organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ortho­rhom­bic polymorph of 4-[(1H-benzimidazol-1-yl)meth­yl]benzoic acid

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hyitshy@126.com

(Received 13 August 2011; accepted 16 October 2011; online 22 October 2011)

We reported recently the first polymorph of the title compound [Kuai & Cheng (2011a[Kuai, H.-W. & Cheng, X.-C. (2011a). Acta Cryst. E67, o2787.]). Acta Cryst., E67, o2787]. A second polymorph of the title compound, C15H12N2O2, was unexpectedly obtained by the hydro­thermal reaction of the title compound with manganese chloride in the presence of potassium hydroxide at 413 K. The benzimidazole ring system is almost planar, with a maximum deviation from the mean plane of 0.015 (2) Å. The benzimidazole and benzene rings are inclined at a dihedral angle of 79.00 (1)°. In the crystal, adjacent mol­ecules are connected through O—H⋯N hydrogen bonds into a one-dimensional chain along the [001] direction.

Related literature

For the synthesis of 4-[(1H-benzo[d]imidazol-1-yl)meth­yl]­benzoic acid, see: Hua et al. (2010[Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010). Cryst. Growth Des. 10, 2553-2562.]). For two other polymorphs of the title compound, see: Kuai & Cheng (2011a[Kuai, H.-W. & Cheng, X.-C. (2011a). Acta Cryst. E67, o2787.],b[Kuai, H.-W. & Cheng, X.-C. (2011b). Acta Cryst. E67. In the press.]). For related structures, see Das & Bharadwaj (2009[Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942-10943.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O2

  • Mr = 252.27

  • Orthorhombic, P 21 21 21

  • a = 5.6969 (15) Å

  • b = 12.657 (3) Å

  • c = 17.604 (5) Å

  • V = 1269.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.18 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.984

  • 7948 measured reflections

  • 1786 independent reflections

  • 1313 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.089

  • S = 0.99

  • 1786 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H12⋯N12i 0.82 1.84 2.649 (3) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C15H12N2O2 (I), is usually regarded as an excellent candidate for building block in molecular self-assembly engineering due to its variable conformation and coordination modes (Das & Bharadwaj, 2009). During assembly of a coordination polymer, we accidentally obtained three polymorphs of (I), which can be proved by different unit-cell parameters and space groups. Here, we are introducing one of them. The single crystals of (I) were accidentally obtained by the hydrothermal reaction at 413 K of (I) with manganese chloride in the presence of potassium hydroxide as alkaline medium for the deprotonation. As shown in Fig. 1, the asymmetric unit of (I) consists of only one molecule. Interestingly, though crystallizing from alkaline solution, (I) remains the intact carboxylic group in the crystal structure. The flexible benzimidazolyl arm is apt to rotate. As a result, the benzimidazolyl ring and central benzene rings are inclined at a dihedral angle of 79.00 (1) °; The torsion angles N11—C11—C1—C2 and N11—C11—C1—C6 are -61.8 (2) ° and 118.0 (2) °, respectively. Adjacent molecules are connected through O—H···N hydrogen bonds into a one-dimensional chain along [001] direction (Fig. 2, Table 1).

Related literature top

For the synthesis of 4-[(1H-benzo[d]imidazol-1-yl)methyl]benzoic acid, see: Hua et al. (2010). For two other polymorphs of the title compound, see: Kuai & Cheng (2011a,b). For related structures, see Das & Bharadwaj (2009).

Experimental top

Reaction mixture of MnCl2 (21.5 mg, 0.1 mmol), 4-((1H-benzo[d]imidazol-1-yl)methyl)benzoic acid (25.2 mg, 0.1 mmol) and KOH (5.61 mg, 0.1 mmol) in 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 413 K for 3 days. After cooling to the room temperature, colorless block crystals of the title compound were obtained.

Refinement top

All hydrogen atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C, or O). Absolute structure can not be determined in this case because of no heavy atoms present. Friedel-pair data are merged with the MERG 3 instruction. The number of Friedel pairs is 1229.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The crystal structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : The packing diagram of (I). Hydrogen bonds are shown as dashed lines.
4-[(1H-benzimidazol-1-yl)methyl]benzoic acid top
Crystal data top
C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.320 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1326 reflections
a = 5.6969 (15) Åθ = 2.3–19.9°
b = 12.657 (3) ŵ = 0.09 mm1
c = 17.604 (5) ÅT = 293 K
V = 1269.4 (6) Å3Block, colorless
Z = 40.30 × 0.18 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1786 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.974, Tmax = 0.984k = 1416
7948 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0455P)2]
where P = (Fo2 + 2Fc2)/3
1786 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H12N2O2V = 1269.4 (6) Å3
Mr = 252.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6969 (15) ŵ = 0.09 mm1
b = 12.657 (3) ÅT = 293 K
c = 17.604 (5) Å0.30 × 0.18 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1786 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1313 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.984Rint = 0.040
7948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.99Δρmax = 0.11 e Å3
1786 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Absolute structure can not be determined in this case because of no heavy atoms present. Friedel-pair data are merged with the MERG 3 instruction. The number of Friedel pairs is 1229.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3871 (4)0.37836 (13)1.03801 (9)0.0731 (6)
H120.32800.33761.06880.088*
O20.0975 (4)0.48320 (13)1.07621 (9)0.0650 (5)
N110.4456 (3)0.78681 (13)0.75703 (9)0.0412 (4)
N120.2556 (4)0.74457 (14)0.65069 (10)0.053
C40.3625 (4)0.54619 (16)0.98240 (11)0.0390 (5)
C110.6074 (4)0.77548 (17)0.82087 (11)0.0451 (5)
H60.62620.84340.84560.054*
H50.75980.75370.80190.054*
C130.1428 (4)0.83025 (16)0.68400 (11)0.0417 (5)
C140.2622 (4)0.85805 (15)0.75045 (11)0.0372 (5)
C60.6520 (4)0.60602 (17)0.89316 (11)0.0458 (5)
H40.79400.59540.86820.055*
C50.5733 (4)0.53174 (17)0.94491 (11)0.0473 (6)
H30.66270.47170.95450.057*
C410.2678 (5)0.46665 (17)1.03690 (11)0.0472 (6)
C150.1919 (4)0.94228 (17)0.79536 (12)0.0462 (6)
H80.27250.96100.83930.055*
C10.5221 (4)0.69567 (16)0.87823 (11)0.0374 (5)
C170.1262 (5)0.9687 (2)0.70573 (13)0.0572 (7)
H100.25871.00710.69200.069*
C120.4308 (5)0.72183 (17)0.69610 (12)0.0510 (6)
H70.53480.66650.68730.061*
C160.0036 (5)0.99675 (19)0.77139 (13)0.0557 (6)
H90.05571.05410.79980.067*
C20.3115 (4)0.71014 (16)0.91701 (11)0.0437 (5)
H10.22240.77040.90810.052*
C30.2344 (4)0.63641 (15)0.96819 (11)0.0426 (5)
H20.09360.64740.99370.051*
C180.0555 (4)0.88605 (18)0.66126 (13)0.0526 (6)
H110.13700.86780.61740.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0997 (15)0.0514 (10)0.0681 (10)0.0157 (11)0.0362 (11)0.0196 (8)
O20.0673 (13)0.0707 (11)0.0571 (9)0.0034 (10)0.0240 (10)0.0109 (8)
N110.0449 (11)0.0390 (9)0.0396 (9)0.0030 (9)0.0010 (8)0.0024 (8)
N120.0720.0440.0420.0070.0050.002
C40.0435 (13)0.0422 (11)0.0313 (10)0.0001 (10)0.0020 (10)0.0025 (8)
C110.0395 (13)0.0473 (12)0.0484 (12)0.0053 (11)0.0046 (11)0.0069 (10)
C130.0494 (14)0.0382 (11)0.0375 (10)0.0108 (10)0.0017 (10)0.0050 (9)
C140.0382 (12)0.0354 (10)0.0379 (10)0.0067 (9)0.0022 (10)0.0054 (9)
C60.0354 (13)0.0556 (13)0.0462 (12)0.0063 (11)0.0079 (11)0.0022 (11)
C50.0509 (15)0.0467 (12)0.0442 (12)0.0138 (11)0.0048 (11)0.0069 (10)
C410.0569 (15)0.0505 (14)0.0341 (10)0.0001 (12)0.0032 (12)0.0005 (10)
C150.0542 (16)0.0442 (12)0.0404 (11)0.0009 (11)0.0001 (11)0.0002 (10)
C10.0360 (12)0.0400 (11)0.0363 (10)0.0036 (9)0.0045 (9)0.0012 (9)
C170.0488 (15)0.0614 (15)0.0613 (15)0.0054 (13)0.0005 (13)0.0225 (13)
C120.0672 (17)0.0371 (12)0.0487 (12)0.0035 (12)0.0066 (12)0.0026 (10)
C160.0621 (16)0.0493 (13)0.0557 (14)0.0082 (12)0.0102 (14)0.0079 (11)
C20.0441 (14)0.0394 (12)0.0476 (11)0.0064 (10)0.0007 (11)0.0004 (10)
C30.0395 (12)0.0478 (12)0.0403 (11)0.0048 (10)0.0054 (11)0.0039 (10)
C180.0535 (16)0.0557 (14)0.0487 (13)0.0134 (13)0.0128 (12)0.0152 (12)
Geometric parameters (Å, º) top
O1—C411.308 (3)C6—C11.380 (3)
O1—H120.8200C6—C51.384 (3)
O2—C411.210 (3)C6—H40.9300
N11—C121.354 (3)C5—H30.9300
N11—C141.385 (3)C15—C161.376 (3)
N11—C111.461 (3)C15—H80.9300
N12—C121.311 (3)C1—C21.392 (3)
N12—C131.390 (3)C17—C181.367 (3)
C4—C31.378 (3)C17—C161.396 (3)
C4—C51.382 (3)C17—H100.9300
C4—C411.492 (3)C12—H70.9300
C11—C11.509 (3)C16—H90.9300
C11—H60.9700C2—C31.369 (3)
C11—H50.9700C2—H10.9300
C13—C181.391 (3)C3—H20.9300
C13—C141.398 (3)C18—H110.9300
C14—C151.386 (3)
C41—O1—H12109.5O2—C41—C4122.8 (2)
C12—N11—C14106.40 (18)O1—C41—C4113.5 (2)
C12—N11—C11126.09 (19)C16—C15—C14116.4 (2)
C14—N11—C11127.18 (16)C16—C15—H8121.8
C12—N12—C13105.42 (18)C14—C15—H8121.8
C3—C4—C5118.88 (19)C6—C1—C2118.50 (19)
C3—C4—C41119.0 (2)C6—C1—C11120.3 (2)
C5—C4—C41122.1 (2)C2—C1—C11121.2 (2)
N11—C11—C1112.17 (17)C18—C17—C16121.4 (2)
N11—C11—H6109.2C18—C17—H10119.3
C1—C11—H6109.2C16—C17—H10119.3
N11—C11—H5109.2N12—C12—N11113.4 (2)
C1—C11—H5109.2N12—C12—H7123.3
H6—C11—H5107.9N11—C12—H7123.3
N12—C13—C18130.5 (2)C15—C16—C17122.1 (2)
N12—C13—C14108.94 (19)C15—C16—H9119.0
C18—C13—C14120.5 (2)C17—C16—H9119.0
N11—C14—C15132.13 (19)C3—C2—C1120.6 (2)
N11—C14—C13105.84 (17)C3—C2—H1119.7
C15—C14—C13122.0 (2)C1—C2—H1119.7
C1—C6—C5120.7 (2)C2—C3—C4121.0 (2)
C1—C6—H4119.7C2—C3—H2119.5
C5—C6—H4119.7C4—C3—H2119.5
C4—C5—C6120.4 (2)C17—C18—C13117.6 (2)
C4—C5—H3119.8C17—C18—H11121.2
C6—C5—H3119.8C13—C18—H11121.2
O2—C41—O1123.8 (2)
C12—N11—C11—C180.9 (3)N11—C14—C15—C16179.6 (2)
C14—N11—C11—C191.6 (2)C13—C14—C15—C160.6 (3)
C12—N12—C13—C18178.9 (2)C5—C6—C1—C20.7 (3)
C12—N12—C13—C141.0 (2)C5—C6—C1—C11179.09 (19)
C12—N11—C14—C15179.4 (2)N11—C11—C1—C6118.0 (2)
C11—N11—C14—C157.0 (3)N11—C11—C1—C261.8 (2)
C12—N11—C14—C130.4 (2)C13—N12—C12—N110.7 (2)
C11—N11—C14—C13173.21 (18)C14—N11—C12—N120.2 (2)
N12—C13—C14—N110.9 (2)C11—N11—C12—N12173.93 (19)
C18—C13—C14—N11179.04 (18)C14—C15—C16—C170.4 (3)
N12—C13—C14—C15179.0 (2)C18—C17—C16—C150.9 (4)
C18—C13—C14—C151.1 (3)C6—C1—C2—C30.7 (3)
C3—C4—C5—C61.0 (3)C11—C1—C2—C3179.11 (19)
C41—C4—C5—C6178.2 (2)C1—C2—C3—C40.2 (3)
C1—C6—C5—C40.1 (3)C5—C4—C3—C21.0 (3)
C3—C4—C41—O29.2 (3)C41—C4—C3—C2178.2 (2)
C5—C4—C41—O2171.7 (2)C16—C17—C18—C130.3 (3)
C3—C4—C41—O1171.1 (2)N12—C13—C18—C17179.5 (2)
C5—C4—C41—O18.0 (3)C14—C13—C18—C170.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H12···N12i0.821.842.649 (3)168
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12N2O2
Mr252.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.6969 (15), 12.657 (3), 17.604 (5)
V3)1269.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.18 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7948, 1786, 1313
Rint0.040
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.089, 0.99
No. of reflections1786
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H12···N12i0.821.842.649 (3)168.1
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (grant No. BK2008195) for financial support of this work.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010). Cryst. Growth Des. 10, 2553–2562.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuai, H.-W. & Cheng, X.-C. (2011a). Acta Cryst. E67, o2787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuai, H.-W. & Cheng, X.-C. (2011b). Acta Cryst. E67. In the press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds