supplementary materials


su2304 scheme

Acta Cryst. (2011). E67, o2546    [ doi:10.1107/S1600536811035057 ]

Bis(triphenyl-[lambda]5-phosphanylidene)ammonium hydrogen dichloride

J. Gellhaar and C. Knapp

Abstract top

In the title compound, [(Ph3P)2N]+·[Cl-H-Cl]- or C36H30NP2+·Cl2H-, the H atom of the [Cl-H-Cl]- anion and the N atom of the [(Ph3P)2N]+ cation are located on a twofold axis, yielding overall symmetry 2 for both the cation and the anion. The central P-N-P angle [144.12 (13)°] of the cation is in the expected range and indicates only weak cation-anion interactions. The almost linear [Cl-H-Cl]- anion is a rare example of a symmetric hydrogen bridge in a hydrogen dichloride anion. The Cl...Cl distance and two equal Cl-H bonds are typical of such a symmetric hydrogen dichloride anion.

Comment top

The Cambridge Structural Database (Allen, 2002) currently contains more than 1200 structures containing the [(Ph3P)2N]+ cation ([(Ph3P)2N]+ = [PNP]+). Usually this cation is partnered by a bulky anion, while crystal structures containing small anions and especially halides are rare. The crystal structures of some solvate-free halides, [(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N]Cl (Knapp & Uzun, 2010a), and the acetontrile solvate [(Ph3P)2N]Br.CH3CN (Knapp & Uzun, 2010b), were published only very recently.

Bis(triphenyl-λ5-phosphanylidene)ammonium chloride [(Ph3P)2N]Cl was synthesized according to a published method (Ruff et al., 1974). Solvate-free single crystals suitable for X-ray diffraction of the title compound were obtained as a by-product by layering a CH3CN solution with diethyl ether. The H atom of the [Cl—H—Cl]- anion and the N atom of the [(Ph3P)2N]+ cation are located on a twofold axis, yielding overall symmetry 2 for the cation. The central P—N—P angle [144.12 (13)°] and the P—N [1.5762 (7) Å] and P—C distances [1.7940 (16)–1.8028 (15) Å] are in the expected range for the [(Ph3P)2N]+ cation (Lewis & Dance, 2000).

The number of structurally characterized hydrogen dichloride anions is still limited. Often disorder or low crystal quality does not allow to establish unequivically the position of the H atom. The Cl···Cl distances in all hydrogen dichloride anions deviate only slightly from an averaged distance of 3.10 Å. The anion in the title compound contains a symmetric hydrogen bridge with H—Cl distances of 1.56 (1) Å and a Cl···Cl distance of 3.1045 (9) Å. The anion is almost linear and a Cl—H—Cl angle of 173 (3)° is observed. A very similar hydrogen dichloride anion was found in the the crystal structure of [K(18 C-6)][Cl—H—Cl], where H—Cl is 1.56 Å and Cl···Cl 3.117 (1) Å (Atwood et al., 1990).

Related literature top

For selected examples containing the [Cl—H—Cl]- anion, see: Atwood et al. (1990); Mootz et al. (1981); Habtemariam et al. (2001); Swann et al. (1984); Neumüller et al. (2005). For other Bis(triphenyl-λ5-phosphanylidene)ammonium halide structures, see: Knapp & Uzun (2010a,b); Beckett et al. (2010). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis & Dance (2000). For a dsecription of the Cambridge Structural Database, see: Allen (2002). For the synthesis, see: Ruff & Schlientz (1974).

Experimental top

Single crystals of the title compound, suitable for X-ray diffraction analysis, were obtained as a by-product by layering a CH3CN solution of [(Ph3P)2N]Cl with diethyl ether.

Refinement top

The carbon-bonded hydrogen atoms were positioned geometrically and refined using a riding model. The same Uiso value was used for all H atoms, which refined to 0.0226 (13) Å2. The coordinates for the hydrogen atom in the [Cl—H—Cl]- anion were taken from the Fourier map and the atom was refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the ionic unit of the title compound, showing the atom numbering and displacement ellipsoids drawn at the 50% probability level. H atoms are drawn with arbitrary radii. [Symmetry code: (i) -x+1, y, -z+0.5.]
Bis(triphenylphosphanylidene)ammonium hydrogen dichloride top
Crystal data top
C36H30NP2+·Cl2HF(000) = 1272
Mr = 610.46Dx = 1.335 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9956 reflections
a = 11.6467 (3) Åθ = 2.5–30.8°
b = 16.5474 (4) ŵ = 0.35 mm1
c = 15.7584 (3) ÅT = 100 K
V = 3037.00 (12) Å3Block, colourless
Z = 40.18 × 0.14 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2994 independent reflections
Radiation source: microfocus sealed tube2671 reflections with I > 2σ(I)
multilayer mirro opticsRint = 0.030
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.940, Tmax = 0.970k = 1920
28633 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0372P)2 + 2.5322P]
where P = (Fo2 + 2Fc2)/3
2994 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C36H30NP2+·Cl2HV = 3037.00 (12) Å3
Mr = 610.46Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 11.6467 (3) ŵ = 0.35 mm1
b = 16.5474 (4) ÅT = 100 K
c = 15.7584 (3) Å0.18 × 0.14 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2671 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.970Rint = 0.030
28633 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.61 e Å3
S = 1.08Δρmin = 0.79 e Å3
2994 reflectionsAbsolute structure: ?
189 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.37492 (3)0.47726 (2)0.22743 (2)0.01086 (11)
N10.50000.44792 (11)0.25000.0142 (4)
C10.32847 (13)0.42600 (9)0.13289 (10)0.0136 (3)
C20.37451 (13)0.35003 (10)0.11482 (10)0.0163 (3)
H20.43200.32750.15050.0226 (13)*
C30.33594 (15)0.30750 (10)0.04441 (11)0.0203 (4)
H30.36780.25610.03150.0226 (13)*
C40.25109 (16)0.33988 (10)0.00703 (11)0.0227 (4)
H40.22470.31040.05490.0226 (13)*
C50.20431 (15)0.41512 (11)0.01091 (11)0.0224 (4)
H50.14600.43690.02450.0226 (13)*
C60.24288 (14)0.45863 (10)0.08092 (10)0.0173 (3)
H60.21120.51020.09330.0226 (13)*
C70.36204 (12)0.58392 (9)0.20936 (10)0.0126 (3)
C80.43189 (13)0.61829 (10)0.14660 (10)0.0171 (3)
H80.47840.58470.11180.0226 (13)*
C90.43306 (14)0.70100 (10)0.13533 (11)0.0203 (4)
H90.48090.72430.09310.0226 (13)*
C100.36455 (14)0.75028 (10)0.18551 (11)0.0204 (4)
H100.36610.80720.17780.0226 (13)*
C110.29393 (15)0.71670 (10)0.24675 (11)0.0210 (4)
H110.24620.75050.28030.0226 (13)*
C120.29273 (14)0.63361 (10)0.25912 (10)0.0169 (3)
H120.24470.61070.30150.0226 (13)*
C130.27637 (13)0.44720 (9)0.30980 (10)0.0128 (3)
C140.15825 (13)0.45901 (10)0.30003 (10)0.0162 (3)
H140.12950.48610.25130.0226 (13)*
C150.08307 (14)0.43109 (10)0.36169 (11)0.0189 (3)
H150.00280.43910.35500.0226 (13)*
C160.12438 (14)0.39159 (10)0.43294 (10)0.0179 (3)
H160.07240.37230.47480.0226 (13)*
C170.24172 (14)0.38023 (10)0.44327 (10)0.0174 (3)
H170.27000.35340.49230.0226 (13)*
C180.31776 (13)0.40806 (9)0.38184 (10)0.0149 (3)
H180.39800.40040.38900.0226 (13)*
Cl10.49306 (4)0.14372 (3)0.15163 (3)0.03665 (15)
H10.50000.149 (3)0.25000.087 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0108 (2)0.0097 (2)0.0120 (2)0.00044 (14)0.00017 (14)0.00049 (14)
N10.0123 (9)0.0108 (9)0.0196 (10)0.0000.0001 (7)0.000
C10.0144 (7)0.0138 (8)0.0127 (7)0.0053 (6)0.0026 (6)0.0011 (6)
C20.0148 (7)0.0154 (8)0.0188 (8)0.0027 (6)0.0026 (6)0.0021 (6)
C30.0231 (8)0.0158 (8)0.0219 (9)0.0040 (7)0.0065 (7)0.0059 (7)
C40.0334 (9)0.0200 (9)0.0146 (8)0.0099 (7)0.0004 (7)0.0030 (7)
C50.0300 (9)0.0212 (9)0.0160 (8)0.0063 (7)0.0066 (7)0.0041 (7)
C60.0229 (8)0.0135 (8)0.0155 (8)0.0021 (6)0.0011 (6)0.0015 (6)
C70.0126 (7)0.0118 (7)0.0134 (7)0.0000 (6)0.0044 (6)0.0001 (6)
C80.0160 (7)0.0169 (8)0.0184 (8)0.0015 (6)0.0007 (6)0.0006 (6)
C90.0187 (8)0.0174 (9)0.0247 (9)0.0021 (7)0.0007 (7)0.0067 (7)
C100.0218 (8)0.0118 (8)0.0276 (9)0.0007 (6)0.0076 (7)0.0019 (7)
C110.0231 (8)0.0158 (8)0.0240 (9)0.0054 (7)0.0021 (7)0.0027 (7)
C120.0173 (8)0.0166 (8)0.0169 (8)0.0019 (6)0.0003 (6)0.0001 (6)
C130.0148 (7)0.0106 (7)0.0130 (8)0.0014 (6)0.0006 (6)0.0023 (6)
C140.0155 (7)0.0185 (8)0.0147 (8)0.0014 (6)0.0018 (6)0.0002 (6)
C150.0133 (7)0.0214 (9)0.0219 (9)0.0024 (6)0.0001 (6)0.0006 (7)
C160.0202 (8)0.0153 (8)0.0180 (8)0.0039 (6)0.0047 (6)0.0001 (6)
C170.0230 (8)0.0142 (8)0.0149 (8)0.0002 (6)0.0009 (6)0.0022 (6)
C180.0151 (7)0.0127 (8)0.0168 (8)0.0008 (6)0.0009 (6)0.0005 (6)
Cl10.0363 (3)0.0556 (3)0.0181 (2)0.0236 (2)0.00128 (18)0.0032 (2)
Geometric parameters (Å, °) top
P1—N11.5762 (7)C9—C101.388 (2)
P1—C71.7940 (16)C9—H90.9500
P1—C11.7976 (16)C10—C111.384 (2)
P1—C131.8028 (15)C10—H100.9500
N1—P1i1.5761 (7)C11—C121.389 (2)
C1—C21.396 (2)C11—H110.9500
C1—C61.399 (2)C12—H120.9500
C2—C31.389 (2)C13—C181.393 (2)
C2—H20.9500C13—C141.398 (2)
C3—C41.386 (3)C14—C151.387 (2)
C3—H30.9500C14—H140.9500
C4—C51.388 (3)C15—C161.386 (2)
C4—H40.9500C15—H150.9500
C5—C61.392 (2)C16—C171.389 (2)
C5—H50.9500C16—H160.9500
C6—H60.9500C17—C181.390 (2)
C7—C121.394 (2)C17—H170.9500
C7—C81.401 (2)C18—H180.9500
C8—C91.380 (2)Cl1—H11.555 (3)
C8—H80.9500
N1—P1—C7114.59 (8)C8—C9—C10120.24 (16)
N1—P1—C1108.65 (7)C8—C9—H9119.9
C7—P1—C1107.91 (7)C10—C9—H9119.9
N1—P1—C13109.93 (6)C11—C10—C9120.19 (15)
C7—P1—C13109.42 (7)C11—C10—H10119.9
C1—P1—C13105.96 (7)C9—C10—H10119.9
P1i—N1—P1144.12 (13)C10—C11—C12120.08 (16)
C2—C1—C6120.13 (14)C10—C11—H11120.0
C2—C1—P1118.58 (12)C12—C11—H11120.0
C6—C1—P1121.17 (12)C11—C12—C7119.95 (16)
C3—C2—C1119.67 (15)C11—C12—H12120.0
C3—C2—H2120.2C7—C12—H12120.0
C1—C2—H2120.2C18—C13—C14119.68 (14)
C4—C3—C2120.14 (16)C18—C13—P1119.66 (11)
C4—C3—H3119.9C14—C13—P1120.57 (12)
C2—C3—H3119.9C15—C14—C13119.84 (15)
C3—C4—C5120.49 (16)C15—C14—H14120.1
C3—C4—H4119.8C13—C14—H14120.1
C5—C4—H4119.8C16—C15—C14120.37 (15)
C4—C5—C6119.92 (16)C16—C15—H15119.8
C4—C5—H5120.0C14—C15—H15119.8
C6—C5—H5120.0C15—C16—C17120.03 (15)
C5—C6—C1119.63 (16)C15—C16—H16120.0
C5—C6—H6120.2C17—C16—H16120.0
C1—C6—H6120.2C16—C17—C18120.02 (15)
C12—C7—C8119.59 (15)C16—C17—H17120.0
C12—C7—P1122.65 (12)C18—C17—H17120.0
C8—C7—P1117.57 (12)C17—C18—C13120.06 (14)
C9—C8—C7119.94 (15)C17—C18—H18120.0
C9—C8—H8120.0C13—C18—H18120.0
C7—C8—H8120.0
C7—P1—N1—P1i8.50 (6)C12—C7—C8—C91.0 (2)
C1—P1—N1—P1i129.26 (6)P1—C7—C8—C9174.15 (13)
C13—P1—N1—P1i115.21 (6)C7—C8—C9—C100.5 (2)
N1—P1—C1—C227.31 (14)C8—C9—C10—C110.5 (3)
C7—P1—C1—C2152.11 (12)C9—C10—C11—C121.0 (3)
C13—P1—C1—C290.78 (13)C10—C11—C12—C70.5 (2)
N1—P1—C1—C6156.65 (13)C8—C7—C12—C110.5 (2)
C7—P1—C1—C631.85 (15)P1—C7—C12—C11174.41 (13)
C13—P1—C1—C685.26 (14)N1—P1—C13—C183.27 (15)
C6—C1—C2—C30.8 (2)C7—P1—C13—C18123.40 (13)
P1—C1—C2—C3176.89 (12)C1—P1—C13—C18120.50 (13)
C1—C2—C3—C40.8 (2)N1—P1—C13—C14173.36 (13)
C2—C3—C4—C50.4 (3)C7—P1—C13—C1459.97 (14)
C3—C4—C5—C60.2 (3)C1—P1—C13—C1456.13 (14)
C4—C5—C6—C10.2 (2)C18—C13—C14—C150.6 (2)
C2—C1—C6—C50.3 (2)P1—C13—C14—C15176.07 (12)
P1—C1—C6—C5176.29 (12)C13—C14—C15—C160.0 (2)
N1—P1—C7—C12118.52 (12)C14—C15—C16—C170.4 (3)
C1—P1—C7—C12120.31 (13)C15—C16—C17—C180.4 (2)
C13—P1—C7—C125.46 (15)C16—C17—C18—C130.1 (2)
N1—P1—C7—C856.51 (13)C14—C13—C18—C170.6 (2)
C1—P1—C7—C864.66 (13)P1—C13—C18—C17176.05 (12)
C13—P1—C7—C8179.52 (12)
Symmetry codes: (i) −x+1, y, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
Cl1—H1···Cl1i1.56 (1)1.56 (1)3.1045 (9)173 (3)
Symmetry codes: (i) −x+1, y, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
Cl1—H1···Cl1i1.56 (1)1.56 (1)3.1045 (9)173 (3)
Symmetry codes: (i) −x+1, y, −z+1/2.
Acknowledgements top

Financial support from the Deutsche Forschungsgemeinschaft (DFG) and Universität Freiburg is gratefully acknowledged.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Atwood, J. L., Bott, S. G., Means, C. M., Coleman, A. W., Zhang, H. & May, M. T. (1990). Inorg. Chem. 29, 467–470.

Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.

Brandenburg, K. & Putz, H. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Habtemariam, A., Watchman, B., Potter, B. S., Palmer, R., Parsons, S., Parkin, A. & Sadler, P. J. (2001). J. Chem. Soc. Dalton Trans. pp. 1306–1318.

Knapp, C. & Uzun, R. (2010a). Acta Cryst. E66, o3185.

Knapp, C. & Uzun, R. (2010b). Acta Cryst. E66, o3186.

Lewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299–306.

Mootz, D., Poll, W., Wunderlich, H. & Wussow, H.-G. (1981). Chem. Ber. 114, 3499–3504.

Neumüller, B. & Dehnicke, K. (2005). Z. Anorg. Allg. Chem. 631, 1471–1476.

Ruff, J. K. & Schlientz, W. J. (1974). Inorg. Synth. 15, 84–87.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Swann, R. T., Hanson, A. W. & Boekelheide, V. (1984). J. Am. Chem. Soc. 106, 818–819.