organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4-Dihy­dr­oxy-6-meth­­oxy­phen­yl)(3,5-dihy­dr­oxy­phen­yl)methanone monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 September 2011; accepted 16 September 2011; online 30 September 2011)

The title benzophenone compound, C14H12O6·H2O, was isolated from the bark of Garcinia hombroniana Pierre (Guttiferae). The mol­ecule is twisted, the dihedral angle between the two benzene rings being 59.13 (7)°. The meth­oxy group is approximately coplanar with the attached benzene ring, with a C—O—C—C torsion angle of 1.91 (18)°. The water mol­ecule is disordered over two positions in a 0.555 (19):0.445 (19) ratio. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds. These inter­actions link the mol­ecules into sheets parallel to the ac plane. The sheets are stacked along the b axis by ππ inter­actions, with centroid–centroid distances of 3.6219 (7) Å. A weak O—H⋯π inter­action was also noted.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to benzophenones and their bioactivity, see: Khanum et al. (2009[Khanum, S. A., Girish, V., Suparshwa, S. S. & Khanum, N. F. (2009). Bioorg. Med. Chem. Lett. 19, 1887-1891.]); Pereira et al. (2010[Pereira, I. O., Marques, M. J., Pavan, A. L. R., Codonho, B. S., Barbiéri, C. L., Beijo, L. A., Doriguetto, A. C., D'Martin, E. C. & dos Santos, M. H. (2010). Phytomedicine, 17, 339-345.]); Tzanova et al. (2009[Tzanova, T., Gerova, M., Petrov, O., Karaivanova, M. & Bagrel, D. (2009). Eur. J. Med. Chem. 44, 2724-2730.]). For background to Guttiferae plants, see: Jayaprakasha et al. (2006[Jayaprakasha, G. K., Negi, P. S. & Jena, B. S. (2006). Innovative Food Sci. Emerg. Technol. 7, 246-250.]); Mahabusarakum et al. (1983[Mahabusarakum, W., Phongpaichit, S., Jansakul, C. & Wiriyachitra, P. (1983). Songklanakarin J. Sci. Technol. 5, 337-340.]); Ngoupayo et al. (2009[Ngoupayo, J., Tabopda, T. K. & Ali, M. S. (2009). Bioorg. Med. Chem. 17, 5688-5695.]); Pereira et al. (2010[Pereira, I. O., Marques, M. J., Pavan, A. L. R., Codonho, B. S., Barbiéri, C. L., Beijo, L. A., Doriguetto, A. C., D'Martin, E. C. & dos Santos, M. H. (2010). Phytomedicine, 17, 339-345.]); Phongpaichit et al. (1994[Phongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399-405.]); Smitinand (2001[Smitinand, T. (2001). Thai Plant Names, p. 152. Prachachon, Bangkok, Thailand.]); Zadernowski et al. (2009[Zadernowski, R., Czaplicki, S. & Naczk, M. (2009). Food Chem. 112, 685-689.]); Zhang et al. (2010[Zhang, Y., Song, Z., Hao, J., Qiu, S. & Xu, Z. (2010). Fitoterapia, 81, 595-599.]). For related structures, see: Betz et al. (2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1897.]); Li et al. (2010[Li, H.-P., Yang, Y.-X. & Ng, S. W. (2010). Acta Cryst. E66, o2867.]). For stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O6·H2O

  • Mr = 294.25

  • Triclinic, [P \overline 1]

  • a = 7.7087 (1) Å

  • b = 8.4050 (1) Å

  • c = 11.2380 (1) Å

  • α = 82.401 (1)°

  • β = 75.570 (1)°

  • γ = 67.842 (1)°

  • V = 652.49 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.42 × 0.33 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.988

  • 19157 measured reflections

  • 4696 independent reflections

  • 4220 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 1.17

  • 4696 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.89 (3) 1.72 (3) 2.5453 (14) 152 (3)
O2—H1O2⋯O1i 0.89 (3) 2.45 (3) 2.9554 (16) 117 (3)
O3—H1O3⋯O5ii 0.85 (2) 1.90 (2) 2.7440 (15) 177 (3)
O5—H1O5⋯O1Wiii 0.83 (3) 1.76 (3) 2.574 (7) 166 (3)
O6—H1O6⋯O2iv 0.79 (3) 1.98 (3) 2.7220 (15) 157 (3)
O1W—H1W1⋯O6ii 0.89 1.91 2.746 (8) 156
C14—H14C⋯O1v 0.98 2.55 3.4507 (19) 152
O1WX—H2WXCg2vi 0.86 2.89 3.402 (7) 120
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z-1; (iii) x-1, y-1, z+1; (iv) -x, -y+1, -z+1; (v) x+1, y, z; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Garcinia is traditionally used for the treatment of abdominal pain, dysentery, diarrhea, suppuration, infected wounds, leucorrhoea, chronic ulcers and gonorrhea (Jayaprakasha et al., 2006). Most Garcinia species are trees but some are shrubs or treelets and are rich sources of bioactive compounds including xanthones, flavonoids, benzophenones, lactones and phenolic acids (Mahabusarakum et al., 1983; Ngoupayo et al., 2009; Pereira et al., 2010; Phongpaichit et al., 1994; Zadernowski et al., 2009; Zhang et al., 2010). Garcinia hombroniana Pierre (Guttiferae), commonly called seashore mangosteen or pokok bruas (Malay), is indigenous in Malaysia and widely distributed in the southern part of Thailand where it is known as "wa" (Smitinand, 2001). During the course of our investigation of G. hombroniana, we have isolated the title benzophenone compound (I) from the ethyl acetate extract of the bark. Benzophenones have been found to possess antioxidant (Tzanova et al., 2009), anti-inflammatory (Khanum et al., 2009) and leishmanicidal (Pereira et al., 2010) activities.

The molecule of the title benzophenone which crystallized as a monohydrate (Fig. 1) is twisted with the dihedral angle between the 2,4-dihydroxy-6-methoxyphenyl and 3,5-dihydroxyphenyl rings being 59.13 (7)°, whereas the triangular Caryl-C(O)-Caryl fragment (C1/C7/C8/O1) makes dihedral angles of 25.16 (7) and 43.44 (8)° with the 2,4-dihydroxy-6-methoxyphenyl and 3,5-dihydroxyphenyl rings, respectively. The two hydroxy groups and the methoxy groups of the 2,4-dihydroxy-6-methoxyphenyl residue are co-planar with the benzene ring with a r.m.s. of 0.0459 (1) Å for the ten non-H atoms and the torsion angle C14–O1–C6–C5 = 1.91 (18)°. The two hydroxy groups of the 3,5-dihydroxyphenyl are also co-planar with the r.m.s. of 0.0083 (1) Å for the eight non-H atoms. An intramolecular O2—H1O2···O1 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995) (Fig. 1 and Table 1). The bond distances are comparable with the related structures (Betz et al., 2011; Li et al., 2010). The water molecule is disordered over two positions in a 0.555 (19):0.445 (19) ratio.

The crystal is stabilized by intermolecular O—H···O hydrogen bonds. These interactions link the molecules into sheets parallel to the ac plane (Fig. 2). These sheets are stacked along the b axis by π···π interaction with the Cg1···Cg1 distance of 3.6219 (7) Å (symmetry code 1-x, -y, 1-z) where Cg1 is the centroid of the C1–C6 benzene ring. A weak O—H···π interaction was also observed (Table 1).

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to benzophenones and their bioactivity, see: Khanum et al. (2009); Pereira et al. (2010); Tzanova et al. (2009). For background to Guttiferae plants, see: Jayaprakasha et al. (2006); Mahabusarakum et al. (1983); Ngoupayo et al. (2009); Pereira et al. (2010); Phongpaichit et al. (1994); Smitinand (2001); Zadernowski et al. (2009); Zhang et al. (2010). For related structures, see: Betz et al. (2011); Li et al. (2010). For stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The air-dried and ground bark (5.2 kg) of G. hombroniana was extracted (Soxhlet) successively with n-hexane, dichloromethane, ethyl acetate and methanol. The ethyl acetate extract (18 g) was subjected to silica gel column chromatography (CC) using hexane-chloroform-ethyl acetate-methanol gradient, affording 40 fractions (FE1- FE40). Fractions FE23-FE29 were combined and fractionated using silica gel CC with chloroform-acetone gradient which afforded another fraction FEb. The title compound (I) was isolated from the fraction FEb in the form of shiny yellow crystals by silica gel CC with chloroform-acetone (3:2 v/v) as eluting solvent. The melting point determined was 516-519 K.

Refinement top

Hydroxy H atoms were located from a Fourier difference map and isotropically refined. The C-bound H atoms were placed in calculated positions with d(C—H) = 0.95 Å for aromatic and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for O and methyl H atoms, and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The water molecule was found to be disordered over two sites in a 0.555 (19): 0.445 (19) occupancy ratio (from refinement). The water-bound H1W1, H2W1, H1WX and H2WX atoms were located from a difference Fourier map and fixed in these positions with Uiso(H) = 1.5 Ueq(O)

Structure description top

Garcinia is traditionally used for the treatment of abdominal pain, dysentery, diarrhea, suppuration, infected wounds, leucorrhoea, chronic ulcers and gonorrhea (Jayaprakasha et al., 2006). Most Garcinia species are trees but some are shrubs or treelets and are rich sources of bioactive compounds including xanthones, flavonoids, benzophenones, lactones and phenolic acids (Mahabusarakum et al., 1983; Ngoupayo et al., 2009; Pereira et al., 2010; Phongpaichit et al., 1994; Zadernowski et al., 2009; Zhang et al., 2010). Garcinia hombroniana Pierre (Guttiferae), commonly called seashore mangosteen or pokok bruas (Malay), is indigenous in Malaysia and widely distributed in the southern part of Thailand where it is known as "wa" (Smitinand, 2001). During the course of our investigation of G. hombroniana, we have isolated the title benzophenone compound (I) from the ethyl acetate extract of the bark. Benzophenones have been found to possess antioxidant (Tzanova et al., 2009), anti-inflammatory (Khanum et al., 2009) and leishmanicidal (Pereira et al., 2010) activities.

The molecule of the title benzophenone which crystallized as a monohydrate (Fig. 1) is twisted with the dihedral angle between the 2,4-dihydroxy-6-methoxyphenyl and 3,5-dihydroxyphenyl rings being 59.13 (7)°, whereas the triangular Caryl-C(O)-Caryl fragment (C1/C7/C8/O1) makes dihedral angles of 25.16 (7) and 43.44 (8)° with the 2,4-dihydroxy-6-methoxyphenyl and 3,5-dihydroxyphenyl rings, respectively. The two hydroxy groups and the methoxy groups of the 2,4-dihydroxy-6-methoxyphenyl residue are co-planar with the benzene ring with a r.m.s. of 0.0459 (1) Å for the ten non-H atoms and the torsion angle C14–O1–C6–C5 = 1.91 (18)°. The two hydroxy groups of the 3,5-dihydroxyphenyl are also co-planar with the r.m.s. of 0.0083 (1) Å for the eight non-H atoms. An intramolecular O2—H1O2···O1 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995) (Fig. 1 and Table 1). The bond distances are comparable with the related structures (Betz et al., 2011; Li et al., 2010). The water molecule is disordered over two positions in a 0.555 (19):0.445 (19) ratio.

The crystal is stabilized by intermolecular O—H···O hydrogen bonds. These interactions link the molecules into sheets parallel to the ac plane (Fig. 2). These sheets are stacked along the b axis by π···π interaction with the Cg1···Cg1 distance of 3.6219 (7) Å (symmetry code 1-x, -y, 1-z) where Cg1 is the centroid of the C1–C6 benzene ring. A weak O—H···π interaction was also observed (Table 1).

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to benzophenones and their bioactivity, see: Khanum et al. (2009); Pereira et al. (2010); Tzanova et al. (2009). For background to Guttiferae plants, see: Jayaprakasha et al. (2006); Mahabusarakum et al. (1983); Ngoupayo et al. (2009); Pereira et al. (2010); Phongpaichit et al. (1994); Smitinand (2001); Zadernowski et al. (2009); Zhang et al. (2010). For related structures, see: Betz et al. (2011); Li et al. (2010). For stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component of the disordered water molecule. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound with only the major component of the water molecule shown, viewed down the b axis, showing sheets parallel to the ac plane. Hydrogen bonds are shown as dashed lines.
(2,4-Dihydroxy-6-methoxyphenyl)(3,5-dihydroxyphenyl)methanone monohydrate top
Crystal data top
C14H12O6·H2OZ = 2
Mr = 294.25F(000) = 308
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Melting point = 516–519 K
a = 7.7087 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4050 (1) ÅCell parameters from 4696 reflections
c = 11.2380 (1) Åθ = 1.9–32.5°
α = 82.401 (1)°µ = 0.12 mm1
β = 75.570 (1)°T = 100 K
γ = 67.842 (1)°Plate, yellow
V = 652.49 (1) Å30.42 × 0.33 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4696 independent reflections
Radiation source: sealed tube4220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 32.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.951, Tmax = 0.988k = 1212
19157 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.038P)2 + 0.633P]
where P = (Fo2 + 2Fc2)/3
4696 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H12O6·H2Oγ = 67.842 (1)°
Mr = 294.25V = 652.49 (1) Å3
Triclinic, P1Z = 2
a = 7.7087 (1) ÅMo Kα radiation
b = 8.4050 (1) ŵ = 0.12 mm1
c = 11.2380 (1) ÅT = 100 K
α = 82.401 (1)°0.42 × 0.33 × 0.10 mm
β = 75.570 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4696 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4220 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.988Rint = 0.023
19157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.51 e Å3
4696 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.02024 (14)0.10822 (14)0.58801 (9)0.01558 (19)
O20.18999 (14)0.13186 (13)0.36467 (9)0.01292 (18)
H1O20.114 (4)0.106 (4)0.432 (3)0.044 (7)*
O30.74976 (15)0.27372 (15)0.28766 (10)0.0168 (2)
H1O30.757 (4)0.250 (3)0.215 (2)0.032 (6)*
O40.40238 (14)0.24500 (14)0.69771 (9)0.01396 (19)
O50.23219 (17)0.21024 (15)1.05072 (9)0.0191 (2)
H1O50.247 (4)0.123 (3)1.035 (2)0.036 (7)*
O60.12705 (15)0.70856 (13)0.85592 (10)0.01557 (19)
H1O60.114 (4)0.751 (4)0.789 (3)0.040 (7)*
C10.27991 (17)0.20544 (16)0.53565 (11)0.0104 (2)
C20.31206 (17)0.17912 (16)0.40884 (11)0.0106 (2)
C30.46478 (18)0.20447 (17)0.32314 (12)0.0125 (2)
H3A0.47960.19210.23800.015*
C40.59587 (18)0.24845 (17)0.36499 (12)0.0121 (2)
C50.57783 (18)0.26523 (17)0.49021 (12)0.0128 (2)
H5A0.67060.29210.51720.015*
C60.42273 (17)0.24217 (16)0.57445 (11)0.0110 (2)
C70.10655 (17)0.19008 (16)0.61790 (12)0.0110 (2)
C80.01674 (17)0.28193 (16)0.73582 (11)0.0107 (2)
C90.06148 (18)0.19737 (17)0.83798 (12)0.0126 (2)
H9A0.05050.08160.83410.015*
C100.15600 (19)0.28606 (17)0.94574 (12)0.0131 (2)
C110.17726 (19)0.45713 (17)0.95104 (12)0.0137 (2)
H11A0.24290.51691.02470.016*
C120.10135 (18)0.53944 (16)0.84732 (12)0.0117 (2)
C130.00183 (18)0.45267 (17)0.73944 (12)0.0120 (2)
H13A0.05240.50890.66960.014*
C140.54604 (19)0.27856 (19)0.73956 (13)0.0159 (2)
H14A0.51880.27150.82970.024*
H14B0.54500.39390.71010.024*
H14C0.67250.19320.70760.024*
O1W0.6637 (7)0.9646 (10)0.0189 (7)0.0211 (11)0.555 (19)
H1W10.74610.86660.01510.032*0.555 (19)
H2W10.56420.99570.00020.032*0.555 (19)
O1WX0.6960 (8)0.9169 (9)0.0518 (6)0.0125 (9)0.445 (19)
H1WX0.68960.87590.12250.019*0.445 (19)
H2WX0.79640.83530.01730.019*0.445 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0153 (4)0.0209 (5)0.0142 (4)0.0110 (4)0.0001 (3)0.0048 (4)
O20.0146 (4)0.0173 (4)0.0104 (4)0.0096 (4)0.0028 (3)0.0006 (3)
O30.0162 (4)0.0256 (5)0.0107 (4)0.0129 (4)0.0013 (3)0.0001 (4)
O40.0120 (4)0.0231 (5)0.0088 (4)0.0084 (4)0.0019 (3)0.0021 (3)
O50.0306 (6)0.0212 (5)0.0093 (4)0.0173 (4)0.0021 (4)0.0008 (4)
O60.0230 (5)0.0115 (4)0.0118 (4)0.0067 (4)0.0022 (4)0.0006 (3)
C10.0097 (5)0.0119 (5)0.0097 (5)0.0046 (4)0.0009 (4)0.0013 (4)
C20.0112 (5)0.0110 (5)0.0102 (5)0.0041 (4)0.0029 (4)0.0013 (4)
C30.0134 (5)0.0154 (5)0.0096 (5)0.0068 (4)0.0012 (4)0.0005 (4)
C40.0114 (5)0.0142 (5)0.0110 (5)0.0063 (4)0.0007 (4)0.0002 (4)
C50.0122 (5)0.0161 (5)0.0113 (5)0.0071 (4)0.0015 (4)0.0011 (4)
C60.0110 (5)0.0131 (5)0.0095 (5)0.0050 (4)0.0020 (4)0.0013 (4)
C70.0103 (5)0.0121 (5)0.0104 (5)0.0041 (4)0.0017 (4)0.0013 (4)
C80.0098 (5)0.0133 (5)0.0091 (5)0.0045 (4)0.0015 (4)0.0014 (4)
C90.0132 (5)0.0137 (5)0.0117 (5)0.0062 (4)0.0011 (4)0.0015 (4)
C100.0148 (5)0.0166 (6)0.0093 (5)0.0082 (5)0.0014 (4)0.0002 (4)
C110.0159 (5)0.0156 (6)0.0098 (5)0.0066 (5)0.0006 (4)0.0019 (4)
C120.0122 (5)0.0117 (5)0.0114 (5)0.0038 (4)0.0029 (4)0.0017 (4)
C130.0124 (5)0.0129 (5)0.0105 (5)0.0053 (4)0.0008 (4)0.0008 (4)
C140.0139 (5)0.0225 (6)0.0136 (6)0.0070 (5)0.0043 (4)0.0046 (5)
O1W0.0180 (11)0.0201 (19)0.026 (2)0.0063 (12)0.0030 (12)0.0079 (18)
O1WX0.0132 (13)0.0121 (16)0.0115 (15)0.0032 (12)0.0041 (10)0.0009 (12)
Geometric parameters (Å, º) top
O1—C71.2437 (16)C5—H5A0.9500
O2—C21.3626 (15)C7—C81.4972 (18)
O2—H1O20.89 (3)C8—C131.3925 (18)
O3—C41.3546 (15)C8—C91.3961 (17)
O3—H1O30.85 (3)C9—C101.3937 (18)
O4—C61.3570 (15)C9—H9A0.9500
O4—C141.4344 (16)C10—C111.3920 (19)
O5—C101.3715 (16)C11—C121.3900 (18)
O5—H1O50.83 (3)C11—H11A0.9500
O6—C121.3724 (16)C12—C131.3923 (17)
O6—H1O60.79 (3)C13—H13A0.9500
C1—C21.4168 (17)C14—H14A0.9800
C1—C61.4244 (17)C14—H14B0.9800
C1—C71.4628 (17)C14—H14C0.9800
C2—C31.3888 (17)O1W—H1W10.8916
C3—C41.3942 (18)O1W—H2W10.7867
C3—H3A0.9500O1WX—H1WX0.8209
C4—C51.3998 (18)O1WX—H2WX0.8602
C5—C61.3876 (17)
C2—O2—H1O2104.3 (18)C13—C8—C9121.23 (12)
C4—O3—H1O3109.9 (16)C13—C8—C7120.11 (11)
C6—O4—C14117.37 (10)C9—C8—C7118.45 (11)
C10—O5—H1O5110.8 (18)C10—C9—C8118.71 (12)
C12—O6—H1O6109 (2)C10—C9—H9A120.6
C2—C1—C6116.96 (11)C8—C9—H9A120.6
C2—C1—C7118.58 (11)O5—C10—C11116.99 (12)
C6—C1—C7124.45 (11)O5—C10—C9122.05 (12)
O2—C2—C3116.67 (11)C11—C10—C9120.96 (12)
O2—C2—C1121.07 (11)C12—C11—C10119.21 (12)
C3—C2—C1122.23 (11)C12—C11—H11A120.4
C2—C3—C4118.45 (12)C10—C11—H11A120.4
C2—C3—H3A120.8O6—C12—C11117.41 (11)
C4—C3—H3A120.8O6—C12—C13121.52 (12)
O3—C4—C3122.18 (12)C11—C12—C13121.06 (12)
O3—C4—C5116.18 (11)C12—C13—C8118.81 (12)
C3—C4—C5121.63 (12)C12—C13—H13A120.6
C6—C5—C4119.19 (12)C8—C13—H13A120.6
C6—C5—H5A120.4O4—C14—H14A109.5
C4—C5—H5A120.4O4—C14—H14B109.5
O4—C6—C5122.54 (11)H14A—C14—H14B109.5
O4—C6—C1116.13 (11)O4—C14—H14C109.5
C5—C6—C1121.26 (12)H14A—C14—H14C109.5
O1—C7—C1120.63 (11)H14B—C14—H14C109.5
O1—C7—C8117.04 (11)H1W1—O1W—H2W1112.7
C1—C7—C8122.17 (11)H1WX—O1WX—H2WX97.6
C6—C1—C2—O2175.50 (11)C6—C1—C7—O1157.57 (13)
C7—C1—C2—O23.32 (18)C2—C1—C7—C8154.00 (12)
C6—C1—C2—C36.35 (19)C6—C1—C7—C827.27 (19)
C7—C1—C2—C3174.83 (12)O1—C7—C8—C13132.18 (13)
O2—C2—C3—C4178.32 (11)C1—C7—C8—C1343.14 (18)
C1—C2—C3—C43.46 (19)O1—C7—C8—C942.51 (17)
C2—C3—C4—O3179.32 (12)C1—C7—C8—C9142.18 (13)
C2—C3—C4—C50.8 (2)C13—C8—C9—C101.36 (19)
O3—C4—C5—C6179.57 (12)C7—C8—C9—C10175.99 (11)
C3—C4—C5—C61.8 (2)C8—C9—C10—O5178.31 (12)
C14—O4—C6—C51.91 (18)C8—C9—C10—C111.8 (2)
C14—O4—C6—C1178.89 (11)O5—C10—C11—C12179.54 (12)
C4—C5—C6—O4175.49 (12)C9—C10—C11—C120.5 (2)
C4—C5—C6—C11.3 (2)C10—C11—C12—O6179.35 (12)
C2—C1—C6—O4171.78 (11)C10—C11—C12—C131.2 (2)
C7—C1—C6—O46.96 (19)O6—C12—C13—C8178.96 (12)
C2—C1—C6—C55.23 (19)C11—C12—C13—C81.58 (19)
C7—C1—C6—C5176.02 (12)C9—C8—C13—C120.30 (19)
C2—C1—C7—O121.15 (19)C7—C8—C13—C12174.24 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.89 (3)1.72 (3)2.5453 (14)152 (3)
O2—H1O2···O1i0.89 (3)2.45 (3)2.9554 (16)117 (3)
O3—H1O3···O5ii0.85 (2)1.90 (2)2.7440 (15)177 (3)
O5—H1O5···O1Wiii0.83 (3)1.76 (3)2.574 (7)166 (3)
O6—H1O6···O2iv0.79 (3)1.98 (3)2.7220 (15)157 (3)
O1W—H1W1···O6ii0.891.912.746 (8)156
C14—H14C···O1v0.982.553.4507 (19)152
O1WX—H2WX···Cg2vi0.862.893.402 (7)120
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z1; (iii) x1, y1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H12O6·H2O
Mr294.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7087 (1), 8.4050 (1), 11.2380 (1)
α, β, γ (°)82.401 (1), 75.570 (1), 67.842 (1)
V3)652.49 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.33 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.951, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
19157, 4696, 4220
Rint0.023
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 1.17
No. of reflections4696
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.89 (3)1.72 (3)2.5453 (14)152 (3)
O2—H1O2···O1i0.89 (3)2.45 (3)2.9554 (16)117 (3)
O3—H1O3···O5ii0.85 (2)1.90 (2)2.7440 (15)177 (3)
O5—H1O5···O1Wiii0.83 (3)1.76 (3)2.574 (7)166 (3)
O6—H1O6···O2iv0.79 (3)1.98 (3)2.7220 (15)157 (3)
O1W—H1W1···O6ii0.891.912.746 (8)156
C14—H14C···O1v0.982.553.4507 (19)152
O1WX—H2WX···Cg2vi0.862.893.402 (7)120
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z1; (iii) x1, y1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NJ, WKC and MK wish to acknowledge the research grant RU1001/PKIMIA/811187 provided by Universiti Sains Malaysia (USM). NJ also thanks USM and the Third World Academy of Sciences (TWAS) for the award of a TWAS-USM PG fellowship. The authors also thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayaprakasha, G. K., Negi, P. S. & Jena, B. S. (2006). Innovative Food Sci. Emerg. Technol. 7, 246–250.  CrossRef CAS Google Scholar
First citationKhanum, S. A., Girish, V., Suparshwa, S. S. & Khanum, N. F. (2009). Bioorg. Med. Chem. Lett. 19, 1887–1891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-P., Yang, Y.-X. & Ng, S. W. (2010). Acta Cryst. E66, o2867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahabusarakum, W., Phongpaichit, S., Jansakul, C. & Wiriyachitra, P. (1983). Songklanakarin J. Sci. Technol. 5, 337–340.  CAS Google Scholar
First citationNgoupayo, J., Tabopda, T. K. & Ali, M. S. (2009). Bioorg. Med. Chem. 17, 5688–5695.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPereira, I. O., Marques, M. J., Pavan, A. L. R., Codonho, B. S., Barbiéri, C. L., Beijo, L. A., Doriguetto, A. C., D'Martin, E. C. & dos Santos, M. H. (2010). Phytomedicine, 17, 339–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPhongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitinand, T. (2001). Thai Plant Names, p. 152. Prachachon, Bangkok, Thailand.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTzanova, T., Gerova, M., Petrov, O., Karaivanova, M. & Bagrel, D. (2009). Eur. J. Med. Chem. 44, 2724–2730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZadernowski, R., Czaplicki, S. & Naczk, M. (2009). Food Chem. 112, 685–689.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Y., Song, Z., Hao, J., Qiu, S. & Xu, Z. (2010). Fitoterapia, 81, 595–599.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds