metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chloridobis(2-eth­­oxy-6-formyl­phenolato-κ2O1,O6)chromium(III) aceto­nitrile hemisolvate

aDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, bChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, cDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, dX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and eDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: hkargar@pnu.ac.ir

(Received 28 August 2011; accepted 13 September 2011; online 17 September 2011)

In the mononuclear complex mol­ecule of the title compound, [Cr(C9H9O3)2Cl(H2O)]·0.5CH3CN, the CrIII atom displays an elongated octa­hedral coordination geometry. The dihedral angle between the benzene rings is 12.27 (11)°. Adjacent complex mol­ecules are linked into dimers by O—H⋯O hydrogen bonds, generating rings of R12(6) and R12(5) graph-set motifs, and by aromatic ππ stacking inter­actions, with a centroid–centroid distance of 3.812 (2) Å. The crystal packing is further stabilized by inter­molecular C—H⋯N hydrogen bonds. The C and N atoms of the acetonitrile solvent mol­ecule are located on a crystallographic twofold axis.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the structures of tetra­dentate Schiff bases synthesized by our group, see: Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.], 2010[Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C9H9O3)2Cl(H2O)]·0.5C2H3N

  • Mr = 456.32

  • Monoclinic, C 2/c

  • a = 19.292 (3) Å

  • b = 10.1211 (10) Å

  • c = 20.953 (3) Å

  • β = 91.824 (11)°

  • V = 4089.1 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 291 K

  • 0.25 × 0.15 × 0.12 mm

Data collection
  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.901, Tmax = 1.000

  • 9374 measured reflections

  • 4371 independent reflections

  • 2108 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.078

  • S = 0.80

  • 4371 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.85 2.10 2.826 (3) 143
O1W—H1W1⋯O5i 0.85 2.28 3.007 (4) 144
O1W—H2W1⋯O3i 0.85 2.22 2.813 (3) 127
O1W—H2W1⋯O6i 0.85 2.14 2.940 (4) 158
C7—H7A⋯N1ii 0.93 2.62 3.171 (4) 119
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) -x+1, -y+3, -z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing study of potential tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010) derived from different substituted salicylaldehydes, we have determined the crystal structure of the title compound, which was obtained by the reaction of chromium(III) chloride hexahydrate with 3-ethoxysalicylaldehyde in acetonitrile.

The asymmetric unit of the title compound, Fig. 1, comprises one mononuclear complex molecule and one half of an acetonitrile solvent molecule, whose C and N atoms are located on a crystallographic twofold axis. In the complex molecule, the metal atom displays an elongated octahedral coordination geometry. The dihedral angles between the substituted benzene rings is 12.27 (11)°. Strong intermolecular O—H···O hydrogen bonds (Table 1) link adjacent complex molecules into dimers, generating rings of R21(6) and R21(5) graph set motifs (Bernstein et al., 1995). In the dimers, aromatic ππ stacking interactions with centroid-to-centroid distance of 3.812 (2) Å are observed (Table 1). The crystal packing (Fig. 2) is further stabilized by C—H···N hydrogen bonds involving the acetonitrile molecule.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the structures of potential tetradentate Schiff bases synthesized by our group, see: Kargar et al. (2009, 2010).

Experimental top

The title compound was synthesized by adding 3-ethoxy-salicylaldehyde (4 mmol) to a solution of CrCl3. 6H2O (2 mmol) in acetonitrile (50 ml). The mixture was refluxed with stirring for 3 h. The resultant dark-green solution was filtered and single crystals suitable for X-ray structure determination were grown from the solution by slow evaporation of the solvent at room temperature over several days.

Refinement top

H atoms of the water molecule were located in a difference Fourier map, first restraied to a distance of 0.85 (1)Å and then constrained to refine with the parent atom with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically with C—H = 0.93 – 0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used for the methyl groups.

Structure description top

As part of our ongoing study of potential tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010) derived from different substituted salicylaldehydes, we have determined the crystal structure of the title compound, which was obtained by the reaction of chromium(III) chloride hexahydrate with 3-ethoxysalicylaldehyde in acetonitrile.

The asymmetric unit of the title compound, Fig. 1, comprises one mononuclear complex molecule and one half of an acetonitrile solvent molecule, whose C and N atoms are located on a crystallographic twofold axis. In the complex molecule, the metal atom displays an elongated octahedral coordination geometry. The dihedral angles between the substituted benzene rings is 12.27 (11)°. Strong intermolecular O—H···O hydrogen bonds (Table 1) link adjacent complex molecules into dimers, generating rings of R21(6) and R21(5) graph set motifs (Bernstein et al., 1995). In the dimers, aromatic ππ stacking interactions with centroid-to-centroid distance of 3.812 (2) Å are observed (Table 1). The crystal packing (Fig. 2) is further stabilized by C—H···N hydrogen bonds involving the acetonitrile molecule.

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the structures of potential tetradentate Schiff bases synthesized by our group, see: Kargar et al. (2009, 2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The acetonitrile solvent is disordered about a crystallographic twofold rotation axis.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Intermolecular hydrogen interactions are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.
Aquachloridobis(2-ethoxy-6-formylphenolato- κ2O1,O6)chromium(III) acetonitrile hemisolvate top
Crystal data top
[Cr(C9H9O3)2Cl(H2O)]·0.5C2H3NF(000) = 1888
Mr = 456.32Dx = 1.482 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1749 reflections
a = 19.292 (3) Åθ = 2.2–29.5°
b = 10.1211 (10) ŵ = 0.73 mm1
c = 20.953 (3) ÅT = 291 K
β = 91.824 (11)°Block, dark-green
V = 4089.1 (10) Å30.25 × 0.15 × 0.12 mm
Z = 8
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
4371 independent reflections
Radiation source: fine-focus sealed tube2108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 0.15 mm pixels mm-1θmax = 27.0°, θmin = 1.9°
ω scansh = 2424
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
k = 1112
Tmin = 0.901, Tmax = 1.000l = 2326
9374 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0193P)2]
where P = (Fo2 + 2Fc2)/3
4371 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cr(C9H9O3)2Cl(H2O)]·0.5C2H3NV = 4089.1 (10) Å3
Mr = 456.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.292 (3) ŵ = 0.73 mm1
b = 10.1211 (10) ÅT = 291 K
c = 20.953 (3) Å0.25 × 0.15 × 0.12 mm
β = 91.824 (11)°
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
4371 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
2108 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 1.000Rint = 0.070
9374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.80Δρmax = 0.27 e Å3
4371 reflectionsΔρmin = 0.33 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.64593 (2)1.32691 (7)0.04499 (3)0.03258 (17)
Cl10.61724 (4)1.48966 (12)0.11688 (5)0.0500 (3)
O10.72440 (10)1.2660 (3)0.09641 (12)0.0352 (7)
O20.58449 (11)1.2011 (3)0.08794 (13)0.0421 (8)
O30.70720 (10)1.4377 (3)0.00154 (12)0.0343 (7)
O40.56652 (10)1.3822 (3)0.01146 (13)0.0395 (7)
O50.84236 (11)1.2384 (3)0.15669 (13)0.0506 (8)
O60.80992 (11)1.5786 (3)0.04008 (14)0.0460 (8)
C10.72533 (16)1.1870 (4)0.14529 (18)0.0325 (9)
C20.78879 (17)1.1670 (4)0.18084 (19)0.0386 (10)
C30.7924 (2)1.0838 (5)0.2312 (2)0.0556 (13)
H3A0.83471.07170.25280.067*
C40.7343 (2)1.0156 (5)0.2516 (2)0.0632 (14)
H4A0.73780.96010.28700.076*
C50.6731 (2)1.0311 (5)0.2196 (2)0.0543 (13)
H5A0.63450.98390.23230.065*
C60.66667 (19)1.1183 (4)0.16681 (19)0.0385 (10)
C70.60077 (19)1.1291 (4)0.1337 (2)0.0455 (12)
H7A0.56581.07500.14850.055*
C80.90836 (18)1.2297 (5)0.1897 (2)0.0581 (14)
H8A0.92671.14070.18700.070*
H8B0.90391.25220.23440.070*
C90.95559 (18)1.3257 (6)0.1581 (2)0.0790 (17)
H9A1.00121.31980.17750.118*
H9B0.93811.41380.16300.118*
H9C0.95761.30500.11350.118*
C100.69152 (17)1.5300 (4)0.04271 (19)0.0330 (10)
C110.74590 (19)1.6113 (4)0.0648 (2)0.0415 (11)
C120.7323 (2)1.7116 (5)0.1067 (2)0.0640 (15)
H12A0.76841.76460.12000.077*
C130.6644 (2)1.7360 (5)0.1301 (2)0.0764 (17)
H13A0.65551.80440.15890.092*
C140.6121 (2)1.6586 (5)0.1102 (2)0.0625 (14)
H14A0.56711.67530.12550.075*
C150.62361 (17)1.5546 (4)0.06753 (19)0.0381 (11)
C160.56650 (17)1.4756 (5)0.04983 (19)0.0400 (11)
H16A0.52391.49650.06930.048*
C170.86615 (18)1.6679 (5)0.0508 (2)0.0595 (13)
H17A0.85411.75630.03710.071*
H17B0.87611.67070.09580.071*
C180.92803 (19)1.6186 (5)0.0130 (2)0.0718 (17)
H18A0.96661.67650.01920.108*
H18B0.93951.53120.02690.108*
H18C0.91761.61660.03150.108*
O1W0.66200 (9)1.1806 (3)0.01853 (11)0.0375 (7)
H1W10.68041.19800.05370.056*
H2W10.68041.10820.00710.056*
N10.50001.8521 (9)0.25000.123 (3)
C190.50001.5944 (10)0.25000.137 (4)
H19A0.52411.56280.28640.206*0.50
H19B0.45311.56280.25200.206*0.50
H19C0.52291.56280.21160.206*0.50
C200.50001.7396 (12)0.25000.076 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0213 (2)0.0403 (4)0.0361 (4)0.0020 (3)0.0004 (2)0.0045 (4)
Cl10.0440 (5)0.0546 (8)0.0511 (7)0.0016 (5)0.0026 (5)0.0124 (7)
O10.0267 (11)0.0417 (18)0.0369 (17)0.0002 (11)0.0029 (11)0.0143 (15)
O20.0327 (13)0.050 (2)0.0435 (18)0.0103 (13)0.0052 (13)0.0062 (17)
O30.0236 (11)0.0380 (18)0.0412 (17)0.0020 (11)0.0011 (11)0.0118 (15)
O40.0241 (12)0.052 (2)0.0426 (18)0.0052 (12)0.0045 (12)0.0019 (16)
O50.0360 (13)0.067 (2)0.0477 (18)0.0003 (13)0.0122 (13)0.0142 (18)
O60.0334 (13)0.0396 (18)0.065 (2)0.0062 (12)0.0060 (13)0.0103 (17)
C10.0390 (18)0.030 (3)0.029 (2)0.0044 (19)0.0030 (17)0.005 (2)
C20.0449 (19)0.038 (3)0.033 (2)0.007 (2)0.0006 (18)0.003 (2)
C30.064 (3)0.058 (3)0.045 (3)0.015 (2)0.001 (2)0.009 (3)
C40.098 (4)0.049 (3)0.042 (3)0.017 (3)0.004 (3)0.021 (3)
C50.071 (3)0.042 (3)0.050 (3)0.006 (2)0.018 (2)0.008 (3)
C60.050 (2)0.037 (3)0.029 (2)0.0024 (19)0.008 (2)0.001 (2)
C70.047 (2)0.044 (3)0.047 (3)0.017 (2)0.021 (2)0.003 (3)
C80.047 (2)0.069 (4)0.057 (3)0.013 (2)0.018 (2)0.015 (3)
C90.043 (2)0.113 (5)0.080 (4)0.012 (3)0.011 (2)0.000 (4)
C100.0368 (19)0.029 (2)0.033 (2)0.0052 (17)0.0041 (18)0.003 (2)
C110.048 (2)0.032 (3)0.044 (3)0.0016 (19)0.005 (2)0.004 (2)
C120.064 (3)0.054 (4)0.075 (4)0.004 (2)0.017 (3)0.020 (3)
C130.083 (3)0.065 (4)0.081 (4)0.015 (3)0.003 (3)0.047 (3)
C140.061 (3)0.066 (4)0.059 (3)0.017 (3)0.011 (2)0.015 (3)
C150.039 (2)0.044 (3)0.031 (2)0.0149 (18)0.0003 (18)0.009 (2)
C160.0324 (19)0.056 (3)0.031 (3)0.013 (2)0.0046 (18)0.008 (3)
C170.055 (2)0.041 (3)0.084 (4)0.012 (2)0.025 (2)0.007 (3)
C180.045 (2)0.072 (4)0.098 (4)0.022 (2)0.006 (3)0.023 (3)
O1W0.0300 (11)0.0395 (17)0.0432 (16)0.0016 (12)0.0049 (11)0.0037 (16)
N10.144 (6)0.099 (8)0.129 (8)0.0000.057 (5)0.000
C190.216 (11)0.097 (10)0.100 (9)0.0000.009 (7)0.000
C200.078 (5)0.107 (8)0.043 (5)0.0000.023 (4)0.000
Geometric parameters (Å, º) top
Cr1—O31.918 (2)C9—H9A0.9600
Cr1—O11.931 (2)C9—H9B0.9600
Cr1—O21.976 (3)C9—H9C0.9600
Cr1—O41.986 (3)C10—C151.416 (5)
Cr1—O1W2.021 (3)C10—C111.422 (5)
Cr1—Cl12.3112 (13)C11—C121.361 (6)
O1—C11.299 (4)C12—C131.406 (6)
O2—C71.237 (5)C12—H12A0.9300
O3—C101.301 (4)C13—C141.354 (6)
O4—C161.242 (4)C13—H13A0.9300
O5—C21.371 (4)C14—C151.395 (6)
O5—C81.433 (4)C14—H14A0.9300
O6—C111.365 (4)C15—C161.420 (5)
O6—C171.435 (4)C16—H16A0.9300
C1—C61.414 (5)C17—C181.497 (6)
C1—C21.427 (5)C17—H17A0.9700
C2—C31.349 (5)C17—H17B0.9700
C3—C41.395 (5)C18—H18A0.9600
C3—H3A0.9300C18—H18B0.9600
C4—C51.349 (6)C18—H18C0.9600
C4—H4A0.9300O1W—H1W10.8475
C5—C61.418 (6)O1W—H2W10.8459
C5—H5A0.9300N1—C201.138 (11)
C6—C71.433 (5)C19—C201.470 (12)
C7—H7A0.9300C19—H19A0.9600
C8—C91.501 (6)C19—H19B0.9600
C8—H8A0.9700C19—H19C0.9600
C8—H8B0.9700
O3—Cr1—O189.17 (10)C8—C9—H9B109.5
O3—Cr1—O2175.31 (12)H9A—C9—H9B109.5
O1—Cr1—O290.64 (11)C8—C9—H9C109.5
O3—Cr1—O490.51 (11)H9A—C9—H9C109.5
O1—Cr1—O4176.86 (12)H9B—C9—H9C109.5
O2—Cr1—O489.43 (11)O3—C10—C15124.2 (3)
O3—Cr1—O1W89.06 (10)O3—C10—C11118.2 (3)
O1—Cr1—O1W89.98 (10)C15—C10—C11117.6 (4)
O2—Cr1—O1W86.25 (10)C12—C11—O6125.4 (4)
O4—Cr1—O1W86.89 (10)C12—C11—C10120.8 (4)
O3—Cr1—Cl194.52 (9)O6—C11—C10113.9 (4)
O1—Cr1—Cl193.64 (9)C11—C12—C13121.0 (4)
O2—Cr1—Cl190.16 (8)C11—C12—H12A119.5
O4—Cr1—Cl189.50 (8)C13—C12—H12A119.5
O1W—Cr1—Cl1174.93 (6)C14—C13—C12119.1 (5)
C1—O1—Cr1128.9 (2)C14—C13—H13A120.5
C7—O2—Cr1126.3 (2)C12—C13—H13A120.5
C10—O3—Cr1128.5 (2)C13—C14—C15121.9 (4)
C16—O4—Cr1125.8 (2)C13—C14—H14A119.0
C2—O5—C8117.3 (3)C15—C14—H14A119.0
C11—O6—C17117.9 (3)C14—C15—C10119.7 (4)
O1—C1—C6124.3 (3)C14—C15—C16118.9 (4)
O1—C1—C2119.3 (3)C10—C15—C16121.5 (4)
C6—C1—C2116.5 (4)O4—C16—C15127.9 (4)
C3—C2—O5126.6 (4)O4—C16—H16A116.1
C3—C2—C1121.2 (4)C15—C16—H16A116.1
O5—C2—C1112.1 (3)O6—C17—C18107.5 (4)
C2—C3—C4121.8 (4)O6—C17—H17A110.2
C2—C3—H3A119.1C18—C17—H17A110.2
C4—C3—H3A119.1O6—C17—H17B110.2
C5—C4—C3119.3 (4)C18—C17—H17B110.2
C5—C4—H4A120.4H17A—C17—H17B108.5
C3—C4—H4A120.4C17—C18—H18A109.5
C4—C5—C6120.9 (4)C17—C18—H18B109.5
C4—C5—H5A119.6H18A—C18—H18B109.5
C6—C5—H5A119.6C17—C18—H18C109.5
C1—C6—C5120.3 (4)H18A—C18—H18C109.5
C1—C6—C7121.0 (4)H18B—C18—H18C109.5
C5—C6—C7118.6 (4)Cr1—O1W—H1W1119.9
O2—C7—C6128.3 (4)Cr1—O1W—H2W1121.3
O2—C7—H7A115.9H1W1—O1W—H2W1104.1
C6—C7—H7A115.9C20—C19—H19A109.5
O5—C8—C9106.8 (4)C20—C19—H19B109.5
O5—C8—H8A110.4H19A—C19—H19B109.5
C9—C8—H8A110.4C20—C19—H19C109.5
O5—C8—H8B110.4H19A—C19—H19C109.5
C9—C8—H8B110.4H19B—C19—H19C109.5
H8A—C8—H8B108.6N1—C20—C19180.000 (5)
C8—C9—H9A109.5
O3—Cr1—O1—C1175.8 (3)O1—C1—C6—C71.9 (6)
O2—Cr1—O1—C18.9 (3)C2—C1—C6—C7178.6 (4)
O1W—Cr1—O1—C195.1 (3)C4—C5—C6—C12.4 (6)
Cl1—Cr1—O1—C181.3 (3)C4—C5—C6—C7178.8 (4)
O1—Cr1—O2—C75.5 (3)Cr1—O2—C7—C60.1 (6)
O4—Cr1—O2—C7177.6 (3)C1—C6—C7—O25.5 (6)
O1W—Cr1—O2—C795.5 (3)C5—C6—C7—O2178.2 (4)
Cl1—Cr1—O2—C788.1 (3)C2—O5—C8—C9174.6 (3)
O1—Cr1—O3—C10169.9 (3)Cr1—O3—C10—C158.8 (5)
O4—Cr1—O3—C1013.2 (3)Cr1—O3—C10—C11171.7 (3)
O1W—Cr1—O3—C10100.1 (3)C17—O6—C11—C1210.1 (6)
Cl1—Cr1—O3—C1076.3 (3)C17—O6—C11—C10169.6 (3)
O3—Cr1—O4—C1612.4 (3)O3—C10—C11—C12178.4 (4)
O2—Cr1—O4—C16172.3 (3)C15—C10—C11—C122.1 (6)
O1W—Cr1—O4—C16101.4 (3)O3—C10—C11—O61.4 (5)
Cl1—Cr1—O4—C1682.1 (3)C15—C10—C11—O6178.1 (3)
Cr1—O1—C1—C66.6 (5)O6—C11—C12—C13179.1 (4)
Cr1—O1—C1—C2172.9 (3)C10—C11—C12—C131.2 (7)
C8—O5—C2—C33.3 (6)C11—C12—C13—C140.3 (8)
C8—O5—C2—C1178.0 (3)C12—C13—C14—C150.5 (8)
O1—C1—C2—C3178.7 (4)C13—C14—C15—C101.5 (7)
C6—C1—C2—C31.7 (6)C13—C14—C15—C16178.6 (5)
O1—C1—C2—O50.0 (5)O3—C10—C15—C14178.2 (4)
C6—C1—C2—O5179.5 (3)C11—C10—C15—C142.3 (6)
O5—C2—C3—C4179.8 (4)O3—C10—C15—C161.6 (6)
C1—C2—C3—C41.2 (7)C11—C10—C15—C16177.9 (4)
C2—C3—C4—C51.2 (7)Cr1—O4—C16—C157.5 (6)
C3—C4—C5—C61.8 (7)C14—C15—C16—O4177.8 (4)
O1—C1—C6—C5178.2 (4)C10—C15—C16—O42.0 (6)
C2—C1—C6—C52.3 (5)C11—O6—C17—C18173.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.852.102.826 (3)143
O1W—H1W1···O5i0.852.283.007 (4)144
O1W—H2W1···O3i0.852.222.813 (3)127
O1W—H2W1···O6i0.852.142.940 (4)158
C7—H7A···N1ii0.932.623.171 (4)119
C19—H19A···Cl1iii0.962.803.745 (3)167
Symmetry codes: (i) x+3/2, y+5/2, z; (ii) x+1, y+3, z; (iii) x, y+3, z1/2.

Experimental details

Crystal data
Chemical formula[Cr(C9H9O3)2Cl(H2O)]·0.5C2H3N
Mr456.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)19.292 (3), 10.1211 (10), 20.953 (3)
β (°) 91.824 (11)
V3)4089.1 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.25 × 0.15 × 0.12
Data collection
DiffractometerStoe IPDS 2T Image Plate
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
Tmin, Tmax0.901, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9374, 4371, 2108
Rint0.070
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.078, 0.80
No. of reflections4371
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008) PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.852.1002.826 (3)143.00
O1W—H1W1···O5i0.852.2803.007 (4)144.00
O1W—H2W1···O3i0.852.2202.813 (3)127.00
O1W—H2W1···O6i0.852.1402.940 (4)158.00
C7—H7A···N1ii0.932.623.171 (4)119
Symmetry codes: (i) x+3/2, y+5/2, z; (ii) x+1, y+3, z.
 

Acknowledgements

HK thanks PNU for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds