metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-2-phen­­oxy­propionato-κ2O:O′)bis­­[(1,10-phenanthroline-κ2N,N′)bis­­(2-phen­­oxy­propionato-κ2O,O′)ytterbium(III)]

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 19 August 2011; accepted 5 September 2011; online 14 September 2011)

In the centrosymmetric binuclear title complex, [Yb2(C9H9O3)6(C12H8N2)2], the two Yb(III) ions are linked by two 2-phen­oxy­propionate (L) groups in a bidentate bridging mode. Each YbIII ion is eight-coordinated by two O atoms from two bridging L ligands, four O atoms from two chelating L groups and two N atoms from one chelating phen mol­ecule in a distorted YbN2O6 dodeca­hedral geometry.

Related literature

For background to phen­oxy­alkanoic acids, see: Markus & Buser (1997[Markus, D. M. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953-1959.]). For a related Yb complex, see: Lu et al. (1999[Lu, W., Luo, X., Wu, B., Mao, J. & Jiang, X. (1999). Acta Cryst. C55, 1472-1475.]). For compounds with the same formula type but monoclinic symmetry, see: Shen et al. (2011a[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.]) for Tb; Shen et al. (2011b[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1321.]) for Pr; Shen et al. (2011c[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320.]) for Dy; Shen et al. (2011d[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1358.]) for La; Shen et al. (2011e[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011e). Acta Cryst. E67, submitted.]) for Ho; Shen et al. (2011f[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011f). Acta Cryst. E67, m1357.]) for Gd; Shen et al. (2011g[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011g). Acta Cryst. E67, m1359-m1360.]) for Ce.

[Scheme 1]

Experimental

Crystal data
  • [Yb2(C9H9O3)6(C12H8N2)2]

  • Mr = 1697.46

  • Triclinic, [P \overline 1]

  • a = 11.3577 (4) Å

  • b = 12.2091 (5) Å

  • c = 14.1438 (6) Å

  • α = 99.111 (2)°

  • β = 91.089 (2)°

  • γ = 114.320 (2)°

  • V = 1756.94 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.72 mm−1

  • T = 296 K

  • 0.32 × 0.20 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.524, Tmax = 0.849

  • 22731 measured reflections

  • 6187 independent reflections

  • 5246 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.066

  • S = 1.02

  • 6187 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected bond lengths (Å)

Yb1—O7 2.209 (2)
Yb1—O8i 2.266 (3)
Yb1—O1 2.340 (3)
Yb1—O4 2.360 (3)
Yb1—O5 2.369 (2)
Yb1—O2 2.403 (3)
Yb1—N2 2.457 (3)
Yb1—N1 2.482 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The group of phenoxyalkanoic acids includes a considerable number of important herbicides. The desired biological activity is largely dependent on the length of the carbon chain of the alkanoic acid, the nature of the phenoxy group, and the position of its attachment to the carbon chain (Markus & Buser, 1997). The structures of 2-phenoxypropionic acid (HL) complexes coupled with their special functionality catched our interest. Here, we describe the YbIII title complex, (I).

The structure of complex (I) is shown in Fig. 1 and the coordination environment of Yb(III) is shown in Fig. 2. The dimeric title compound (I) is centrosymmetric and is comprised of six L anions and two phenanthroline ligands. The L ligands are coordinated to the YbIII ions in two different modes: chelating and bridging with a Yb—Yb separation of 5.1470 (3) Å. The two Yb(III) ions are linked by two L groups through their bidentate bridging modes. Each Yb(III) ion is coordinated to eight atoms, two of which are oxygen atoms from the bridging carboxylates, four oxygen atoms from the bidentate chelating carboxylate groups, and by two nitrogen atoms from a 1,10-phenanthroline molecule. The analysis of structural features indicates that the Yb(III) ion adopts a distorted dodecahedral geometry (Fig. 2), a coordination geometry that is relatively seldom reported for lanthanide carboxylate complexes (Lu et al., 1999). The Yb—O distances are all within the range 2.209 (2)–2.403 (3) Å, and the Yb—N distances rang from 2.457 (3)–2.482 (3) Å, all of which are within the range of those of other eight-coordinated YbIII complexes with carboxylic donor ligands and 1,10-phenanthroline (Lu et al., 1999).

In contrast to the lighter congeners, the Yb(III) complex adopts triclinic symmetry and the metal atom shows coordination number of eight instead of nine. For isoformular compounds with monoclinic symmetry, see: For Tb (Shen et al., 2011a), for Pr (Shen et al., 2011b), for Dy (Shen et al., 2011c), for La (Shen et al., 2011d), for Ho (Shen et al., 2011e), for Gd (Shen et al., 2011f), for Ce (Shen et al., 2011g).

Related literature top

For background to phenoxyalkanoic acids, see: Markus & Buser (1997). For a related Yb complex, see: Lu et al. (1999). For isoformular compounds with monoclinic symmetry, see: Shen et al. (2011a) for Tb; Shen et al. (2011b) for Pr; Shen et al. (2011c) for Dy; Shen et al. (2011d) for La; Shen et al. (2011e) for Ho; Shen et al. (2011f) for Gd; Shen et al. (2011g) for Ce.

Experimental top

Reagents and solvents used were of commercially available quality and without purified before use. 2-Phenoxypropionic acid (1.5 mmol), Yb(NO3)3.6H2O (0.5 mmol) and 1,10-phenanthroline (0.5 mmol) were dissolved in 20 ml enthanol, then 10 ml water were added to the above solution. The mixed solution was stirred for 12 h at room temperature. Finally, the deposit was filtered off and the colourless solution was kept in the open air. Colourless crystals were obtained after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C))].

Structure description top

The group of phenoxyalkanoic acids includes a considerable number of important herbicides. The desired biological activity is largely dependent on the length of the carbon chain of the alkanoic acid, the nature of the phenoxy group, and the position of its attachment to the carbon chain (Markus & Buser, 1997). The structures of 2-phenoxypropionic acid (HL) complexes coupled with their special functionality catched our interest. Here, we describe the YbIII title complex, (I).

The structure of complex (I) is shown in Fig. 1 and the coordination environment of Yb(III) is shown in Fig. 2. The dimeric title compound (I) is centrosymmetric and is comprised of six L anions and two phenanthroline ligands. The L ligands are coordinated to the YbIII ions in two different modes: chelating and bridging with a Yb—Yb separation of 5.1470 (3) Å. The two Yb(III) ions are linked by two L groups through their bidentate bridging modes. Each Yb(III) ion is coordinated to eight atoms, two of which are oxygen atoms from the bridging carboxylates, four oxygen atoms from the bidentate chelating carboxylate groups, and by two nitrogen atoms from a 1,10-phenanthroline molecule. The analysis of structural features indicates that the Yb(III) ion adopts a distorted dodecahedral geometry (Fig. 2), a coordination geometry that is relatively seldom reported for lanthanide carboxylate complexes (Lu et al., 1999). The Yb—O distances are all within the range 2.209 (2)–2.403 (3) Å, and the Yb—N distances rang from 2.457 (3)–2.482 (3) Å, all of which are within the range of those of other eight-coordinated YbIII complexes with carboxylic donor ligands and 1,10-phenanthroline (Lu et al., 1999).

In contrast to the lighter congeners, the Yb(III) complex adopts triclinic symmetry and the metal atom shows coordination number of eight instead of nine. For isoformular compounds with monoclinic symmetry, see: For Tb (Shen et al., 2011a), for Pr (Shen et al., 2011b), for Dy (Shen et al., 2011c), for La (Shen et al., 2011d), for Ho (Shen et al., 2011e), for Gd (Shen et al., 2011f), for Ce (Shen et al., 2011g).

For background to phenoxyalkanoic acids, see: Markus & Buser (1997). For a related Yb complex, see: Lu et al. (1999). For isoformular compounds with monoclinic symmetry, see: Shen et al. (2011a) for Tb; Shen et al. (2011b) for Pr; Shen et al. (2011c) for Dy; Shen et al. (2011d) for La; Shen et al. (2011e) for Ho; Shen et al. (2011f) for Gd; Shen et al. (2011g) for Ce.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the Yb(III).
Bis(µ2-2-phenoxypropionato-κ2O:O')bis[(1,10- phenanthroline-κ2N,N')bis(2-phenoxypropionato- κ2O,O')ytterbium(III)] top
Crystal data top
[Yb2(C9H9O3)6(C12H8N2)2]Z = 1
Mr = 1697.46F(000) = 850
Triclinic, P1Dx = 1.604 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3577 (4) ÅCell parameters from 8204 reflections
b = 12.2091 (5) Åθ = 1.5–25.0°
c = 14.1438 (6) ŵ = 2.72 mm1
α = 99.111 (2)°T = 296 K
β = 91.089 (2)°Block, colourless
γ = 114.320 (2)°0.32 × 0.20 × 0.06 mm
V = 1756.94 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6187 independent reflections
Radiation source: fine-focus sealed tube5246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.524, Tmax = 0.849k = 1414
22731 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
6187 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Yb2(C9H9O3)6(C12H8N2)2]γ = 114.320 (2)°
Mr = 1697.46V = 1756.94 (12) Å3
Triclinic, P1Z = 1
a = 11.3577 (4) ÅMo Kα radiation
b = 12.2091 (5) ŵ = 2.72 mm1
c = 14.1438 (6) ÅT = 296 K
α = 99.111 (2)°0.32 × 0.20 × 0.06 mm
β = 91.089 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6187 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5246 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.849Rint = 0.039
22731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.02Δρmax = 1.00 e Å3
6187 reflectionsΔρmin = 1.03 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.321843 (14)0.387600 (14)0.104334 (12)0.03526 (7)
O10.2116 (3)0.4766 (3)0.2049 (2)0.0605 (9)
O20.3679 (3)0.4528 (3)0.2756 (2)0.0598 (8)
O30.1030 (3)0.4796 (3)0.3790 (2)0.0604 (8)
O40.3356 (2)0.2126 (2)0.1446 (2)0.0497 (7)
O50.5181 (2)0.3719 (2)0.14106 (19)0.0427 (6)
O70.4588 (2)0.5738 (2)0.08986 (19)0.0445 (7)
O90.7307 (3)0.8066 (2)0.2317 (2)0.0530 (7)
O60.4646 (3)0.1021 (2)0.2351 (2)0.0520 (7)
N10.0969 (3)0.2250 (3)0.0782 (2)0.0397 (8)
N20.1801 (3)0.4252 (3)0.0073 (2)0.0385 (8)
C10.2746 (4)0.4822 (3)0.2793 (3)0.0424 (10)
C170.3960 (6)0.2501 (6)0.4604 (4)0.0785 (16)
H17A0.40340.32580.49200.094*
C280.0536 (4)0.1309 (4)0.1234 (3)0.0484 (10)
H28A0.10870.12720.17100.058*
C80.0119 (6)0.1528 (5)0.3729 (4)0.0816 (16)
H8A0.04910.09900.37950.098*
C70.1206 (6)0.1093 (5)0.3570 (4)0.0780 (16)
H7A0.17290.02630.35210.094*
C190.5677 (3)0.6629 (3)0.1040 (3)0.0334 (8)
C160.3422 (6)0.1508 (7)0.5030 (4)0.102 (2)
H16A0.31390.15920.56390.123*
C40.0358 (4)0.3546 (4)0.3711 (3)0.0541 (11)
C200.5966 (4)0.7492 (3)0.2009 (3)0.0434 (10)
H20A0.54960.70270.24920.052*
C60.1743 (6)0.1883 (6)0.3485 (4)0.0882 (17)
H6A0.26400.15950.33820.106*
C90.0911 (5)0.2769 (5)0.3792 (4)0.0661 (13)
H9A0.18080.30590.38880.079*
C120.5823 (5)0.1475 (4)0.1017 (3)0.0613 (12)
H12A0.63220.10660.12160.092*
H12B0.63540.21170.06940.092*
H12C0.50890.09000.05860.092*
C130.4271 (4)0.1270 (4)0.3251 (3)0.0519 (11)
C180.4401 (5)0.2394 (5)0.3698 (3)0.0639 (13)
H18A0.47740.30720.34030.077*
C50.0967 (5)0.3113 (5)0.3551 (4)0.0743 (15)
H5A0.13410.36500.34880.089*
C100.4573 (4)0.2661 (3)0.1569 (3)0.0394 (9)
C320.1525 (4)0.2498 (5)0.1287 (4)0.0656 (14)
H32A0.20820.25590.17460.079*
C140.3728 (6)0.0264 (5)0.3684 (4)0.0841 (17)
H14A0.36560.04950.33750.101*
C250.9109 (6)0.6397 (6)0.3733 (4)0.0799 (17)
H25A0.95310.60520.40770.096*
C240.7826 (6)0.5756 (5)0.3430 (4)0.0777 (16)
H24A0.73760.49770.35670.093*
C260.9779 (5)0.7534 (6)0.3538 (4)0.0844 (18)
H26A1.06590.79570.37400.101*
C20.2398 (4)0.5281 (4)0.3769 (3)0.0493 (11)
H2A0.27810.50400.42800.059*
C150.3293 (7)0.0391 (7)0.4574 (5)0.117 (3)
H15A0.29100.02870.48670.141*
C390.0575 (3)0.3367 (3)0.0342 (3)0.0394 (9)
C380.0265 (4)0.3479 (4)0.1024 (3)0.0485 (11)
C30.2877 (5)0.6651 (4)0.3944 (4)0.0704 (14)
H3A0.26550.69230.45610.106*
H3B0.24790.68810.34520.106*
H3C0.38030.70220.39310.106*
C340.1389 (4)0.5425 (4)0.1136 (3)0.0550 (12)
H34A0.16930.61420.13860.066*
C110.5356 (4)0.2010 (3)0.1886 (3)0.0446 (10)
H11A0.61090.26020.23200.054*
C360.0142 (3)0.2313 (3)0.0110 (3)0.0394 (9)
C300.1523 (4)0.0386 (4)0.0319 (3)0.0557 (12)
H30A0.23380.02580.01510.067*
C350.2173 (4)0.5238 (4)0.0471 (3)0.0469 (10)
H35A0.30090.58440.02950.056*
C220.7855 (4)0.7426 (4)0.2753 (3)0.0496 (11)
C310.1925 (4)0.1492 (5)0.0890 (3)0.0639 (14)
H31A0.27370.08590.10950.077*
C370.1128 (4)0.1377 (4)0.0160 (3)0.0516 (11)
C330.0169 (4)0.4542 (4)0.1415 (3)0.0542 (12)
H33A0.03700.46470.18610.065*
C290.0720 (4)0.0362 (4)0.1028 (3)0.0551 (12)
H29A0.09960.02740.13740.066*
C230.7186 (5)0.6259 (4)0.2919 (3)0.0609 (13)
H23A0.63160.58140.26920.073*
C270.9167 (4)0.8060 (5)0.3046 (4)0.0684 (14)
H27A0.96280.88380.29100.082*
C210.5524 (5)0.8474 (4)0.1927 (4)0.0710 (15)
H21A0.57030.90130.25370.106*
H21B0.46080.81100.17390.106*
H21C0.59780.89300.14520.106*
O80.6489 (3)0.6912 (2)0.04486 (19)0.0453 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.02867 (9)0.03739 (10)0.03569 (11)0.00996 (7)0.00405 (7)0.00639 (7)
O10.0591 (19)0.097 (2)0.0397 (18)0.0519 (19)0.0014 (15)0.0004 (16)
O20.0611 (19)0.089 (2)0.0456 (19)0.0481 (18)0.0087 (15)0.0106 (16)
O30.0534 (18)0.0599 (19)0.071 (2)0.0267 (16)0.0227 (16)0.0109 (16)
O40.0355 (15)0.0439 (15)0.066 (2)0.0119 (13)0.0028 (13)0.0142 (14)
O50.0335 (13)0.0398 (15)0.0534 (18)0.0121 (12)0.0092 (12)0.0127 (13)
O70.0409 (15)0.0359 (14)0.0478 (17)0.0080 (13)0.0015 (12)0.0066 (12)
O90.0450 (16)0.0472 (16)0.0534 (19)0.0086 (14)0.0024 (14)0.0034 (14)
O60.0615 (18)0.0459 (16)0.055 (2)0.0254 (15)0.0140 (15)0.0166 (14)
N10.0318 (16)0.0412 (18)0.042 (2)0.0104 (15)0.0073 (14)0.0094 (16)
N20.0314 (16)0.0454 (19)0.0349 (19)0.0125 (15)0.0051 (14)0.0068 (15)
C10.038 (2)0.040 (2)0.048 (3)0.0152 (19)0.0079 (19)0.0087 (19)
C170.090 (4)0.099 (4)0.057 (4)0.054 (4)0.005 (3)0.003 (3)
C280.042 (2)0.047 (2)0.055 (3)0.015 (2)0.014 (2)0.015 (2)
C80.103 (5)0.073 (4)0.074 (4)0.043 (4)0.016 (3)0.011 (3)
C70.083 (4)0.064 (3)0.074 (4)0.017 (3)0.029 (3)0.015 (3)
C190.034 (2)0.0298 (19)0.036 (2)0.0125 (17)0.0005 (18)0.0078 (17)
C160.106 (5)0.128 (6)0.058 (4)0.035 (5)0.033 (3)0.012 (4)
C40.060 (3)0.054 (3)0.045 (3)0.020 (2)0.021 (2)0.010 (2)
C200.035 (2)0.043 (2)0.045 (3)0.0106 (18)0.0050 (18)0.0042 (19)
C60.071 (4)0.087 (4)0.093 (5)0.021 (3)0.012 (3)0.012 (4)
C90.067 (3)0.068 (3)0.069 (3)0.031 (3)0.016 (3)0.017 (3)
C120.067 (3)0.058 (3)0.070 (3)0.034 (3)0.025 (3)0.016 (2)
C130.051 (3)0.061 (3)0.048 (3)0.027 (2)0.008 (2)0.011 (2)
C180.078 (3)0.071 (3)0.055 (3)0.041 (3)0.009 (3)0.017 (3)
C50.063 (3)0.069 (3)0.092 (4)0.026 (3)0.018 (3)0.019 (3)
C100.037 (2)0.038 (2)0.041 (2)0.0151 (19)0.0068 (17)0.0024 (18)
C320.037 (2)0.090 (4)0.062 (3)0.021 (3)0.004 (2)0.010 (3)
C140.103 (4)0.069 (4)0.074 (4)0.025 (3)0.037 (3)0.025 (3)
C250.102 (5)0.093 (4)0.059 (4)0.062 (4)0.013 (3)0.004 (3)
C240.093 (4)0.069 (3)0.073 (4)0.039 (3)0.009 (3)0.006 (3)
C260.060 (3)0.104 (5)0.085 (4)0.043 (3)0.019 (3)0.015 (4)
C20.048 (2)0.061 (3)0.043 (3)0.028 (2)0.009 (2)0.005 (2)
C150.138 (6)0.105 (6)0.081 (5)0.017 (5)0.048 (4)0.029 (4)
C390.0292 (19)0.050 (2)0.037 (2)0.0172 (18)0.0051 (17)0.0026 (19)
C380.031 (2)0.071 (3)0.042 (3)0.022 (2)0.0021 (18)0.005 (2)
C30.068 (3)0.066 (3)0.063 (3)0.022 (3)0.007 (3)0.010 (3)
C340.055 (3)0.068 (3)0.053 (3)0.031 (2)0.010 (2)0.025 (2)
C110.041 (2)0.040 (2)0.052 (3)0.0152 (19)0.0049 (19)0.011 (2)
C360.0314 (19)0.043 (2)0.039 (2)0.0126 (17)0.0082 (17)0.0019 (18)
C300.033 (2)0.056 (3)0.063 (3)0.006 (2)0.013 (2)0.002 (2)
C350.037 (2)0.054 (3)0.048 (3)0.014 (2)0.0050 (19)0.016 (2)
C220.054 (3)0.052 (3)0.037 (2)0.023 (2)0.003 (2)0.007 (2)
C310.031 (2)0.078 (3)0.061 (3)0.006 (2)0.006 (2)0.001 (3)
C370.032 (2)0.057 (3)0.053 (3)0.010 (2)0.008 (2)0.000 (2)
C330.046 (2)0.080 (3)0.046 (3)0.036 (2)0.002 (2)0.011 (2)
C290.046 (2)0.047 (2)0.068 (3)0.014 (2)0.024 (2)0.014 (2)
C230.062 (3)0.056 (3)0.060 (3)0.023 (2)0.005 (2)0.003 (2)
C270.054 (3)0.070 (3)0.069 (3)0.020 (3)0.004 (3)0.005 (3)
C210.068 (3)0.063 (3)0.084 (4)0.038 (3)0.003 (3)0.008 (3)
O80.0413 (15)0.0492 (16)0.0402 (17)0.0146 (13)0.0076 (13)0.0058 (13)
Geometric parameters (Å, º) top
Yb1—O72.209 (2)C12—H12B0.9600
Yb1—O8i2.266 (3)C12—H12C0.9600
Yb1—O12.340 (3)C13—C181.364 (6)
Yb1—O42.360 (3)C13—C141.375 (7)
Yb1—O52.369 (2)C18—H18A0.9300
Yb1—O22.403 (3)C5—H5A0.9300
Yb1—N22.457 (3)C10—C111.517 (5)
Yb1—N12.482 (3)C32—C311.341 (7)
Yb1—C102.703 (4)C32—C381.431 (6)
Yb1—C12.720 (4)C32—H32A0.9300
O1—C11.238 (5)C14—C151.371 (8)
O2—C11.249 (4)C14—H14A0.9300
O3—C41.381 (5)C25—C261.357 (8)
O3—C21.420 (5)C25—C241.361 (7)
O4—C101.257 (4)C25—H25A0.9300
O5—C101.248 (4)C24—C231.384 (6)
O7—C191.252 (4)C24—H24A0.9300
O9—C221.384 (5)C26—C271.368 (7)
O9—C201.415 (4)C26—H26A0.9300
O6—C131.378 (5)C2—C31.506 (6)
O6—C111.418 (5)C2—H2A0.9800
N1—C281.323 (5)C15—H15A0.9300
N1—C361.357 (5)C39—C381.406 (5)
N2—C351.323 (5)C39—C361.434 (5)
N2—C391.365 (4)C38—C331.394 (6)
C1—C21.528 (6)C3—H3A0.9600
C17—C161.357 (8)C3—H3B0.9600
C17—C181.392 (7)C3—H3C0.9600
C17—H17A0.9300C34—C331.361 (6)
C28—C291.405 (6)C34—C351.391 (5)
C28—H28A0.9300C34—H34A0.9300
C8—C71.374 (8)C11—H11A0.9800
C8—C91.394 (7)C36—C371.420 (5)
C8—H8A0.9300C30—C291.355 (6)
C7—C61.355 (7)C30—C371.395 (6)
C7—H7A0.9300C30—H30A0.9300
C19—O81.236 (4)C35—H35A0.9300
C19—C201.528 (5)C22—C231.372 (6)
C16—C151.360 (9)C22—C271.384 (6)
C16—H16A0.9300C31—C371.421 (6)
C4—C91.353 (6)C31—H31A0.9300
C4—C51.374 (6)C33—H33A0.9300
C20—C211.498 (6)C29—H29A0.9300
C20—H20A0.9800C23—H23A0.9300
C6—C51.380 (7)C27—H27A0.9300
C6—H6A0.9300C21—H21A0.9600
C9—H9A0.9300C21—H21B0.9600
C12—C111.509 (6)C21—H21C0.9600
C12—H12A0.9600O8—Yb1i2.266 (3)
O7—Yb1—O8i91.61 (10)C11—C12—H12C109.5
O7—Yb1—O187.97 (11)H12A—C12—H12C109.5
O8i—Yb1—O1149.93 (10)H12B—C12—H12C109.5
O7—Yb1—O4136.78 (9)C18—C13—C14121.2 (5)
O8i—Yb1—O483.17 (10)C18—C13—O6124.9 (4)
O1—Yb1—O4116.77 (11)C14—C13—O6114.0 (4)
O7—Yb1—O581.63 (9)C13—C18—C17118.3 (5)
O8i—Yb1—O581.00 (9)C13—C18—H18A120.8
O1—Yb1—O5128.51 (9)C17—C18—H18A120.8
O4—Yb1—O555.16 (9)C4—C5—C6120.1 (5)
O7—Yb1—O287.71 (10)C4—C5—H5A120.0
O8i—Yb1—O2155.75 (10)C6—C5—H5A120.0
O1—Yb1—O254.30 (9)O5—C10—O4121.9 (4)
O4—Yb1—O280.83 (10)O5—C10—C11117.8 (3)
O5—Yb1—O274.91 (9)O4—C10—C11120.3 (3)
O7—Yb1—N282.59 (10)O5—C10—Yb161.19 (19)
O8i—Yb1—N274.23 (10)O4—C10—Yb160.76 (19)
O1—Yb1—N275.91 (10)C11—C10—Yb1178.3 (3)
O4—Yb1—N2135.43 (9)C31—C32—C38121.7 (4)
O5—Yb1—N2150.11 (10)C31—C32—H32A119.1
O2—Yb1—N2129.56 (10)C38—C32—H32A119.1
O7—Yb1—N1148.62 (10)C15—C14—C13119.4 (6)
O8i—Yb1—N187.15 (10)C15—C14—H14A120.3
O1—Yb1—N177.99 (11)C13—C14—H14A120.3
O4—Yb1—N174.20 (9)C26—C25—C24120.6 (5)
O5—Yb1—N1128.89 (9)C26—C25—H25A119.7
O2—Yb1—N1105.73 (11)C24—C25—H25A119.7
N2—Yb1—N166.89 (10)C25—C24—C23120.3 (5)
O7—Yb1—C10109.09 (11)C25—C24—H24A119.9
O8i—Yb1—C1081.95 (11)C23—C24—H24A119.9
O1—Yb1—C10126.41 (11)C25—C26—C27120.4 (5)
O4—Yb1—C1027.69 (10)C25—C26—H26A119.8
O5—Yb1—C1027.50 (10)C27—C26—H26A119.8
O2—Yb1—C1075.42 (11)O3—C2—C3106.3 (4)
N2—Yb1—C10153.85 (11)O3—C2—C1110.4 (3)
N1—Yb1—C10101.78 (11)C3—C2—C1110.7 (4)
O7—Yb1—C188.88 (11)O3—C2—H2A109.8
O8i—Yb1—C1176.88 (10)C3—C2—H2A109.8
O1—Yb1—C127.01 (10)C1—C2—H2A109.8
O4—Yb1—C198.56 (11)C16—C15—C14120.1 (7)
O5—Yb1—C1102.11 (11)C16—C15—H15A120.0
O2—Yb1—C127.35 (10)C14—C15—H15A120.0
N2—Yb1—C1102.79 (11)N2—C39—C38121.8 (4)
N1—Yb1—C190.83 (11)N2—C39—C36118.1 (3)
C10—Yb1—C1100.80 (12)C38—C39—C36120.1 (3)
C1—O1—Yb193.9 (2)C33—C38—C39118.4 (4)
C1—O2—Yb190.6 (2)C33—C38—C32123.0 (4)
C4—O3—C2117.9 (3)C39—C38—C32118.6 (4)
C10—O4—Yb191.5 (2)C2—C3—H3A109.5
C10—O5—Yb191.3 (2)C2—C3—H3B109.5
C19—O7—Yb1153.0 (2)H3A—C3—H3B109.5
C22—O9—C20118.8 (3)C2—C3—H3C109.5
C13—O6—C11118.7 (3)H3A—C3—H3C109.5
C28—N1—C36117.9 (3)H3B—C3—H3C109.5
C28—N1—Yb1124.4 (3)C33—C34—C35119.0 (4)
C36—N1—Yb1117.7 (2)C33—C34—H34A120.5
C35—N2—C39117.5 (3)C35—C34—H34A120.5
C35—N2—Yb1124.0 (2)O6—C11—C12106.1 (3)
C39—N2—Yb1118.4 (3)O6—C11—C10114.2 (3)
O1—C1—O2121.0 (4)C12—C11—C10109.3 (3)
O1—C1—C2119.5 (4)O6—C11—H11A109.0
O2—C1—C2119.5 (4)C12—C11—H11A109.0
O1—C1—Yb159.1 (2)C10—C11—H11A109.0
O2—C1—Yb162.1 (2)N1—C36—C37122.4 (4)
C2—C1—Yb1176.3 (3)N1—C36—C39118.4 (3)
C16—C17—C18120.4 (6)C37—C36—C39119.2 (4)
C16—C17—H17A119.8C29—C30—C37120.0 (4)
C18—C17—H17A119.8C29—C30—H30A120.0
N1—C28—C29123.1 (4)C37—C30—H30A120.0
N1—C28—H28A118.5N2—C35—C34123.9 (4)
C29—C28—H28A118.5N2—C35—H35A118.0
C7—C8—C9120.6 (6)C34—C35—H35A118.0
C7—C8—H8A119.7C23—C22—O9124.6 (4)
C9—C8—H8A119.7C23—C22—C27120.3 (4)
C6—C7—C8119.5 (5)O9—C22—C27115.1 (4)
C6—C7—H7A120.3C32—C31—C37121.2 (4)
C8—C7—H7A120.3C32—C31—H31A119.4
O8—C19—O7126.0 (3)C37—C31—H31A119.4
O8—C19—C20117.8 (3)C30—C37—C36117.2 (4)
O7—C19—C20116.0 (3)C30—C37—C31123.6 (4)
C17—C16—C15120.6 (6)C36—C37—C31119.1 (4)
C17—C16—H16A119.7C34—C33—C38119.3 (4)
C15—C16—H16A119.7C34—C33—H33A120.3
C9—C4—C5120.3 (5)C38—C33—H33A120.3
C9—C4—O3124.8 (4)C30—C29—C28119.2 (4)
C5—C4—O3114.9 (4)C30—C29—H29A120.4
O9—C20—C21107.7 (3)C28—C29—H29A120.4
O9—C20—C19112.1 (3)C22—C23—C24119.0 (5)
C21—C20—C19109.6 (3)C22—C23—H23A120.5
O9—C20—H20A109.1C24—C23—H23A120.5
C21—C20—H20A109.1C26—C27—C22119.4 (5)
C19—C20—H20A109.1C26—C27—H27A120.3
C7—C6—C5120.3 (5)C22—C27—H27A120.3
C7—C6—H6A119.8C20—C21—H21A109.5
C5—C6—H6A119.8C20—C21—H21B109.5
C4—C9—C8119.2 (5)H21A—C21—H21B109.5
C4—C9—H9A120.4C20—C21—H21C109.5
C8—C9—H9A120.4H21A—C21—H21C109.5
C11—C12—H12A109.5H21B—C21—H21C109.5
C11—C12—H12B109.5C19—O8—Yb1i138.2 (2)
H12A—C12—H12B109.5
O7—Yb1—O1—C191.5 (2)C2—O3—C4—C5168.1 (4)
O8i—Yb1—O1—C1178.8 (2)C22—O9—C20—C21158.5 (4)
O4—Yb1—O1—C151.5 (3)C22—O9—C20—C1980.8 (4)
O5—Yb1—O1—C113.9 (3)O8—C19—C20—O933.8 (5)
O2—Yb1—O1—C12.9 (2)O7—C19—C20—O9151.0 (3)
N2—Yb1—O1—C1174.4 (3)O8—C19—C20—C2185.8 (4)
N1—Yb1—O1—C1116.7 (3)O7—C19—C20—C2189.5 (4)
C10—Yb1—O1—C120.9 (3)C8—C7—C6—C50.4 (9)
O7—Yb1—O2—C192.0 (2)C5—C4—C9—C81.2 (8)
O8i—Yb1—O2—C1179.2 (2)O3—C4—C9—C8177.8 (5)
O1—Yb1—O2—C12.8 (2)C7—C8—C9—C41.2 (8)
O4—Yb1—O2—C1129.8 (2)C11—O6—C13—C187.8 (6)
O5—Yb1—O2—C1173.9 (3)C11—O6—C13—C14172.6 (4)
N2—Yb1—O2—C113.6 (3)C14—C13—C18—C170.4 (7)
N1—Yb1—O2—C159.2 (3)O6—C13—C18—C17179.1 (4)
C10—Yb1—O2—C1157.6 (3)C16—C17—C18—C130.3 (8)
O7—Yb1—O4—C100.6 (3)C9—C4—C5—C60.9 (8)
O8i—Yb1—O4—C1085.7 (2)O3—C4—C5—C6178.3 (5)
O1—Yb1—O4—C10118.0 (2)C7—C6—C5—C40.5 (9)
O5—Yb1—O4—C101.9 (2)Yb1—O5—C10—O43.5 (4)
O2—Yb1—O4—C1076.0 (2)Yb1—O5—C10—C11178.5 (3)
N2—Yb1—O4—C10144.9 (2)Yb1—O4—C10—O53.5 (4)
N1—Yb1—O4—C10174.6 (2)Yb1—O4—C10—C11178.6 (3)
C1—Yb1—O4—C1096.9 (2)O7—Yb1—C10—O52.9 (2)
O7—Yb1—O5—C10177.2 (2)O8i—Yb1—C10—O586.0 (2)
O8i—Yb1—O5—C1089.8 (2)O1—Yb1—C10—O5105.0 (2)
O1—Yb1—O5—C1096.6 (2)O4—Yb1—C10—O5176.6 (4)
O4—Yb1—O5—C101.9 (2)O2—Yb1—C10—O585.3 (2)
O2—Yb1—O5—C1087.3 (2)N2—Yb1—C10—O5110.3 (3)
N2—Yb1—O5—C10124.0 (3)N1—Yb1—C10—O5171.3 (2)
N1—Yb1—O5—C1010.9 (3)C1—Yb1—C10—O595.5 (2)
C1—Yb1—O5—C1090.2 (2)O7—Yb1—C10—O4179.6 (2)
O8i—Yb1—O7—C1999.1 (6)O8i—Yb1—C10—O490.6 (2)
O1—Yb1—O7—C19111.0 (6)O1—Yb1—C10—O478.4 (3)
O4—Yb1—O7—C1917.4 (6)O5—Yb1—C10—O4176.6 (4)
O5—Yb1—O7—C1918.5 (6)O2—Yb1—C10—O498.1 (2)
O2—Yb1—O7—C1956.6 (6)N2—Yb1—C10—O466.3 (4)
N2—Yb1—O7—C19173.0 (6)N1—Yb1—C10—O45.3 (2)
N1—Yb1—O7—C19173.7 (5)C1—Yb1—C10—O487.9 (2)
C10—Yb1—O7—C1917.1 (6)C18—C13—C14—C150.9 (9)
C1—Yb1—O7—C1984.0 (6)O6—C13—C14—C15178.7 (5)
O7—Yb1—N1—C28161.8 (3)C26—C25—C24—C230.1 (9)
O8i—Yb1—N1—C28109.8 (3)C24—C25—C26—C271.0 (9)
O1—Yb1—N1—C2896.5 (3)C4—O3—C2—C3175.8 (4)
O4—Yb1—N1—C2826.1 (3)C4—O3—C2—C164.2 (5)
O5—Yb1—N1—C2833.8 (4)O1—C1—C2—O341.3 (5)
O2—Yb1—N1—C2849.3 (3)O2—C1—C2—O3139.9 (4)
N2—Yb1—N1—C28176.1 (3)O1—C1—C2—C376.1 (5)
C10—Yb1—N1—C2828.7 (3)O2—C1—C2—C3102.6 (5)
C1—Yb1—N1—C2872.5 (3)C17—C16—C15—C141.1 (12)
O7—Yb1—N1—C3620.3 (4)C13—C14—C15—C161.2 (11)
O8i—Yb1—N1—C3668.1 (3)C35—N2—C39—C380.9 (6)
O1—Yb1—N1—C3685.6 (3)Yb1—N2—C39—C38175.8 (3)
O4—Yb1—N1—C36151.8 (3)C35—N2—C39—C36177.7 (3)
O5—Yb1—N1—C36144.1 (2)Yb1—N2—C39—C365.5 (4)
O2—Yb1—N1—C36132.8 (3)N2—C39—C38—C331.6 (6)
N2—Yb1—N1—C366.0 (2)C36—C39—C38—C33177.0 (4)
C10—Yb1—N1—C36149.2 (3)N2—C39—C38—C32178.4 (4)
C1—Yb1—N1—C36109.6 (3)C36—C39—C38—C323.0 (6)
O7—Yb1—N2—C355.1 (3)C31—C32—C38—C33179.0 (5)
O8i—Yb1—N2—C3588.7 (3)C31—C32—C38—C391.0 (7)
O1—Yb1—N2—C3594.8 (3)C13—O6—C11—C12170.1 (3)
O4—Yb1—N2—C35151.2 (3)C13—O6—C11—C1069.4 (4)
O5—Yb1—N2—C3553.6 (4)O5—C10—C11—O6160.0 (3)
O2—Yb1—N2—C3585.9 (3)O4—C10—C11—O621.9 (5)
N1—Yb1—N2—C35177.6 (3)O5—C10—C11—C1281.3 (4)
C10—Yb1—N2—C35113.9 (4)O4—C10—C11—C1296.7 (4)
C1—Yb1—N2—C3592.2 (3)C28—N1—C36—C373.9 (6)
O7—Yb1—N2—C39178.4 (3)Yb1—N1—C36—C37174.2 (3)
O8i—Yb1—N2—C3987.8 (3)C28—N1—C36—C39176.2 (4)
O1—Yb1—N2—C3988.7 (3)Yb1—N1—C36—C395.7 (4)
O4—Yb1—N2—C3925.3 (3)N2—C39—C36—N10.2 (5)
O5—Yb1—N2—C39122.9 (3)C38—C39—C36—N1178.4 (3)
O2—Yb1—N2—C3997.6 (3)N2—C39—C36—C37179.7 (3)
N1—Yb1—N2—C395.9 (2)C38—C39—C36—C371.6 (6)
C10—Yb1—N2—C3962.6 (4)C39—N2—C35—C340.4 (6)
C1—Yb1—N2—C3991.3 (3)Yb1—N2—C35—C34177.0 (3)
Yb1—O1—C1—O25.2 (4)C33—C34—C35—N21.0 (7)
Yb1—O1—C1—C2176.1 (3)C20—O9—C22—C230.5 (6)
Yb1—O2—C1—O15.1 (4)C20—O9—C22—C27179.1 (4)
Yb1—O2—C1—C2176.2 (3)C38—C32—C31—C372.4 (8)
O7—Yb1—C1—O187.7 (3)C29—C30—C37—C361.8 (6)
O4—Yb1—C1—O1135.0 (2)C29—C30—C37—C31177.9 (4)
O5—Yb1—C1—O1168.9 (2)N1—C36—C37—C302.0 (6)
O2—Yb1—C1—O1174.9 (4)C39—C36—C37—C30178.1 (4)
N2—Yb1—C1—O15.6 (3)N1—C36—C37—C31178.2 (4)
N1—Yb1—C1—O160.9 (3)C39—C36—C37—C311.7 (6)
C10—Yb1—C1—O1163.0 (2)C32—C31—C37—C30176.0 (5)
O7—Yb1—C1—O287.2 (2)C32—C31—C37—C363.8 (7)
O1—Yb1—C1—O2174.9 (4)C35—C34—C33—C380.3 (7)
O4—Yb1—C1—O250.1 (2)C39—C38—C33—C340.9 (6)
O5—Yb1—C1—O26.0 (3)C32—C38—C33—C34179.1 (4)
N2—Yb1—C1—O2169.3 (2)C37—C30—C29—C283.6 (7)
N1—Yb1—C1—O2124.2 (2)N1—C28—C29—C301.7 (7)
C10—Yb1—C1—O222.0 (3)O9—C22—C23—C24174.9 (4)
C36—N1—C28—C292.0 (6)C27—C22—C23—C243.6 (7)
Yb1—N1—C28—C29175.9 (3)C25—C24—C23—C222.2 (8)
C9—C8—C7—C60.8 (9)C25—C26—C27—C220.3 (8)
Yb1—O7—C19—O8102.6 (6)C23—C22—C27—C262.7 (7)
Yb1—O7—C19—C2082.6 (6)O9—C22—C27—C26176.0 (4)
C18—C17—C16—C150.7 (10)O7—C19—O8—Yb1i7.7 (6)
C2—O3—C4—C912.8 (6)C20—C19—O8—Yb1i177.6 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Yb2(C9H9O3)6(C12H8N2)2]
Mr1697.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.3577 (4), 12.2091 (5), 14.1438 (6)
α, β, γ (°)99.111 (2), 91.089 (2), 114.320 (2)
V3)1756.94 (12)
Z1
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.32 × 0.20 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.524, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
22731, 6187, 5246
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 1.02
No. of reflections6187
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.03

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Yb1—O72.209 (2)Yb1—O52.369 (2)
Yb1—O8i2.266 (3)Yb1—O22.403 (3)
Yb1—O12.340 (3)Yb1—N22.457 (3)
Yb1—O42.360 (3)Yb1—N12.482 (3)
Symmetry code: (i) x+1, y+1, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, W., Luo, X., Wu, B., Mao, J. & Jiang, X. (1999). Acta Cryst. C55, 1472–1475.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarkus, D. M. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953–1959.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011e). Acta Cryst. E67, submitted.  CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011f). Acta Cryst. E67, m1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011g). Acta Cryst. E67, m1359–m1360.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds