organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-6-tert-butyl­benzene-1,3-diol

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: wangxiawx83@yahoo.com.cn

(Received 11 June 2011; accepted 25 August 2011; online 14 September 2011)

In the title compound, C10H12Br2O2, a multiply substituted bromo­arene, the C—C—C angles within the aromatic ring are in the range 115.7 (7)-122.4 (7)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, but no ππ stacking is observed.

Related literature

For similar compounds, see: Butler & Walker (1993[Butler, A. & Walker, J.-V. (1993). Chem. Rev. 93, 1937-1944.]); Seevers & Counsell (1982[Seevers, R.-H. & Counsell, R.-E. (1982). Chem. Rev. 82, 575-590.]); Zheng et al. (2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12Br2O2

  • Mr = 324.02

  • Tetragonal, [P \overline 4b 2]

  • a = 11.618 (3) Å

  • c = 17.761 (4) Å

  • V = 2397.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.74 mm−1

  • T = 290 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.319, Tmax = 0.346

  • 4935 measured reflections

  • 1367 independent reflections

  • 775 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.059

  • S = 1.08

  • 1367 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 2.67 3.246 (13) 129
O2—H2⋯O2ii 0.82 2.36 2.979 (9) 133
Symmetry codes: (i) -x+1, -y+2, z; (ii) -y+1, x, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bromoarenes have proven to be important and valuable precursors for the synthesis of a wide variety of target compounds by functionalization through cross-coupling reactions, and have been used as key intermediates in the synthesis of a large number of natural products and bioactive materials (Butler & Walker, 1993; Seevers & Counsell, 1982). In this paper, we synthesized the title compound and reported its crystal structure. In the title compound, C—C—C angles within the phenyl ring span a range of 115.7 (7) ° to 122.4 (7) ° with the smallest angle found on the C6 atom bearing the tert-butyl substituent, and the largest angle is found for the unsubstituted C5 atom (Fig. 1). In the crystal, molecules are linked by O—H···O hydrogen bonds (Table 1, Fig. 2). In addition, the benzene rings between the adjacent molecules are stacked in a face-to-face orientation with the distance of 3.858 Å, a distance longer than the ππ stacking distances of 3.33 - 3.53 Å reported elsewhere (Zheng et al., 2004), indicating no ππ stacking is observed for this compound.

Related literature top

For similar compounds, see: Butler & Walker (1993); Seevers & Counsell (1982); Zheng et al. (2004).

Experimental top

A mixture of 4,6-di-tert-butylbenzene-1,3-diol (111 mg, 0.5 mmol), p-toluenesulfonic acid monohydrate (285 mg, 1.5 mmol) and N-bromosuccinimide in acetonitrile (2 ml) was heated to reflux for 3 h. Subsequently, the solvent was removed under reduced pressure, and the residue was purified by preparative TLC on silica gel plates (eluent: petroleum ether/EtOAc, 4:1) to give the product as a white solid (282 mg, 87% yield). Colourless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

H atoms were generated geometrically and refined as riding atoms with C-H = 0.93Å, O-H = 0.82Å, and Uiso(H) = 1.2 times Ueq(C), Uiso(H) = 1.5 times Ueq(O)

Structure description top

Bromoarenes have proven to be important and valuable precursors for the synthesis of a wide variety of target compounds by functionalization through cross-coupling reactions, and have been used as key intermediates in the synthesis of a large number of natural products and bioactive materials (Butler & Walker, 1993; Seevers & Counsell, 1982). In this paper, we synthesized the title compound and reported its crystal structure. In the title compound, C—C—C angles within the phenyl ring span a range of 115.7 (7) ° to 122.4 (7) ° with the smallest angle found on the C6 atom bearing the tert-butyl substituent, and the largest angle is found for the unsubstituted C5 atom (Fig. 1). In the crystal, molecules are linked by O—H···O hydrogen bonds (Table 1, Fig. 2). In addition, the benzene rings between the adjacent molecules are stacked in a face-to-face orientation with the distance of 3.858 Å, a distance longer than the ππ stacking distances of 3.33 - 3.53 Å reported elsewhere (Zheng et al., 2004), indicating no ππ stacking is observed for this compound.

For similar compounds, see: Butler & Walker (1993); Seevers & Counsell (1982); Zheng et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the labeling of the 30% probability ellipsolids.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.
2,4-Dibromo-6-tert-butylbenzene-1,3-diol top
Crystal data top
C10H12Br2O2Dx = 1.795 Mg m3
Mr = 324.02Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4b2Cell parameters from 1414 reflections
Hall symbol: P -4 -2abθ = 3.4–29.0°
a = 11.618 (3) ŵ = 6.74 mm1
c = 17.761 (4) ÅT = 290 K
V = 2397.4 (9) Å3Prismatic, colorless
Z = 80.22 × 0.20 × 0.20 mm
F(000) = 1264
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
1367 independent reflections
Radiation source: fine-focus sealed tube775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 16.2312 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scansh = 714
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1311
Tmin = 0.319, Tmax = 0.346l = 2211
4935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0056P)2]
where P = (Fo2 + 2Fc2)/3
1367 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H12Br2O2Z = 8
Mr = 324.02Mo Kα radiation
Tetragonal, P4b2µ = 6.74 mm1
a = 11.618 (3) ÅT = 290 K
c = 17.761 (4) Å0.22 × 0.20 × 0.20 mm
V = 2397.4 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
1367 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
775 reflections with I > 2σ(I)
Tmin = 0.319, Tmax = 0.346Rint = 0.087
4935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
1367 reflectionsΔρmin = 0.35 e Å3
132 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54152 (12)0.82654 (10)0.57359 (5)0.1038 (5)
Br20.26935 (9)0.44073 (9)0.65318 (6)0.0780 (4)
O10.5347 (6)0.8647 (5)0.7424 (3)0.076 (2)
H10.52150.91750.71310.114*
O20.4052 (6)0.6107 (6)0.5499 (2)0.085 (2)
H20.42500.54340.54440.128*
C10.4723 (7)0.7689 (7)0.7214 (4)0.045 (2)
C20.4666 (7)0.7357 (7)0.6471 (4)0.058 (2)
C30.4069 (7)0.6383 (8)0.6250 (4)0.055 (3)
C40.3557 (7)0.5756 (6)0.6803 (5)0.050 (2)
C50.3603 (7)0.6096 (7)0.7559 (4)0.047 (2)
H50.32200.56550.79170.056*
C60.4188 (7)0.7050 (7)0.7788 (4)0.046 (2)
C70.4255 (8)0.7422 (9)0.8617 (4)0.065 (3)
C80.3682 (9)0.8603 (8)0.8714 (4)0.090 (4)
H8A0.29160.85790.85120.134*
H8B0.41230.91760.84520.134*
H8C0.36480.87940.92400.134*
C90.5530 (9)0.7473 (11)0.8882 (5)0.121 (4)
H9A0.55580.76980.94020.182*
H9B0.59430.80240.85830.182*
H9C0.58770.67280.88250.182*
C100.3623 (9)0.6572 (8)0.9131 (4)0.093 (3)
H10A0.39630.58220.90820.139*
H10B0.28270.65360.89900.139*
H10C0.36840.68250.96440.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1535 (13)0.0852 (10)0.0726 (6)0.0324 (7)0.0515 (8)0.0131 (6)
Br20.0772 (8)0.0694 (8)0.0875 (7)0.0210 (6)0.0110 (7)0.0109 (6)
O10.080 (6)0.068 (5)0.079 (4)0.032 (5)0.013 (3)0.007 (3)
O20.130 (7)0.084 (6)0.041 (3)0.009 (5)0.028 (3)0.012 (3)
C10.049 (6)0.037 (6)0.050 (4)0.005 (4)0.010 (5)0.001 (4)
C20.070 (7)0.054 (6)0.049 (5)0.013 (5)0.023 (5)0.002 (5)
C30.070 (7)0.053 (7)0.043 (5)0.009 (5)0.019 (5)0.011 (5)
C40.047 (6)0.026 (5)0.076 (6)0.007 (4)0.009 (5)0.004 (4)
C50.038 (6)0.060 (7)0.041 (5)0.003 (5)0.011 (4)0.013 (5)
C60.047 (6)0.048 (6)0.044 (4)0.002 (5)0.010 (4)0.012 (5)
C70.067 (7)0.084 (8)0.046 (5)0.005 (6)0.000 (5)0.007 (5)
C80.120 (11)0.094 (10)0.055 (6)0.009 (7)0.022 (6)0.011 (5)
C90.108 (11)0.162 (13)0.094 (7)0.020 (8)0.047 (7)0.023 (7)
C100.112 (11)0.112 (10)0.054 (6)0.013 (7)0.006 (6)0.009 (6)
Geometric parameters (Å, º) top
Br1—C21.891 (7)C6—C71.536 (10)
Br2—C41.922 (7)C7—C101.532 (11)
O1—C11.379 (8)C7—C81.536 (11)
O1—H10.8200C7—C91.556 (11)
O2—C31.373 (8)C8—H8A0.9600
O2—H20.8200C8—H8B0.9600
C1—C21.377 (9)C8—H8C0.9600
C1—C61.406 (9)C9—H9A0.9600
C2—C31.384 (10)C9—H9B0.9600
C3—C41.360 (10)C9—H9C0.9600
C4—C51.400 (9)C10—H10A0.9600
C5—C61.362 (10)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C1—O1—H1109.5C6—C7—C8109.7 (6)
C3—O2—H2109.5C10—C7—C9107.5 (7)
C2—C1—O1120.7 (7)C6—C7—C9110.4 (7)
C2—C1—C6121.7 (7)C8—C7—C9110.2 (10)
O1—C1—C6117.5 (7)C7—C8—H8A109.5
C1—C2—C3121.6 (7)C7—C8—H8B109.5
C1—C2—Br1118.9 (6)H8A—C8—H8B109.5
C3—C2—Br1119.5 (5)C7—C8—H8C109.5
C4—C3—O2124.7 (8)H8A—C8—H8C109.5
C4—C3—C2117.0 (7)H8B—C8—H8C109.5
O2—C3—C2118.3 (7)C7—C9—H9A109.5
C3—C4—C5121.6 (7)C7—C9—H9B109.5
C3—C4—Br2119.0 (6)H9A—C9—H9B109.5
C5—C4—Br2119.4 (6)C7—C9—H9C109.5
C6—C5—C4122.4 (7)H9A—C9—H9C109.5
C6—C5—H5118.8H9B—C9—H9C109.5
C4—C5—H5118.8C7—C10—H10A109.5
C5—C6—C1115.7 (7)C7—C10—H10B109.5
C5—C6—C7122.7 (7)H10A—C10—H10B109.5
C1—C6—C7121.6 (8)C7—C10—H10C109.5
C10—C7—C6111.5 (8)H10A—C10—H10C109.5
C10—C7—C8107.5 (7)H10B—C10—H10C109.5
O1—C1—C2—C3178.4 (9)Br2—C4—C5—C6179.3 (7)
C6—C1—C2—C30.7 (14)C4—C5—C6—C11.4 (13)
O1—C1—C2—Br12.1 (12)C4—C5—C6—C7179.3 (7)
C6—C1—C2—Br1179.8 (7)C2—C1—C6—C50.8 (13)
C1—C2—C3—C41.1 (13)O1—C1—C6—C5178.6 (8)
Br1—C2—C3—C4179.4 (6)C2—C1—C6—C7179.9 (8)
C1—C2—C3—O2180.0 (8)O1—C1—C6—C72.1 (12)
Br1—C2—C3—O20.5 (12)C5—C6—C7—C101.8 (12)
O2—C3—C4—C5179.5 (7)C1—C6—C7—C10178.9 (8)
C2—C3—C4—C51.7 (12)C5—C6—C7—C8117.2 (10)
O2—C3—C4—Br22.2 (12)C1—C6—C7—C862.1 (11)
C2—C3—C4—Br2179.0 (7)C5—C6—C7—C9121.2 (10)
C3—C4—C5—C62.0 (13)C1—C6—C7—C959.5 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.822.673.246 (13)129
O2—H2···O2ii0.822.362.979 (9)133
Symmetry codes: (i) x+1, y+2, z; (ii) y+1, x, z+1.

Experimental details

Crystal data
Chemical formulaC10H12Br2O2
Mr324.02
Crystal system, space groupTetragonal, P4b2
Temperature (K)290
a, c (Å)11.618 (3), 17.761 (4)
V3)2397.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)6.74
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.319, 0.346
No. of measured, independent and
observed [I > 2σ(I)] reflections
4935, 1367, 775
Rint0.087
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.059, 1.08
No. of reflections1367
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.822.673.246 (13)129.2
O2—H2···O2ii0.822.362.979 (9)133.1
Symmetry codes: (i) x+1, y+2, z; (ii) y+1, x, z+1.
 

Acknowledgements

The authors thank Professors Hong-Wei Hou and Yu Zhu of Zhengzhou University for their help.

References

First citationButler, A. & Walker, J.-V. (1993). Chem. Rev. 93, 1937–1944.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSeevers, R.-H. & Counsell, R.-E. (1982). Chem. Rev. 82, 575–590.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds