metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­bis­­(2,2′-bi­pyridine)­bis­­(μ3-5-hy­dr­oxy­isophthalato)(μ2-5-hy­dr­oxy­isophthalato)digadolinium(III)] trihydrate]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhangyl75@yahoo.com.cn

(Received 26 August 2011; accepted 3 September 2011; online 14 September 2011)

The asymmetric unit of the title coordination polymer, {[Gd2(C8H4O5)3(C10H8N2)2(H2O)2]·3H2O}n, contains two GdIII cations, one of which is surrounded by three 5-hy­droxy­isophthalate anions, one 2,2′-bipyridine ligand and two water mol­ecules in a distorted N2O7 tricapped trigonal–prismatic coordination geometry. The other Gd cation is coordinated by four 5-hy­droxy­isophthalate anions and one 2,2′-bipyridine ligand in a distorted N2O7 tricapped trigonal–prismatic coordination geometry. The 5-hy­droxy­isophthalate anions bridge the Gd cations, forming a layer structure. The layers are further connected by extensive O—H⋯O hydrogen bonding, assembling a three-dimensional supra­molecular network.

Related literature

For metal organic frameworks (MOFs) with porous structures, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Kitaura et al. (2003[Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. (2003). Angew. Chem. Int. Ed. 42, 428-431.]); Chen et al. (2006[Chen, B., Liang, C., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. & Dai, S. (2006). Angew. Chem. Int. Ed. 45, 1390-1393.]); Luo et al. (2004[Luo, Y., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2004). J. Coord. Chem., 57, 1125-1130.]); Xu et al. (2007[Xu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007). Acta Cryst. C63, m476-m478.]). For a series of highly porous MOFs with bifunctional 1,4-benzene­dicarboxyl­ate (BDC) or trifunctional 1,3,5-benzene­tricarboxyl­ate (BTC), see: Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]). For complexes of d-block transition metal and f-block lanthanide ions, see: Lee et al. (2005[Lee, E. Y., Jang, S. Y. & Suh, M. P. J. (2005). J. Am. Chem. Soc. 127, 6374-6381.]); Sun et al. (2005[Sun, Y. Q., Zhang, J., Chen, Y. M. & Yang, Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd2(C8H4O5)3(C10H8N2)2(H2O)2]·3H2O

  • Mr = 1257.28

  • Triclinic, [P \overline 1]

  • a = 11.4196 (13) Å

  • b = 12.0357 (14) Å

  • c = 17.886 (2) Å

  • α = 91.008 (1)°

  • β = 103.204 (1)°

  • γ = 106.648 (1)°

  • V = 2283.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.97 mm−1

  • T = 298 K

  • 0.31 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.415, Tmax = 0.521

  • 11916 measured reflections

  • 8089 independent reflections

  • 6783 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.05

  • 8089 reflections

  • 634 parameters

  • 252 restraints

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −1.33 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O3 2.317 (3)
Gd1—O4i 2.385 (3)
Gd1—O6 2.473 (3)
Gd1—O7 2.503 (3)
Gd1—O13ii 2.383 (3)
Gd1—O14ii 2.769 (4)
Gd1—O14iii 2.360 (3)
Gd1—N3 2.624 (4)
Gd1—N4 2.568 (4)
Gd2—O1 2.539 (3)
Gd2—O2 2.426 (3)
Gd2—O8iv 2.334 (3)
Gd2—O11 2.496 (3)
Gd2—O12 2.488 (3)
Gd2—O1W 2.369 (4)
Gd2—O2W 2.463 (4)
Gd2—N1 2.570 (5)
Gd2—N2 2.651 (5)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y+1, z; (iv) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O12v 0.82 1.92 2.720 (5) 164
O10—H10A⋯O11vi 0.82 1.96 2.755 (5) 163
O15—H15⋯O4Wvii 0.82 2.13 2.942 (10) 171
O1W—H1WA⋯O3W 0.85 2.02 2.709 (6) 137
O1W—H1WB⋯O9iv 0.85 1.90 2.622 (5) 142
O2W—H2WA⋯O2 0.85 2.15 2.691 (5) 121
O2W—H2WB⋯O7viii 0.85 1.85 2.680 (5) 165
O3W—H3WA⋯O9 0.85 2.25 2.821 (7) 125
O3W—H3WB⋯O4W 0.85 2.19 2.713 (7) 119
O4W—H4WA⋯O6 0.85 1.97 2.813 (6) 171
O4W—H4WB⋯O1 0.85 2.18 2.797 (6) 129
O5W—H5WA⋯O15iii 0.85 1.97 2.817 (12) 173
O5W—H5WB⋯O10ix 0.85 2.19 3.006 (13) 160
Symmetry codes: (iii) x, y+1, z; (iv) -x+1, -y, -z; (v) -x+1, -y, -z+1; (vi) x+1, y+1, z; (vii) x, y-1, z; (viii) x-1, y-1, z; (ix) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, research on coordination polymers has made considerable progress in the fields (Luo et al., 2004; Xu et al., 2007). Especially, Over the past few decades considerable efforts have been placed on the synthesis of metal organic framework (MOF) with porous structures (Kitagawa et al., 2004; Kitaura et al., 2003). The rigid organic ring multidentate carboxylates have been generally used in this field (Chen et al., 2006). Eddaoudi et al. succeeded in preparing a series of highly porous MOFs by bifunctional 1,4-benzenedicarb-oxylate (BDC) or trifunctional 1,3,5-benzenetricarboxylate (BTC) (Eddaoudi et al., 2002). On the other hand, investigations of the phenyl-enedioxydiacetic acid complexes have mainly focused on the d-block transition-metal, f-block lanthanide ions have received comparatively less attention than transition-metal ions (Lee et al., 2005). However, due to their ability of high coordination number, special magnetic and fluorescence properties, lanthanide complexes is likely to bring unprecedented crystal structures and unique properties (Sun et al., 2005). So, new synthetic methods to obtain lanthanide coordination polymers with novel intrinsic porous still remain challenging. In this work, we synthesized successfully the new MOF with porous structure by using Gd rare earth metal, 5-Hydroxyisophthalate ligand and 2,2'-bipyridyl ligand under hydrothermal conditions.

The molecular structure the title compound is illustrated in Fig. 1, the asymmetric unit contains two Gd(III) ions, three 5-Hydroxyisophthalate ligands, two bipyridyl ligands and two water molecules. The Gd ion is nine-coordinated by five O atoms from three 5-Hydroxyisophthalate ligands, two N atoms from bipyridyl ligand and two water molecules, forming a distorted tricapped trigonal prismatic geometry. The Gd···O bond distances range from 2.316 (4) to 2.764 (4) Å, and the Gd···N bond lengths vary from 2.568 (6) to 2.651 (6) Å.

In the crystal structure, Each Gd metal centre is connected by the 5-hydroxyisophthalate ligands and the bipyridyl ligands to produce a layer. The intermolecular O—H···O hydrogenbonds interactions (Table 1), involving 5-hydroxyisophthalate ligands, bipyridyl ligands and water molecules, linking further the layers into a three-dimensional supramolecular network.

Related literature top

For metal organic frameworks (MOFs) with porous structures, see: Kitagawa et al. (2004); Kitaura et al. (2003); Chen et al. (2006); Luo et al. (2004); Xu et al. (2007). For a series of highly porous MOFs with bifunctional 1,4-benzenedicarboxylate (BDC) or trifunctional 1,3,5-benzenetricarboxylate (BTC), see: Eddaoudi et al. (2002). For complexes of d-block transition metal and f-block lanthanide ions, see: Lee et al. (2005); Sun et al. (2005).

Experimental top

A mixture of Gd2O3 (0.363 g, 1 mmol), 5-hydroxyisophthalato acid (0.182 g, 1 mmol), 2,2'-bipyridine (0.132 g, 1 mmol), water (10 ml) in the presence of HClO4 (0.039 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 50 h, and then cooled to room temperature at 5 K.h-1 and obtained the colorless block crystals.

Refinement top

Water and hydroxy H atoms were tentatively located in difference Fourier maps and fixed in refinements, with distance restraints of O–H = 0.85 Å and H···H = 1.35 Å for water H atoms and o—H = 0.82 Å for hydroxy H atoms, Uiso(H) = 1.5 Ueq(O). Other H atoms were placed in calculated positions with C–H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, research on coordination polymers has made considerable progress in the fields (Luo et al., 2004; Xu et al., 2007). Especially, Over the past few decades considerable efforts have been placed on the synthesis of metal organic framework (MOF) with porous structures (Kitagawa et al., 2004; Kitaura et al., 2003). The rigid organic ring multidentate carboxylates have been generally used in this field (Chen et al., 2006). Eddaoudi et al. succeeded in preparing a series of highly porous MOFs by bifunctional 1,4-benzenedicarb-oxylate (BDC) or trifunctional 1,3,5-benzenetricarboxylate (BTC) (Eddaoudi et al., 2002). On the other hand, investigations of the phenyl-enedioxydiacetic acid complexes have mainly focused on the d-block transition-metal, f-block lanthanide ions have received comparatively less attention than transition-metal ions (Lee et al., 2005). However, due to their ability of high coordination number, special magnetic and fluorescence properties, lanthanide complexes is likely to bring unprecedented crystal structures and unique properties (Sun et al., 2005). So, new synthetic methods to obtain lanthanide coordination polymers with novel intrinsic porous still remain challenging. In this work, we synthesized successfully the new MOF with porous structure by using Gd rare earth metal, 5-Hydroxyisophthalate ligand and 2,2'-bipyridyl ligand under hydrothermal conditions.

The molecular structure the title compound is illustrated in Fig. 1, the asymmetric unit contains two Gd(III) ions, three 5-Hydroxyisophthalate ligands, two bipyridyl ligands and two water molecules. The Gd ion is nine-coordinated by five O atoms from three 5-Hydroxyisophthalate ligands, two N atoms from bipyridyl ligand and two water molecules, forming a distorted tricapped trigonal prismatic geometry. The Gd···O bond distances range from 2.316 (4) to 2.764 (4) Å, and the Gd···N bond lengths vary from 2.568 (6) to 2.651 (6) Å.

In the crystal structure, Each Gd metal centre is connected by the 5-hydroxyisophthalate ligands and the bipyridyl ligands to produce a layer. The intermolecular O—H···O hydrogenbonds interactions (Table 1), involving 5-hydroxyisophthalate ligands, bipyridyl ligands and water molecules, linking further the layers into a three-dimensional supramolecular network.

For metal organic frameworks (MOFs) with porous structures, see: Kitagawa et al. (2004); Kitaura et al. (2003); Chen et al. (2006); Luo et al. (2004); Xu et al. (2007). For a series of highly porous MOFs with bifunctional 1,4-benzenedicarboxylate (BDC) or trifunctional 1,3,5-benzenetricarboxylate (BTC), see: Eddaoudi et al. (2002). For complexes of d-block transition metal and f-block lanthanide ions, see: Lee et al. (2005); Sun et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, displacement ellipsoids drawn at the 30% probability level.
Poly[[diaquabis(2,2'-bipyridine)bis(µ3-5-hydroxyisophthalato)(µ2- 5-hydroxyisophthalato)digadolinium(III)] trihydrate] top
Crystal data top
[Gd2(C8H4O5)3(C10H8N2)2(H2O)2]·3H2OZ = 2
Mr = 1257.28F(000) = 1236
Triclinic, P1Dx = 1.828 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4196 (13) ÅCell parameters from 4955 reflections
b = 12.0357 (14) Åθ = 2.4–25.2°
c = 17.886 (2) ŵ = 2.97 mm1
α = 91.008 (1)°T = 298 K
β = 103.204 (1)°Block, colourless
γ = 106.648 (1)°0.31 × 0.28 × 0.22 mm
V = 2283.8 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
8089 independent reflections
Radiation source: fine-focus sealed tube6783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1113
Tmin = 0.415, Tmax = 0.521k = 1413
11916 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0268P)2 + 4.4136P]
where P = (Fo2 + 2Fc2)/3
8089 reflections(Δ/σ)max = 0.001
634 parametersΔρmax = 1.17 e Å3
252 restraintsΔρmin = 1.33 e Å3
Crystal data top
[Gd2(C8H4O5)3(C10H8N2)2(H2O)2]·3H2Oγ = 106.648 (1)°
Mr = 1257.28V = 2283.8 (5) Å3
Triclinic, P1Z = 2
a = 11.4196 (13) ÅMo Kα radiation
b = 12.0357 (14) ŵ = 2.97 mm1
c = 17.886 (2) ÅT = 298 K
α = 91.008 (1)°0.31 × 0.28 × 0.22 mm
β = 103.204 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
8089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6783 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.521Rint = 0.023
11916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032252 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 1.17 e Å3
8089 reflectionsΔρmin = 1.33 e Å3
634 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4825 (5)0.0836 (4)0.3988 (3)0.0229 (8)
C20.4122 (5)0.0772 (4)0.4536 (3)0.0237 (9)
H20.33480.02030.44660.028*
C30.4574 (4)0.1555 (4)0.5186 (3)0.0230 (9)
C40.5716 (4)0.2425 (4)0.5289 (3)0.0222 (9)
H40.59950.29780.57110.027*
C50.6437 (4)0.2460 (4)0.4755 (3)0.0209 (8)
C60.5988 (5)0.1667 (4)0.4108 (3)0.0231 (9)
H60.64730.16940.37520.028*
C70.4287 (5)0.0026 (4)0.3266 (3)0.0249 (10)
C80.7700 (4)0.3348 (4)0.4872 (3)0.0212 (9)
C91.0118 (5)0.3921 (4)0.1825 (3)0.0243 (8)
C100.9050 (5)0.3313 (4)0.1278 (3)0.0259 (9)
H100.83120.29470.14240.031*
C110.9081 (5)0.3250 (4)0.0505 (3)0.0259 (9)
C121.0187 (5)0.3779 (4)0.0290 (3)0.0253 (9)
H121.02100.37260.02250.030*
C131.1264 (5)0.4389 (4)0.0845 (3)0.0258 (9)
C141.1241 (5)0.4465 (4)0.1617 (3)0.0265 (9)
H141.19590.48710.19900.032*
C151.0120 (5)0.4014 (4)0.2666 (3)0.0253 (10)
C160.7912 (5)0.2616 (5)0.0098 (3)0.0288 (11)
C170.5752 (5)0.3885 (4)0.2507 (3)0.0236 (8)
C180.6735 (4)0.3617 (4)0.3163 (3)0.0230 (9)
H180.68760.29620.34940.028*
C190.7513 (5)0.4335 (4)0.3326 (3)0.0246 (8)
C200.7287 (5)0.5311 (5)0.2836 (3)0.0306 (10)
H200.77950.57970.29520.037*
C210.6317 (5)0.5578 (5)0.2177 (3)0.0332 (10)
C220.5546 (5)0.4859 (5)0.2015 (3)0.0312 (10)
H220.48880.50340.15740.037*
C230.4846 (5)0.3179 (4)0.2360 (3)0.0234 (10)
C240.8531 (5)0.4071 (4)0.4055 (3)0.0247 (10)
C250.3528 (7)0.0870 (6)0.1175 (4)0.0615 (16)
H250.43520.08350.13070.074*
C260.3300 (8)0.1788 (6)0.0774 (4)0.0685 (15)
H260.39370.23300.06160.082*
C270.2111 (8)0.1865 (7)0.0623 (5)0.0706 (15)
H270.19210.24730.03560.085*
C280.1188 (8)0.1057 (7)0.0858 (4)0.0654 (14)
H280.03780.11270.07690.078*
C290.1472 (7)0.0119 (6)0.1236 (4)0.0558 (13)
C300.0507 (7)0.0824 (7)0.1467 (4)0.0584 (13)
C310.0743 (7)0.0819 (8)0.1332 (5)0.0735 (14)
H310.09810.01850.11340.088*
C320.1609 (8)0.1762 (8)0.1496 (5)0.0803 (15)
H320.24450.17680.14130.096*
C330.1269 (7)0.2695 (9)0.1779 (5)0.0771 (16)
H330.18630.33570.18690.093*
C340.0001 (6)0.2620 (8)0.1928 (4)0.0693 (17)
H340.02510.32410.21380.083*
C350.9127 (5)0.0884 (5)0.4210 (4)0.0418 (12)
H350.85780.11170.44450.050*
C360.8929 (6)0.0290 (5)0.4063 (4)0.0480 (12)
H360.82660.08340.41970.058*
C370.9721 (6)0.0639 (5)0.3717 (4)0.0493 (12)
H370.96090.14270.36120.059*
C381.0695 (6)0.0190 (5)0.3523 (4)0.0420 (11)
H381.12410.00330.32800.050*
C391.0849 (5)0.1352 (5)0.3693 (3)0.0326 (10)
C401.1930 (5)0.2272 (5)0.3551 (3)0.0315 (10)
C411.2673 (5)0.2066 (5)0.3085 (3)0.0380 (10)
H411.24360.13540.27940.046*
C421.3754 (6)0.2904 (5)0.3048 (4)0.0432 (11)
H421.42490.27730.27290.052*
C431.4093 (6)0.3935 (5)0.3490 (4)0.0461 (11)
H431.48560.44970.35120.055*
C441.3265 (6)0.4121 (5)0.3904 (4)0.0450 (13)
H441.34660.48420.41770.054*
Gd11.04200 (2)0.394578 (19)0.429399 (12)0.01701 (7)
Gd20.32468 (2)0.17119 (2)0.199574 (13)0.02017 (7)
N10.2649 (5)0.0030 (4)0.1387 (3)0.0415 (12)
N20.0875 (4)0.1705 (5)0.1784 (3)0.0398 (12)
N31.0066 (4)0.1707 (4)0.4034 (2)0.0257 (9)
N41.2204 (4)0.3324 (4)0.3931 (3)0.0308 (10)
O10.4872 (3)0.0106 (3)0.27407 (19)0.0286 (8)
O20.3229 (3)0.0732 (3)0.31882 (19)0.0303 (9)
O30.8478 (3)0.3098 (3)0.4555 (2)0.0272 (8)
O40.7914 (3)0.4286 (3)0.52814 (19)0.0269 (8)
O50.3858 (3)0.1410 (4)0.5713 (2)0.0381 (10)
H50.42900.17590.61280.057*
O60.9359 (3)0.3244 (3)0.29311 (18)0.0254 (8)
O71.0911 (3)0.4849 (3)0.31090 (18)0.0316 (9)
O80.7983 (3)0.2599 (3)0.07886 (18)0.0303 (8)
O90.6932 (4)0.2138 (5)0.0118 (2)0.0644 (15)
O101.2346 (3)0.4877 (3)0.0613 (2)0.0356 (9)
H10A1.28910.52700.09790.053*
O110.3877 (3)0.3498 (3)0.18007 (19)0.0274 (8)
O120.5040 (3)0.2276 (3)0.27956 (19)0.0286 (8)
O130.8553 (4)0.3317 (3)0.4550 (2)0.0340 (9)
O140.9326 (3)0.4648 (3)0.4180 (2)0.0287 (8)
O150.6061 (5)0.6548 (4)0.1695 (3)0.0720 (17)
H150.63550.70260.19280.108*
O1W0.4679 (3)0.1230 (3)0.1195 (2)0.0405 (10)
H1WA0.54340.11020.11580.061*
H1WB0.42300.11930.07520.061*
O2W0.2359 (3)0.3061 (3)0.2883 (2)0.0354 (9)
H2WA0.23510.25650.32250.053*
H2WB0.20190.37340.30070.053*
O3W0.6877 (4)0.0285 (4)0.1066 (3)0.0650 (14)
H3WA0.71450.05240.06740.097*
H3WB0.64820.07360.11830.097*
O4W0.7005 (6)0.1565 (6)0.2362 (3)0.121 (3)
H4WA0.77460.20120.25520.181*
H4WB0.66380.14150.27280.181*
O5W0.5593 (16)0.4214 (15)0.0206 (8)0.356 (12)
H5WA0.57680.40430.06690.533*
H5WB0.62630.43570.00460.533*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (17)0.0219 (17)0.0218 (17)0.0028 (14)0.0031 (15)0.0031 (14)
C20.0192 (18)0.0252 (18)0.0216 (18)0.0005 (16)0.0028 (16)0.0028 (16)
C30.0189 (18)0.0272 (18)0.0214 (18)0.0055 (16)0.0041 (16)0.0038 (16)
C40.0191 (18)0.0255 (18)0.0202 (17)0.0068 (15)0.0019 (16)0.0052 (15)
C50.0187 (17)0.0225 (16)0.0196 (16)0.0046 (14)0.0031 (14)0.0024 (14)
C60.0207 (18)0.0247 (18)0.0218 (18)0.0028 (15)0.0066 (16)0.0032 (15)
C70.024 (2)0.022 (2)0.022 (2)0.0029 (18)0.0009 (19)0.0022 (18)
C80.020 (2)0.023 (2)0.0171 (19)0.0051 (17)0.0015 (18)0.0016 (17)
C90.0251 (17)0.0281 (17)0.0161 (16)0.0051 (15)0.0014 (15)0.0013 (14)
C100.0256 (19)0.0298 (19)0.0169 (17)0.0034 (16)0.0010 (16)0.0008 (16)
C110.0268 (18)0.0295 (17)0.0181 (16)0.0066 (15)0.0011 (15)0.0015 (15)
C120.0271 (19)0.0302 (19)0.0155 (17)0.0059 (17)0.0025 (16)0.0017 (16)
C130.0255 (19)0.0299 (19)0.0190 (18)0.0058 (17)0.0028 (16)0.0017 (16)
C140.0250 (19)0.0292 (19)0.0199 (18)0.0052 (17)0.0011 (16)0.0040 (16)
C150.025 (2)0.027 (2)0.019 (2)0.0050 (19)0.0008 (19)0.0006 (18)
C160.030 (2)0.031 (2)0.018 (2)0.004 (2)0.0010 (19)0.0016 (18)
C170.0192 (17)0.0282 (17)0.0210 (16)0.0065 (15)0.0014 (15)0.0018 (15)
C180.0216 (19)0.0234 (18)0.0212 (18)0.0060 (16)0.0007 (16)0.0003 (16)
C190.0223 (17)0.0253 (17)0.0230 (17)0.0058 (15)0.0009 (15)0.0006 (15)
C200.027 (2)0.032 (2)0.0305 (19)0.0115 (17)0.0015 (17)0.0056 (17)
C210.028 (2)0.036 (2)0.0306 (19)0.0107 (17)0.0035 (17)0.0122 (17)
C220.0241 (19)0.036 (2)0.0279 (19)0.0086 (17)0.0036 (17)0.0081 (17)
C230.019 (2)0.026 (2)0.021 (2)0.0048 (18)0.0004 (18)0.0000 (18)
C240.022 (2)0.022 (2)0.025 (2)0.0029 (18)0.0014 (18)0.0041 (18)
C250.064 (3)0.040 (3)0.066 (3)0.011 (3)0.008 (3)0.013 (3)
C260.073 (3)0.046 (3)0.071 (3)0.013 (2)0.008 (3)0.012 (2)
C270.076 (3)0.055 (3)0.074 (3)0.026 (2)0.004 (3)0.009 (2)
C280.068 (3)0.064 (3)0.068 (3)0.038 (2)0.001 (2)0.006 (2)
C290.058 (3)0.068 (3)0.054 (3)0.044 (2)0.006 (2)0.004 (2)
C300.051 (3)0.084 (3)0.055 (3)0.044 (2)0.012 (2)0.009 (2)
C310.054 (3)0.104 (3)0.071 (3)0.038 (2)0.011 (2)0.019 (3)
C320.049 (3)0.117 (4)0.078 (3)0.030 (3)0.014 (2)0.023 (3)
C330.043 (3)0.118 (4)0.073 (3)0.026 (3)0.017 (3)0.024 (3)
C340.036 (3)0.113 (4)0.064 (3)0.025 (3)0.017 (3)0.023 (3)
C350.031 (3)0.029 (2)0.064 (3)0.004 (2)0.016 (2)0.001 (2)
C360.036 (2)0.032 (2)0.071 (3)0.0003 (19)0.017 (2)0.001 (2)
C370.043 (2)0.032 (2)0.069 (3)0.0029 (19)0.017 (2)0.005 (2)
C380.041 (2)0.031 (2)0.056 (2)0.0072 (18)0.019 (2)0.0047 (19)
C390.035 (2)0.027 (2)0.039 (2)0.0099 (17)0.0149 (18)0.0011 (18)
C400.035 (2)0.030 (2)0.036 (2)0.0132 (17)0.0168 (18)0.0051 (17)
C410.042 (2)0.036 (2)0.045 (2)0.0151 (18)0.0230 (19)0.0057 (19)
C420.043 (2)0.042 (2)0.054 (2)0.0133 (19)0.029 (2)0.009 (2)
C430.042 (2)0.041 (2)0.061 (3)0.009 (2)0.027 (2)0.010 (2)
C440.040 (3)0.038 (3)0.062 (3)0.008 (2)0.027 (2)0.004 (2)
Gd10.01518 (13)0.01894 (13)0.01425 (12)0.00264 (10)0.00175 (10)0.00201 (9)
Gd20.01919 (14)0.02123 (14)0.01529 (13)0.00330 (10)0.00138 (10)0.00330 (9)
N10.051 (3)0.032 (3)0.034 (3)0.013 (2)0.005 (2)0.001 (2)
N20.028 (3)0.060 (3)0.031 (3)0.013 (2)0.007 (2)0.002 (2)
N30.023 (2)0.025 (2)0.030 (2)0.0084 (19)0.0050 (19)0.0025 (18)
N40.023 (2)0.027 (2)0.041 (3)0.0024 (19)0.011 (2)0.001 (2)
O10.027 (2)0.030 (2)0.0231 (18)0.0003 (16)0.0068 (16)0.0061 (15)
O20.027 (2)0.0260 (19)0.0271 (19)0.0056 (16)0.0039 (16)0.0111 (15)
O30.0204 (19)0.0258 (19)0.034 (2)0.0017 (15)0.0115 (16)0.0053 (15)
O40.0231 (19)0.0243 (19)0.0291 (19)0.0000 (15)0.0081 (16)0.0109 (15)
O50.023 (2)0.059 (3)0.024 (2)0.0033 (19)0.0100 (17)0.0098 (18)
O60.0246 (19)0.0271 (19)0.0175 (17)0.0003 (15)0.0022 (15)0.0022 (14)
O70.032 (2)0.032 (2)0.0172 (18)0.0090 (17)0.0027 (16)0.0063 (15)
O80.031 (2)0.039 (2)0.0160 (18)0.0063 (17)0.0012 (16)0.0043 (15)
O90.030 (2)0.107 (4)0.026 (2)0.021 (3)0.0001 (19)0.007 (2)
O100.027 (2)0.045 (2)0.029 (2)0.0016 (18)0.0107 (17)0.0085 (17)
O110.0230 (19)0.030 (2)0.0229 (18)0.0077 (16)0.0058 (16)0.0059 (15)
O120.026 (2)0.0266 (19)0.0258 (19)0.0078 (16)0.0072 (16)0.0083 (15)
O130.044 (2)0.032 (2)0.0222 (19)0.0165 (18)0.0050 (17)0.0039 (16)
O140.026 (2)0.030 (2)0.030 (2)0.0126 (16)0.0024 (16)0.0076 (16)
O150.079 (4)0.066 (3)0.061 (3)0.045 (3)0.029 (3)0.044 (3)
O1W0.026 (2)0.058 (3)0.027 (2)0.0005 (19)0.0020 (17)0.0037 (18)
O2W0.043 (2)0.025 (2)0.033 (2)0.0017 (17)0.0119 (19)0.0014 (16)
O3W0.055 (3)0.060 (3)0.072 (3)0.000 (2)0.023 (3)0.000 (3)
O4W0.097 (5)0.148 (6)0.057 (4)0.065 (4)0.033 (3)0.033 (4)
O5W0.52 (3)0.55 (3)0.292 (16)0.45 (2)0.309 (18)0.275 (18)
Geometric parameters (Å, º) top
C1—C61.383 (7)C32—C331.359 (11)
C1—C21.393 (7)C32—H320.9300
C1—C71.498 (7)C33—C341.387 (10)
C2—C31.382 (6)C33—H330.9300
C2—H20.9300C34—N21.332 (9)
C3—O51.366 (6)C34—H340.9300
C3—C41.391 (7)C35—N31.337 (7)
C4—C51.391 (6)C35—C361.376 (8)
C4—H40.9300C35—H350.9300
C5—C61.387 (6)C36—C371.356 (9)
C5—C81.495 (7)C36—H360.9300
C6—H60.9300C37—C381.381 (8)
C7—O11.261 (6)C37—H370.9300
C7—O21.264 (6)C38—C391.378 (7)
C8—O31.257 (6)C38—H380.9300
C8—O41.266 (6)C39—N31.346 (6)
C9—C101.378 (7)C39—C401.478 (7)
C9—C141.398 (7)C40—N41.344 (7)
C9—C151.506 (6)C40—C411.383 (7)
C10—C111.392 (6)C41—C421.368 (8)
C10—H100.9300C41—H410.9300
C11—C121.386 (7)C42—C431.365 (8)
C11—C161.503 (7)C42—H420.9300
C12—C131.391 (7)C43—C441.389 (8)
C12—H120.9300C43—H430.9300
C13—O101.367 (6)C44—N41.324 (7)
C13—C141.390 (7)C44—H440.9300
C14—H140.9300Gd1—O32.317 (3)
C15—O71.256 (6)Gd1—O4ii2.385 (3)
C15—O61.257 (6)Gd1—O62.473 (3)
C16—O91.252 (6)Gd1—O72.503 (3)
C16—O81.256 (6)Gd1—O13i2.383 (3)
C17—C221.383 (7)Gd1—O14i2.769 (4)
C17—C181.385 (6)Gd1—O14iii2.360 (3)
C17—C231.500 (7)Gd1—N32.624 (4)
C18—C191.397 (7)Gd1—N42.568 (4)
C18—H180.9300Gd1—Gd1ii4.0018 (5)
C19—C201.378 (7)Gd2—O12.539 (3)
C19—C241.495 (7)Gd2—O22.426 (3)
C20—C211.381 (7)Gd2—O8iv2.334 (3)
C20—H200.9300Gd2—O112.496 (3)
C21—O151.358 (6)Gd2—O122.488 (3)
C21—C221.392 (7)Gd2—O1W2.369 (4)
C22—H220.9300Gd2—O2W2.463 (4)
C23—O121.261 (6)Gd2—N12.570 (5)
C23—O111.269 (6)Gd2—N22.651 (5)
C24—O131.247 (6)O5—H50.8200
C24—O141.277 (6)O8—Gd2iv2.334 (3)
C24—Gd1i2.906 (5)O10—H10A0.8200
C25—N11.333 (8)O13—Gd1i2.383 (3)
C25—C261.382 (9)O14—Gd1v2.360 (3)
C25—H250.9300O14—Gd1i2.769 (4)
C26—C271.353 (11)O15—H150.8200
C26—H260.9300O1W—H1WA0.8500
C27—C281.365 (10)O1W—H1WB0.8501
C27—H270.9300O2W—H2WA0.8500
C28—C291.405 (9)O2W—H2WB0.8500
C28—H280.9300O3W—H3WA0.8499
C29—N11.345 (8)O3W—H3WB0.8501
C29—C301.477 (10)O4W—H4WA0.8500
C30—N21.339 (8)O4W—H4WB0.8500
C30—C311.394 (9)O5W—H5WA0.8499
C31—C321.362 (11)O5W—H5WB0.8501
C31—H310.9300
C6—C1—C2119.5 (4)N4—C44—C43123.4 (6)
C6—C1—C7121.2 (4)N4—C44—H44118.3
C2—C1—C7119.3 (4)C43—C44—H44118.3
C3—C2—C1120.0 (4)O3—Gd1—O14iii72.23 (12)
C3—C2—H2120.0O3—Gd1—O13i90.37 (13)
C1—C2—H2120.0O14iii—Gd1—O13i127.51 (12)
O5—C3—C2116.7 (4)O3—Gd1—O4ii135.63 (11)
O5—C3—C4122.7 (4)O14iii—Gd1—O4ii77.70 (12)
C2—C3—C4120.5 (4)O13i—Gd1—O4ii82.72 (12)
C3—C4—C5119.3 (4)O3—Gd1—O686.22 (11)
C3—C4—H4120.4O14iii—Gd1—O688.21 (12)
C5—C4—H4120.4O13i—Gd1—O6140.96 (12)
C6—C5—C4120.0 (4)O4ii—Gd1—O6125.00 (11)
C6—C5—C8119.5 (4)O3—Gd1—O7129.25 (12)
C4—C5—C8120.5 (4)O14iii—Gd1—O778.52 (12)
C1—C6—C5120.5 (4)O13i—Gd1—O7139.80 (13)
C1—C6—H6119.7O4ii—Gd1—O773.20 (11)
C5—C6—H6119.7O6—Gd1—O751.86 (11)
O1—C7—O2120.5 (4)O3—Gd1—N4138.95 (13)
O1—C7—C1120.6 (4)O14iii—Gd1—N4145.72 (13)
O2—C7—C1118.9 (4)O13i—Gd1—N475.45 (14)
O3—C8—O4124.7 (4)O4ii—Gd1—N481.37 (12)
O3—C8—C5116.9 (4)O6—Gd1—N481.91 (13)
O4—C8—C5118.4 (4)O7—Gd1—N469.55 (14)
C10—C9—C14121.0 (4)O3—Gd1—N376.48 (12)
C10—C9—C15121.2 (4)O14iii—Gd1—N3141.91 (12)
C14—C9—C15117.8 (4)O13i—Gd1—N373.01 (12)
C9—C10—C11119.7 (5)O4ii—Gd1—N3140.31 (12)
C9—C10—H10120.2O6—Gd1—N368.37 (12)
C11—C10—H10120.2O7—Gd1—N3106.25 (12)
C12—C11—C10120.1 (5)N4—Gd1—N362.59 (13)
C12—C11—C16119.8 (4)O3—Gd1—O14i73.86 (11)
C10—C11—C16120.1 (5)O14iii—Gd1—O14i77.73 (12)
C11—C12—C13120.1 (4)O13i—Gd1—O14i49.79 (11)
C11—C12—H12120.0O4ii—Gd1—O14i68.35 (11)
C13—C12—H12120.0O6—Gd1—O14i158.30 (11)
O10—C13—C14121.2 (4)O7—Gd1—O14i138.12 (11)
O10—C13—C12118.4 (4)N4—Gd1—O14i118.82 (12)
C14—C13—C12120.3 (5)N3—Gd1—O14i113.74 (11)
C13—C14—C9118.9 (5)O3—Gd1—C24i86.30 (13)
C13—C14—H14120.5O14iii—Gd1—C24i103.13 (13)
C9—C14—H14120.5O13i—Gd1—C24i24.86 (13)
O7—C15—O6119.9 (4)O4ii—Gd1—C24i69.51 (13)
O7—C15—C9119.7 (4)O6—Gd1—C24i163.79 (12)
O6—C15—C9120.4 (4)O7—Gd1—C24i141.23 (12)
O9—C16—O8124.2 (5)N4—Gd1—C24i94.44 (14)
O9—C16—C11118.1 (4)N3—Gd1—C24i95.88 (13)
O8—C16—C11117.7 (5)O14i—Gd1—C24i25.87 (12)
C22—C17—C18120.0 (5)O3—Gd1—Gd1ii68.14 (8)
C22—C17—C23119.7 (4)O14iii—Gd1—Gd1ii42.54 (8)
C18—C17—C23120.2 (4)O13i—Gd1—Gd1ii84.98 (9)
C17—C18—C19119.8 (5)O4ii—Gd1—Gd1ii67.61 (8)
C17—C18—H18120.1O6—Gd1—Gd1ii128.64 (8)
C19—C18—H18120.1O7—Gd1—Gd1ii113.44 (9)
C20—C19—C18119.7 (5)N4—Gd1—Gd1ii145.18 (10)
C20—C19—C24120.9 (5)N3—Gd1—Gd1ii137.97 (9)
C18—C19—C24119.3 (4)O14i—Gd1—Gd1ii35.19 (7)
C19—C20—C21121.0 (5)C24i—Gd1—Gd1ii60.76 (10)
C19—C20—H20119.5O8iv—Gd2—O1W76.94 (12)
C21—C20—H20119.5O8iv—Gd2—O2144.46 (12)
O15—C21—C20121.9 (5)O1W—Gd2—O2130.67 (12)
O15—C21—C22118.8 (5)O8iv—Gd2—O2W102.62 (12)
C20—C21—C22119.2 (5)O1W—Gd2—O2W147.55 (14)
C17—C22—C21120.5 (5)O2—Gd2—O2W66.80 (12)
C17—C22—H22119.8O8iv—Gd2—O12126.04 (12)
C21—C22—H22119.8O1W—Gd2—O1280.37 (13)
O12—C23—O11120.0 (4)O2—Gd2—O1285.07 (12)
O12—C23—C17120.1 (4)O2W—Gd2—O1273.88 (12)
O11—C23—C17119.9 (4)O8iv—Gd2—O1174.61 (12)
O13—C24—O14120.9 (5)O1W—Gd2—O1174.00 (13)
O13—C24—C19118.8 (4)O2—Gd2—O11129.02 (12)
O14—C24—C19120.2 (4)O2W—Gd2—O1174.68 (12)
O13—C24—Gd1i53.4 (2)O12—Gd2—O1152.15 (10)
O14—C24—Gd1i71.1 (3)O8iv—Gd2—O1146.11 (12)
C19—C24—Gd1i156.1 (3)O1W—Gd2—O178.37 (12)
N1—C25—C26124.6 (7)O2—Gd2—O152.34 (11)
N1—C25—H25117.7O2W—Gd2—O1110.66 (11)
C26—C25—H25117.7O12—Gd2—O171.28 (11)
C27—C26—C25117.2 (8)O11—Gd2—O1119.78 (11)
C27—C26—H26121.4O8iv—Gd2—N179.62 (14)
C25—C26—H26121.4O1W—Gd2—N180.19 (16)
C26—C27—C28120.5 (7)O2—Gd2—N183.76 (14)
C26—C27—H27119.8O2W—Gd2—N1132.08 (15)
C28—C27—H27119.8O12—Gd2—N1142.51 (14)
C27—C28—C29119.4 (7)O11—Gd2—N1146.85 (14)
C27—C28—H28120.3O1—Gd2—N173.58 (13)
C29—C28—H28120.3O8iv—Gd2—N267.94 (13)
N1—C29—C28120.7 (7)O1W—Gd2—N2131.70 (14)
N1—C29—C30116.9 (6)O2—Gd2—N276.52 (13)
C28—C29—C30122.4 (7)O2W—Gd2—N274.37 (14)
N2—C30—C31121.4 (7)O12—Gd2—N2147.56 (14)
N2—C30—C29117.0 (6)O11—Gd2—N2123.70 (14)
C31—C30—C29121.5 (7)O1—Gd2—N2114.77 (14)
C32—C31—C30118.6 (8)N1—Gd2—N262.11 (16)
C32—C31—H31120.7C25—N1—C29117.5 (6)
C30—C31—H31120.7C25—N1—Gd2119.1 (4)
C33—C32—C31121.0 (8)C29—N1—Gd2123.4 (4)
C33—C32—H32119.5C34—N2—C30118.2 (6)
C31—C32—H32119.5C34—N2—Gd2120.9 (5)
C32—C33—C34117.3 (8)C30—N2—Gd2120.6 (4)
C32—C33—H33121.3C35—N3—C39117.3 (5)
C34—C33—H33121.3C35—N3—Gd1123.5 (3)
N2—C34—C33123.3 (8)C39—N3—Gd1119.2 (3)
N2—C34—H34118.3C44—N4—C40118.2 (5)
C33—C34—H34118.3C44—N4—Gd1119.9 (4)
N3—C35—C36123.5 (6)C40—N4—Gd1118.9 (3)
N3—C35—H35118.2C7—O1—Gd290.8 (3)
C36—C35—H35118.2C7—O2—Gd296.0 (3)
C37—C36—C35118.7 (6)C8—O3—Gd1140.6 (3)
C37—C36—H36120.7C8—O4—Gd1ii138.4 (3)
C35—C36—H36120.7C3—O5—H5109.5
C36—C37—C38119.3 (6)C15—O6—Gd194.4 (3)
C36—C37—H37120.4C15—O7—Gd193.0 (3)
C38—C37—H37120.4C16—O8—Gd2iv138.9 (3)
C39—C38—C37119.2 (6)C13—O10—H10A109.5
C39—C38—H38120.4C23—O11—Gd293.4 (3)
C37—C38—H38120.4C23—O12—Gd294.0 (3)
N3—C39—C38122.0 (5)C24—O13—Gd1i101.7 (3)
N3—C39—C40116.4 (4)C24—O14—Gd1v167.9 (3)
C38—C39—C40121.4 (5)C24—O14—Gd1i83.1 (3)
N4—C40—C41120.7 (5)Gd1v—O14—Gd1i102.27 (12)
N4—C40—C39116.5 (4)C21—O15—H15109.5
C41—C40—C39122.7 (5)Gd2—O1W—H1WA147.1
C42—C41—C40120.4 (6)Gd2—O1W—H1WB105.1
C42—C41—H41119.8H1WA—O1W—H1WB107.7
C40—C41—H41119.8Gd2—O2W—H2WA98.9
C43—C42—C41118.7 (6)Gd2—O2W—H2WB153.1
C43—C42—H42120.6H2WA—O2W—H2WB107.7
C41—C42—H42120.6H3WA—O3W—H3WB107.7
C42—C43—C44118.1 (6)H4WA—O4W—H4WB107.7
C42—C43—H43120.9H5WA—O5W—H5WB107.7
C44—C43—H43120.9
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O12vi0.821.922.720 (5)164
O10—H10A···O11vii0.821.962.755 (5)163
O15—H15···O4Wv0.822.132.942 (10)171
O1W—H1WA···O3W0.852.022.709 (6)137
O1W—H1WB···O9iv0.851.902.622 (5)142
O2W—H2WA···O20.852.152.691 (5)121
O2W—H2WB···O7viii0.851.852.680 (5)165
O3W—H3WA···O90.852.252.821 (7)125
O3W—H3WB···O4W0.852.192.713 (7)119
O4W—H4WA···O60.851.972.813 (6)171
O4W—H4WB···O10.852.182.797 (6)129
O5W—H5WA···O15iii0.851.972.817 (12)173
O5W—H5WB···O10ix0.852.193.006 (13)160
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x1, y1, z; (ix) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Gd2(C8H4O5)3(C10H8N2)2(H2O)2]·3H2O
Mr1257.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.4196 (13), 12.0357 (14), 17.886 (2)
α, β, γ (°)91.008 (1), 103.204 (1), 106.648 (1)
V3)2283.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.31 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.415, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
11916, 8089, 6783
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.05
No. of reflections8089
No. of parameters634
No. of restraints252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 1.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Selected bond lengths (Å) top
Gd1—O32.317 (3)Gd2—O12.539 (3)
Gd1—O4i2.385 (3)Gd2—O22.426 (3)
Gd1—O62.473 (3)Gd2—O8iv2.334 (3)
Gd1—O72.503 (3)Gd2—O112.496 (3)
Gd1—O13ii2.383 (3)Gd2—O122.488 (3)
Gd1—O14ii2.769 (4)Gd2—O1W2.369 (4)
Gd1—O14iii2.360 (3)Gd2—O2W2.463 (4)
Gd1—N32.624 (4)Gd2—N12.570 (5)
Gd1—N42.568 (4)Gd2—N22.651 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O12v0.821.922.720 (5)164.3
O10—H10A···O11vi0.821.962.755 (5)163.4
O15—H15···O4Wvii0.822.132.942 (10)170.8
O1W—H1WA···O3W0.852.022.709 (6)137.4
O1W—H1WB···O9iv0.851.902.622 (5)142.3
O2W—H2WA···O20.852.152.691 (5)120.8
O2W—H2WB···O7viii0.851.852.680 (5)165.2
O3W—H3WA···O90.852.252.821 (7)124.9
O3W—H3WB···O4W0.852.192.713 (7)119.4
O4W—H4WA···O60.851.972.813 (6)171.2
O4W—H4WB···O10.852.182.797 (6)129.2
O5W—H5WA···O15iii0.851.972.817 (12)173.1
O5W—H5WB···O10ix0.852.193.006 (13)159.5
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x+1, y+1, z; (vii) x, y1, z; (viii) x1, y1, z; (ix) x+2, y+1, z.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, B., Liang, C., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. & Dai, S. (2006). Angew. Chem. Int. Ed. 45, 1390–1393.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. (2003). Angew. Chem. Int. Ed. 42, 428–431.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E. Y., Jang, S. Y. & Suh, M. P. J. (2005). J. Am. Chem. Soc. 127, 6374–6381.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuo, Y., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2004). J. Coord. Chem., 57, 1125–1130.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. Q., Zhang, J., Chen, Y. M. & Yang, Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007). Acta Cryst. C63, m476–m478.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds