14—C9—C10—C111.9 (5)C19—C18—C23—C221.1 (5)
C8—C9—C10—C11176.4 (3)C17—C18—C23—C22174.3 (3)
C9—C10—C11—C120.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.833.476 (3)134
N1—H1···O10.861.952.651 (3)138
N3—H3···O20.861.972.640 (3)134
C2—H2A···S10.932.793.223 (3)110
N4—H4···S2i0.862.713.533 (3)161
C15—H15B···Cg1ii0.962.763.509 (4)136
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H22N4O2S2
Mr462.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1565 (18), 11.394 (3), 14.332 (4)
α, β, γ (°)96.414 (5), 99.066 (6), 94.085 (6)
V3)1142.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.880, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13125, 4472, 2810
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.143, 1.02
No. of reflections4472
No. of parameters294
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.833.476 (3)134
N1—H1···O10.861.952.651 (3)138
N3—H3···O20.861.972.640 (3)134
C2—H2A···S10.932.793.223 (3)110
N4—H4···S2i0.862.713.533 (3)161
C15—H15B···Cg1ii0.962.763.509 (4)136
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for financial support (grant No. UKM-GUP-NBT-08-27-110) and research facilities. Study leave granted to UMO from Universiti Malaysia Terengganu is very much appreciated.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Osman, U. M. (2011). Acta Cryst. E67, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds