metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ2-2-phen­­oxy­propionato)-κ3O,O′:O′;κ3O:O,O′;κ4O:O′-bis­­[(1,10-phenanthroline-κ2N,N′)(2-phen­­oxy­propionato-κ2O,O′)cerium(III)]

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 17 August 2011; accepted 5 September 2011; online 14 September 2011)

In the centrosymmetric binuclear title complex, [Ce2(C9H9O3)6(C12H8N2)2], the two CeIII ions are linked by four 2-phen­oxy­propionate groups in bi- and tridentate bridging modes. Each CeIII ion is nine-coordinated by one 1,10-phenanthroline mol­ecule, two O atoms from a chelating carboxyl­ate, two O atoms derived from a μ3-carboxylate and two O atoms derived from two μ2-carboxylate ligands in a distorted CeN2O7 monocapped square-anti­prismatic geometry.

Related literature

For background to phen­oxy­alkanoic acids, see: Markus & Buser (1997[Markus, D. M. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953-1959.]). For a related Ce complex, see: Fu et al. (2007[Fu, X.-C., Wang, C.-G., Li, M.-T. & Wang, X.-Y. (2007). Chin. J. Struct. Chem. 26, 1419-1422.]) and for a related La complex, see: Li et al. (2010[Li, H.-Q., Xian, H.-D. & Zhao, G.-L. (2010). J. Chin. Rare Earth Soc. 28, 7-10.]). For isotypic structures, see: Shen et al. (2011a[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.]) for Tb; Shen et al. (2011b[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1321.]) for Pr; Shen et al. (2011c[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320.]) for Dy; Shen et al. (2011d[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1358.]) for La; Shen et al. (2011e[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011e). Acta Cryst. E67, submitted.]) for Ho; Shen et al. (2011f[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011f). Acta Cryst. E67, m1357.]) for Gd.

[Scheme 1]

Experimental

Crystal data
  • [Ce2(C9H9O3)6(C12H8N2)2]

  • Mr = 1631.62

  • Monoclinic, P 21 /c

  • a = 11.5137 (2) Å

  • b = 25.9311 (6) Å

  • c = 13.9620 (3) Å

  • β = 120.149 (1)°

  • V = 3604.62 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 296 K

  • 0.30 × 0.18 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.848

  • 26086 measured reflections

  • 6351 independent reflections

  • 5383 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.060

  • S = 1.10

  • 6351 reflections

  • 461 parameters

  • 234 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—O8i 2.4377 (19)
Ce1—O2i 2.448 (2)
Ce1—O3 2.483 (2)
Ce1—O5 2.531 (2)
Ce1—O4 2.549 (2)
Ce1—O7 2.5699 (19)
Ce1—N2 2.643 (2)
Ce1—N1 2.691 (2)
Ce1—O8 2.694 (2)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The group of phenoxyalkanoic acids includes a considerable number of important herbicides. The desired biological activity is largely dependent on the length of the carbon chain of the alkanoic acid, the nature of the phenoxy group, and the position of its attachment to the carbon chain (Markus & Buser, 1997). The structures of 2-phenoxypropionic acid (HL) complexes coupled with their special functionality catched our interest. Here, we describe the CeIII title complex, (I).

The structure of complex (I) is shown in Fig. 1 and the coordination environment of Ce(III) is shown in Fig. 2. The dimeric title compound (I) is centrosymmetric and is comprised of six L anions and two phenanthroline ligands. The two Ce(III) ions are linked together by four L groups through their bi- and tri-dentate bridging modes, forming a dimeric unit. The distance between two La(III) ions in the dimeric unit is 4.1025 (3) Å. Each Ce(III) ion is coordinated by nine atoms, five of which are oxygen atoms from the bridging carboxylates, two oxygen atoms from the bidentate chelating carboxylate group, and two nitrogen atoms from a 1,10-phenanthroline molecule. The Ce(III) ion adopts a distorted monocapped square antiprisatic geometry (Fig. 2). The Ce—O distances are within the range 2.4377 (19)–2.694 (2) Å, and the Ce—N distances rang from 2.643 (2)–2.691 (2) Å, all of which are within the range of those of other nine-coordinated CeIII complexes with carboxylic donor ligands and 1,10-phenanthroline (Fu et al., 2007) (Table 1).

For background to phenoxyalkanoic acids, see: Markus & Buser (1997). For a related La complex, see: Li et al. (2010). For isotypic structures, see: for Tb (Shen et al., 2011a), for Pr (Shen et al., 2011b), for Dy (Shen et al., 2011c), for La (Shen et al., 2011d), for Ho (Shen et al., 2011e), for Gd (Shen et al., 2011f).

Related literature top

For background to phenoxyalkanoic acids, see: Markus & Buser (1997). For a related Ce complex, see: Fu et al. (2007). For a related La complex, see: Li et al. (2010). For isotypic structures, see: Shen et al. (2011a) for Tb; Shen et al. (2011b) for Pr; Shen et al. (2011c) for Dy; Shen et al. (2011d) for La; Shen et al. (2011e) for Ho; Shen et al. (2011f) for Gd.

Experimental top

Reagents and solvents used were of commercially available quality and without purified before use. 2-Phenoxypropionic acid (1.5 mmol), Ce(NO3)3.6H2O (0.5 mmol) and 1,10-phenanthroline (0.5 mmol) were dissolved in 20 ml enthanol, then 10 ml water were added to the above solution. The mixed solution was stirred for 12 h at room temperature. Finally, the deposit was filtered off and the colourless solution was kept in the open air. Colourless crystals were obtained after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C))].

Structure description top

The group of phenoxyalkanoic acids includes a considerable number of important herbicides. The desired biological activity is largely dependent on the length of the carbon chain of the alkanoic acid, the nature of the phenoxy group, and the position of its attachment to the carbon chain (Markus & Buser, 1997). The structures of 2-phenoxypropionic acid (HL) complexes coupled with their special functionality catched our interest. Here, we describe the CeIII title complex, (I).

The structure of complex (I) is shown in Fig. 1 and the coordination environment of Ce(III) is shown in Fig. 2. The dimeric title compound (I) is centrosymmetric and is comprised of six L anions and two phenanthroline ligands. The two Ce(III) ions are linked together by four L groups through their bi- and tri-dentate bridging modes, forming a dimeric unit. The distance between two La(III) ions in the dimeric unit is 4.1025 (3) Å. Each Ce(III) ion is coordinated by nine atoms, five of which are oxygen atoms from the bridging carboxylates, two oxygen atoms from the bidentate chelating carboxylate group, and two nitrogen atoms from a 1,10-phenanthroline molecule. The Ce(III) ion adopts a distorted monocapped square antiprisatic geometry (Fig. 2). The Ce—O distances are within the range 2.4377 (19)–2.694 (2) Å, and the Ce—N distances rang from 2.643 (2)–2.691 (2) Å, all of which are within the range of those of other nine-coordinated CeIII complexes with carboxylic donor ligands and 1,10-phenanthroline (Fu et al., 2007) (Table 1).

For background to phenoxyalkanoic acids, see: Markus & Buser (1997). For a related La complex, see: Li et al. (2010). For isotypic structures, see: for Tb (Shen et al., 2011a), for Pr (Shen et al., 2011b), for Dy (Shen et al., 2011c), for La (Shen et al., 2011d), for Ho (Shen et al., 2011e), for Gd (Shen et al., 2011f).

For background to phenoxyalkanoic acids, see: Markus & Buser (1997). For a related Ce complex, see: Fu et al. (2007). For a related La complex, see: Li et al. (2010). For isotypic structures, see: Shen et al. (2011a) for Tb; Shen et al. (2011b) for Pr; Shen et al. (2011c) for Dy; Shen et al. (2011d) for La; Shen et al. (2011e) for Ho; Shen et al. (2011f) for Gd.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the Ce(III) atom.
Tetrakis(µ2-2-phenoxypropionato)-κ3O,O':O';κ3O:O,O';κ4O:O'-bis[(1,10-phenanthroline-κ2N,N')(2-phenoxypropionato-κ2O,O')cerium(III)] top
Crystal data top
[Ce2(C9H9O3)6(C12H8N2)2]F(000) = 1652
Mr = 1631.62Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9702 reflections
a = 11.5137 (2) Åθ = 1.9–25.0°
b = 25.9311 (6) ŵ = 1.32 mm1
c = 13.9620 (3) ÅT = 296 K
β = 120.149 (1)°Block, colourless
V = 3604.62 (13) Å30.30 × 0.18 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6351 independent reflections
Radiation source: fine-focus sealed tube5383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.747, Tmax = 0.848k = 3026
26086 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0098P)2 + 3.9343P]
where P = (Fo2 + 2Fc2)/3
6351 reflections(Δ/σ)max = 0.001
461 parametersΔρmax = 0.67 e Å3
234 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ce2(C9H9O3)6(C12H8N2)2]V = 3604.62 (13) Å3
Mr = 1631.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.5137 (2) ŵ = 1.32 mm1
b = 25.9311 (6) ÅT = 296 K
c = 13.9620 (3) Å0.30 × 0.18 × 0.13 mm
β = 120.149 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5383 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.848Rint = 0.029
26086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032234 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.10Δρmax = 0.67 e Å3
6351 reflectionsΔρmin = 0.35 e Å3
461 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.454529 (15)0.002855 (6)0.837971 (13)0.03007 (6)
C10.3410 (3)0.08904 (12)0.9639 (3)0.0374 (7)
C20.2597 (3)0.13715 (14)0.9555 (3)0.0478 (9)
H2A0.32320.16490.99660.057*
C30.1761 (4)0.12764 (17)1.0088 (4)0.0729 (12)
H3A0.12560.15811.00290.109*
H3B0.11550.09950.97200.109*
H3C0.23380.11921.08550.109*
C40.2261 (4)0.18348 (14)0.7942 (3)0.0583 (10)
C50.3567 (4)0.18465 (15)0.8199 (4)0.0686 (12)
H5A0.42200.16700.88150.082*
C60.3915 (6)0.21221 (19)0.7536 (6)0.1023 (18)
H6A0.48060.21330.77060.123*
C70.2961 (9)0.2377 (2)0.6639 (6)0.125 (2)
H7A0.32010.25590.61910.150*
C80.1657 (8)0.2371 (2)0.6384 (5)0.116 (2)
H8A0.10130.25520.57720.139*
C90.1294 (5)0.20981 (16)0.7028 (4)0.0821 (14)
H9A0.04000.20900.68520.098*
C100.6081 (3)0.06332 (14)0.7670 (3)0.0399 (8)
C110.6786 (3)0.09362 (14)0.7173 (3)0.0515 (9)
H11A0.69900.07060.67200.062*
C120.8082 (4)0.11664 (17)0.8094 (3)0.0729 (13)
H12A0.85220.13570.77770.109*
H12B0.78820.13930.85350.109*
H12C0.86610.08950.85510.109*
C130.4214 (4)0.16838 (16)0.4901 (3)0.0633 (11)
H13A0.44480.20080.52310.076*
C140.3159 (4)0.16336 (19)0.3840 (4)0.0755 (13)
H14A0.26810.19240.34530.091*
C150.2803 (4)0.1160 (2)0.3347 (3)0.0738 (13)
H15A0.20900.11270.26260.089*
C160.3503 (4)0.07341 (18)0.3922 (3)0.0683 (12)
H16A0.32620.04120.35870.082*
C170.4570 (4)0.07747 (16)0.4999 (3)0.0567 (10)
H17A0.50330.04820.53910.068*
C180.4929 (3)0.12559 (15)0.5477 (3)0.0500 (9)
C190.2664 (3)0.04852 (11)0.8978 (3)0.0323 (7)
C200.1689 (3)0.07364 (13)0.9267 (3)0.0417 (8)
H20A0.21870.09000.99970.050*
C210.0748 (4)0.03318 (15)0.9278 (3)0.0596 (10)
H21A0.01310.04910.94610.089*
H21B0.12590.00730.98200.089*
H21C0.02560.01750.85600.089*
C220.1500 (3)0.15388 (14)0.8359 (3)0.0544 (10)
C230.2812 (4)0.16723 (16)0.9091 (4)0.0943 (17)
H23A0.33470.14610.96930.113*
C240.3328 (5)0.21212 (19)0.8924 (5)0.123 (2)
H24A0.42080.22150.94290.147*
C250.2580 (6)0.24283 (19)0.8041 (5)0.110 (2)
H25A0.29470.27270.79340.132*
C260.1280 (6)0.22961 (18)0.7308 (4)0.0967 (17)
H26A0.07580.25060.67000.116*
C270.0741 (4)0.18526 (16)0.7468 (4)0.0731 (12)
H27A0.01460.17650.69680.088*
C280.2365 (3)0.07862 (13)0.6103 (3)0.0436 (8)
H28A0.28030.10340.66510.052*
C290.1295 (3)0.09414 (14)0.5082 (3)0.0488 (9)
H29A0.10390.12860.49520.059*
C300.0633 (3)0.05827 (14)0.4280 (3)0.0472 (9)
H30A0.00960.06790.36020.057*
C310.0403 (3)0.03314 (15)0.3681 (3)0.0497 (9)
H31A0.03380.02520.29950.060*
C320.0839 (3)0.08178 (15)0.3900 (3)0.0528 (9)
H32A0.03860.10710.33680.063*
C330.2500 (4)0.14576 (15)0.5189 (3)0.0562 (10)
H33A0.20980.17190.46690.067*
C340.3588 (4)0.15641 (14)0.6195 (3)0.0603 (10)
H34A0.39380.18960.63680.072*
C350.4167 (3)0.11648 (13)0.6961 (3)0.0489 (9)
H35A0.49090.12410.76470.059*
C360.2641 (3)0.05794 (12)0.5758 (2)0.0352 (7)
C370.1985 (3)0.09594 (13)0.4935 (3)0.0425 (8)
C380.2155 (3)0.00588 (12)0.5525 (2)0.0343 (7)
C390.1048 (3)0.00695 (14)0.4475 (2)0.0412 (8)
N10.3723 (2)0.06856 (10)0.6769 (2)0.0371 (6)
N20.2785 (2)0.03027 (10)0.6328 (2)0.0371 (6)
O10.1737 (2)0.15482 (10)0.8471 (2)0.0636 (7)
O90.0877 (2)0.11100 (9)0.8460 (2)0.0515 (6)
O50.6289 (2)0.01570 (9)0.7804 (2)0.0521 (6)
O40.5362 (2)0.08674 (8)0.79660 (18)0.0450 (6)
O70.23777 (19)0.04315 (8)0.80004 (17)0.0396 (5)
O30.3308 (2)0.06985 (8)0.87816 (18)0.0412 (5)
O20.4146 (2)0.07312 (8)1.06170 (18)0.0463 (6)
O80.37595 (19)0.03220 (8)0.97824 (16)0.0393 (5)
O60.6000 (2)0.13560 (9)0.6518 (2)0.0603 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.02866 (8)0.03356 (10)0.02299 (9)0.00020 (8)0.00926 (7)0.00084 (8)
C10.0353 (16)0.0360 (18)0.036 (2)0.0011 (13)0.0147 (15)0.0013 (15)
C20.0446 (18)0.052 (2)0.035 (2)0.0136 (16)0.0118 (16)0.0008 (16)
C30.069 (3)0.086 (3)0.080 (3)0.022 (2)0.049 (2)0.004 (3)
C40.079 (3)0.035 (2)0.064 (3)0.0041 (19)0.038 (2)0.0057 (19)
C50.080 (3)0.045 (2)0.083 (3)0.001 (2)0.043 (3)0.008 (2)
C60.136 (5)0.061 (3)0.150 (5)0.003 (3)0.103 (5)0.001 (3)
C70.215 (8)0.079 (4)0.120 (6)0.011 (5)0.114 (6)0.023 (4)
C80.177 (6)0.074 (4)0.064 (4)0.010 (4)0.036 (4)0.023 (3)
C90.091 (3)0.050 (3)0.073 (3)0.005 (2)0.018 (3)0.005 (2)
C100.0362 (16)0.049 (2)0.0290 (18)0.0052 (15)0.0120 (14)0.0037 (15)
C110.050 (2)0.058 (2)0.044 (2)0.0087 (17)0.0217 (17)0.0092 (18)
C120.054 (2)0.101 (3)0.053 (3)0.027 (2)0.0189 (19)0.015 (2)
C130.067 (2)0.057 (3)0.065 (3)0.002 (2)0.032 (2)0.015 (2)
C140.061 (3)0.085 (3)0.074 (3)0.010 (2)0.029 (2)0.032 (3)
C150.056 (2)0.118 (4)0.043 (3)0.002 (3)0.022 (2)0.006 (3)
C160.065 (3)0.087 (3)0.055 (3)0.009 (2)0.032 (2)0.016 (2)
C170.059 (2)0.061 (3)0.051 (2)0.0012 (19)0.029 (2)0.001 (2)
C180.053 (2)0.057 (2)0.042 (2)0.0091 (17)0.0253 (18)0.0063 (18)
C190.0314 (15)0.0313 (17)0.0315 (18)0.0006 (12)0.0138 (14)0.0000 (14)
C200.0411 (17)0.049 (2)0.0335 (18)0.0064 (15)0.0179 (15)0.0003 (16)
C210.056 (2)0.073 (3)0.067 (3)0.0010 (19)0.044 (2)0.001 (2)
C220.045 (2)0.039 (2)0.068 (3)0.0055 (16)0.0203 (19)0.0048 (19)
C230.064 (3)0.051 (3)0.109 (4)0.011 (2)0.000 (3)0.018 (3)
C240.083 (3)0.064 (3)0.156 (5)0.018 (3)0.011 (3)0.025 (3)
C250.100 (4)0.057 (3)0.146 (5)0.014 (3)0.041 (4)0.013 (3)
C260.109 (4)0.059 (3)0.099 (4)0.007 (3)0.034 (3)0.022 (3)
C270.067 (3)0.062 (3)0.072 (3)0.008 (2)0.021 (2)0.003 (2)
C280.0463 (18)0.043 (2)0.0354 (19)0.0032 (15)0.0163 (15)0.0021 (16)
C290.0488 (19)0.054 (2)0.039 (2)0.0087 (17)0.0189 (17)0.0109 (18)
C300.0389 (18)0.065 (2)0.0283 (19)0.0060 (17)0.0100 (15)0.0135 (18)
C310.0396 (18)0.075 (3)0.0246 (18)0.0087 (18)0.0084 (15)0.0014 (18)
C320.049 (2)0.067 (3)0.035 (2)0.0180 (18)0.0153 (16)0.0173 (18)
C330.062 (2)0.053 (2)0.052 (2)0.0124 (18)0.027 (2)0.0172 (19)
C340.071 (2)0.041 (2)0.063 (3)0.0028 (18)0.030 (2)0.0059 (19)
C350.050 (2)0.047 (2)0.042 (2)0.0059 (16)0.0181 (16)0.0004 (17)
C360.0326 (15)0.047 (2)0.0271 (17)0.0047 (14)0.0162 (13)0.0052 (14)
C370.0436 (18)0.052 (2)0.0339 (19)0.0112 (16)0.0210 (15)0.0099 (16)
C380.0311 (14)0.0468 (19)0.0263 (16)0.0024 (14)0.0154 (12)0.0018 (15)
C390.0347 (15)0.061 (2)0.0271 (16)0.0057 (16)0.0151 (13)0.0024 (16)
N10.0359 (13)0.0422 (16)0.0290 (15)0.0028 (12)0.0131 (11)0.0012 (12)
N20.0394 (14)0.0406 (16)0.0262 (14)0.0006 (12)0.0127 (12)0.0001 (12)
O10.0519 (15)0.0612 (17)0.0607 (18)0.0119 (13)0.0157 (13)0.0123 (14)
O90.0351 (12)0.0490 (15)0.0584 (16)0.0079 (10)0.0146 (11)0.0012 (12)
O50.0618 (15)0.0451 (15)0.0636 (17)0.0034 (11)0.0421 (13)0.0073 (12)
O40.0461 (13)0.0408 (13)0.0495 (15)0.0010 (10)0.0251 (12)0.0048 (11)
O70.0348 (11)0.0533 (14)0.0253 (12)0.0073 (10)0.0111 (9)0.0002 (10)
O30.0489 (12)0.0398 (13)0.0324 (13)0.0074 (10)0.0183 (10)0.0026 (10)
O20.0541 (13)0.0455 (14)0.0312 (13)0.0144 (11)0.0155 (11)0.0045 (11)
O80.0358 (11)0.0452 (13)0.0278 (12)0.0073 (10)0.0092 (9)0.0001 (10)
O60.0694 (16)0.0535 (16)0.0455 (16)0.0142 (13)0.0196 (13)0.0097 (12)
Geometric parameters (Å, º) top
Ce1—O8i2.4377 (19)C17—C181.377 (5)
Ce1—O2i2.448 (2)C17—H17A0.9300
Ce1—O32.483 (2)C18—O61.379 (4)
Ce1—O52.531 (2)C19—O71.241 (3)
Ce1—O42.549 (2)C19—O81.268 (3)
Ce1—O72.5699 (19)C19—C201.517 (4)
Ce1—N22.643 (2)C20—O91.423 (4)
Ce1—N12.691 (2)C20—C211.514 (5)
Ce1—O82.694 (2)C20—H20A0.9800
Ce1—C102.886 (3)C21—H21A0.9600
Ce1—C192.997 (3)C21—H21B0.9600
Ce1—Ce1i4.1025 (3)C21—H21C0.9600
C1—O31.247 (4)C22—O91.369 (4)
C1—O21.261 (4)C22—C271.371 (5)
C1—C21.529 (4)C22—C231.377 (5)
C2—O11.406 (4)C23—C241.378 (6)
C2—C31.503 (5)C23—H23A0.9300
C2—H2A0.9800C24—C251.353 (7)
C3—H3A0.9600C24—H24A0.9300
C3—H3B0.9600C25—C261.366 (6)
C3—H3C0.9600C25—H25A0.9300
C4—C51.360 (5)C26—C271.377 (6)
C4—C91.381 (5)C26—H26A0.9300
C4—O11.382 (4)C27—H27A0.9300
C5—C61.377 (6)C28—N21.323 (4)
C5—H5A0.9300C28—C291.396 (4)
C6—C71.353 (8)C28—H28A0.9300
C6—H6A0.9300C29—C301.357 (5)
C7—C81.357 (8)C29—H29A0.9300
C7—H7A0.9300C30—C391.394 (5)
C8—C91.364 (7)C30—H30A0.9300
C8—H8A0.9300C31—C321.335 (5)
C9—H9A0.9300C31—C391.426 (5)
C10—O41.252 (4)C31—H31A0.9300
C10—O51.254 (4)C32—C371.431 (5)
C10—C111.524 (4)C32—H32A0.9300
C11—O61.417 (4)C33—C341.360 (5)
C11—C121.520 (5)C33—C371.391 (5)
C11—H11A0.9800C33—H33A0.9300
C12—H12A0.9600C34—C351.394 (5)
C12—H12B0.9600C34—H34A0.9300
C12—H12C0.9600C35—N11.319 (4)
C13—C141.371 (5)C35—H35A0.9300
C13—C181.375 (5)C36—N11.362 (4)
C13—H13A0.9300C36—C371.411 (4)
C14—C151.367 (6)C36—C381.435 (4)
C14—H14A0.9300C38—N21.359 (4)
C15—C161.364 (6)C38—C391.417 (4)
C15—H15A0.9300O2—Ce1i2.448 (2)
C16—C171.387 (5)O8—Ce1i2.4377 (19)
C16—H16A0.9300
O8i—Ce1—O2i73.24 (7)C11—C12—H12B109.5
O8i—Ce1—O377.92 (7)H12A—C12—H12B109.5
O2i—Ce1—O3133.77 (7)C11—C12—H12C109.5
O8i—Ce1—O587.12 (7)H12A—C12—H12C109.5
O2i—Ce1—O585.94 (8)H12B—C12—H12C109.5
O3—Ce1—O5128.05 (7)C14—C13—C18120.0 (4)
O8i—Ce1—O477.33 (7)C14—C13—H13A120.0
O2i—Ce1—O4128.71 (7)C18—C13—H13A120.0
O3—Ce1—O476.89 (7)C15—C14—C13120.6 (4)
O5—Ce1—O451.24 (7)C15—C14—H14A119.7
O8i—Ce1—O7122.89 (7)C13—C14—H14A119.7
O2i—Ce1—O789.95 (7)C16—C15—C14119.4 (4)
O3—Ce1—O776.30 (7)C16—C15—H15A120.3
O5—Ce1—O7146.99 (7)C14—C15—H15A120.3
O4—Ce1—O7141.28 (7)C15—C16—C17121.1 (4)
O8i—Ce1—N2146.05 (7)C15—C16—H16A119.5
O2i—Ce1—N2138.86 (8)C17—C16—H16A119.5
O3—Ce1—N280.91 (7)C18—C17—C16118.7 (4)
O5—Ce1—N285.37 (8)C18—C17—H17A120.6
O4—Ce1—N272.19 (7)C16—C17—H17A120.6
O7—Ce1—N276.40 (7)C13—C18—C17120.1 (3)
O8i—Ce1—N1148.65 (7)C13—C18—O6114.9 (3)
O2i—Ce1—N177.38 (7)C17—C18—O6125.0 (3)
O3—Ce1—N1132.00 (7)O7—C19—O8122.2 (3)
O5—Ce1—N180.07 (8)O7—C19—C20121.2 (3)
O4—Ce1—N1114.39 (8)O8—C19—C20116.6 (3)
O7—Ce1—N167.09 (7)O7—C19—Ce158.21 (15)
N2—Ce1—N161.52 (8)O8—C19—Ce164.01 (15)
O8i—Ce1—O873.97 (7)C20—C19—Ce1178.8 (2)
O2i—Ce1—O869.35 (7)O9—C20—C21106.9 (3)
O3—Ce1—O868.38 (7)O9—C20—C19111.2 (3)
O5—Ce1—O8152.19 (7)C21—C20—C19109.5 (3)
O4—Ce1—O8138.55 (7)O9—C20—H20A109.7
O7—Ce1—O849.26 (6)C21—C20—H20A109.7
N2—Ce1—O8121.59 (7)C19—C20—H20A109.7
N1—Ce1—O8105.63 (7)C20—C21—H21A109.5
O8i—Ce1—C1083.52 (8)C20—C21—H21B109.5
O2i—Ce1—C10109.06 (9)H21A—C21—H21B109.5
O3—Ce1—C10102.57 (9)C20—C21—H21C109.5
O5—Ce1—C1025.71 (8)H21A—C21—H21C109.5
O4—Ce1—C1025.70 (8)H21B—C21—H21C109.5
O7—Ce1—C10151.72 (8)O9—C22—C27116.6 (3)
N2—Ce1—C1075.54 (8)O9—C22—C23124.4 (4)
N1—Ce1—C1096.09 (9)C27—C22—C23119.1 (4)
O8—Ce1—C10156.96 (8)C22—C23—C24119.4 (4)
O8i—Ce1—C1998.86 (8)C22—C23—H23A120.3
O2i—Ce1—C1978.81 (8)C24—C23—H23A120.3
O3—Ce1—C1970.79 (7)C25—C24—C23121.4 (5)
O5—Ce1—C19161.16 (8)C25—C24—H24A119.3
O4—Ce1—C19147.49 (8)C23—C24—H24A119.3
O7—Ce1—C1924.23 (7)C24—C25—C26119.4 (5)
N2—Ce1—C1998.83 (8)C24—C25—H25A120.3
N1—Ce1—C1985.80 (8)C26—C25—H25A120.3
O8—Ce1—C1925.03 (7)C25—C26—C27120.1 (5)
C10—Ce1—C19172.12 (9)C25—C26—H26A119.9
O8i—Ce1—Ce1i39.14 (5)C27—C26—H26A119.9
O2i—Ce1—Ce1i66.24 (5)C22—C27—C26120.6 (4)
O3—Ce1—Ce1i68.51 (5)C22—C27—H27A119.7
O5—Ce1—Ce1i123.44 (6)C26—C27—H27A119.7
O4—Ce1—Ce1i111.22 (5)N2—C28—C29123.1 (3)
O7—Ce1—Ce1i83.92 (5)N2—C28—H28A118.5
N2—Ce1—Ce1i146.82 (6)C29—C28—H28A118.5
N1—Ce1—Ce1i133.19 (6)C30—C29—C28119.1 (3)
O8—Ce1—Ce1i34.83 (4)C30—C29—H29A120.4
C10—Ce1—Ce1i122.50 (6)C28—C29—H29A120.4
C19—Ce1—Ce1i59.76 (6)C29—C30—C39119.9 (3)
O3—C1—O2126.7 (3)C29—C30—H30A120.1
O3—C1—C2119.5 (3)C39—C30—H30A120.1
O2—C1—C2113.8 (3)C32—C31—C39121.4 (3)
O1—C2—C3107.9 (3)C32—C31—H31A119.3
O1—C2—C1115.0 (3)C39—C31—H31A119.3
C3—C2—C1110.4 (3)C31—C32—C37121.6 (3)
O1—C2—H2A107.8C31—C32—H32A119.2
C3—C2—H2A107.8C37—C32—H32A119.2
C1—C2—H2A107.8C34—C33—C37120.4 (3)
C2—C3—H3A109.5C34—C33—H33A119.8
C2—C3—H3B109.5C37—C33—H33A119.8
H3A—C3—H3B109.5C33—C34—C35118.6 (3)
C2—C3—H3C109.5C33—C34—H34A120.7
H3A—C3—H3C109.5C35—C34—H34A120.7
H3B—C3—H3C109.5N1—C35—C34123.8 (3)
C5—C4—C9120.3 (4)N1—C35—H35A118.1
C5—C4—O1126.4 (4)C34—C35—H35A118.1
C9—C4—O1113.2 (4)N1—C36—C37122.7 (3)
C4—C5—C6119.4 (5)N1—C36—C38118.3 (3)
C4—C5—H5A120.3C37—C36—C38119.0 (3)
C6—C5—H5A120.3C33—C37—C36117.1 (3)
C7—C6—C5120.0 (6)C33—C37—C32123.7 (3)
C7—C6—H6A120.0C36—C37—C32119.2 (3)
C5—C6—H6A120.0N2—C38—C39121.5 (3)
C6—C7—C8120.9 (6)N2—C38—C36118.4 (3)
C6—C7—H7A119.6C39—C38—C36120.1 (3)
C8—C7—H7A119.6C30—C39—C38117.9 (3)
C7—C8—C9119.9 (6)C30—C39—C31123.4 (3)
C7—C8—H8A120.1C38—C39—C31118.7 (3)
C9—C8—H8A120.1C35—N1—C36117.4 (3)
C8—C9—C4119.5 (5)C35—N1—Ce1122.8 (2)
C8—C9—H9A120.2C36—N1—Ce1118.82 (19)
C4—C9—H9A120.2C28—N2—C38118.5 (3)
O4—C10—O5122.4 (3)C28—N2—Ce1120.1 (2)
O4—C10—C11119.4 (3)C38—N2—Ce1120.66 (19)
O5—C10—C11118.1 (3)C4—O1—C2119.4 (3)
O4—C10—Ce161.94 (16)C22—O9—C20117.7 (2)
O5—C10—Ce161.14 (17)C10—O5—Ce193.1 (2)
C11—C10—Ce1174.1 (2)C10—O4—Ce192.37 (19)
O6—C11—C12106.3 (3)C19—O7—Ce197.56 (17)
O6—C11—C10112.1 (3)C1—O3—Ce1135.07 (19)
C12—C11—C10109.8 (3)C1—O2—Ce1i140.2 (2)
O6—C11—H11A109.5C19—O8—Ce1i161.9 (2)
C12—C11—H11A109.5C19—O8—Ce190.96 (18)
C10—C11—H11A109.5Ce1i—O8—Ce1106.03 (7)
C11—C12—H12A109.5C18—O6—C11118.6 (3)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ce2(C9H9O3)6(C12H8N2)2]
Mr1631.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.5137 (2), 25.9311 (6), 13.9620 (3)
β (°) 120.149 (1)
V3)3604.62 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.30 × 0.18 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
26086, 6351, 5383
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.060, 1.10
No. of reflections6351
No. of parameters461
No. of restraints234
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.35

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Ce1—O8i2.4377 (19)Ce1—O72.5699 (19)
Ce1—O2i2.448 (2)Ce1—N22.643 (2)
Ce1—O32.483 (2)Ce1—N12.691 (2)
Ce1—O52.531 (2)Ce1—O82.694 (2)
Ce1—O42.549 (2)
Symmetry code: (i) x+1, y, z+2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, X.-C., Wang, C.-G., Li, M.-T. & Wang, X.-Y. (2007). Chin. J. Struct. Chem. 26, 1419–1422.  CAS Google Scholar
First citationLi, H.-Q., Xian, H.-D. & Zhao, G.-L. (2010). J. Chin. Rare Earth Soc. 28, 7–10.  CrossRef Google Scholar
First citationMarkus, D. M. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953–1959.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011e). Acta Cryst. E67, submitted.  CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011f). Acta Cryst. E67, m1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds