organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Carb­­oxy-3-phenyl­propan-2-aminium chloride

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 19 September 2011; accepted 10 October 2011; online 12 October 2011)

The title compound, C9H12NO2+·Cl, is the hydro­chloride of an N-substituted glycine derivative. The non-H atoms of the alkyl part of the mol­ecule lie nearly in a plane (r.m.s. deviation of all fitted non-H atoms = 0.0142 Å). In the crystal structure, O—H⋯Cl, N—H⋯Cl and C—H⋯O hydrogen bonds involving both O atoms as well as C—H⋯Cl contacts connect the components of the title compound into a three-dimensional network.

Related literature

For the crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzyl­glycine as a ligand, see: Freiesleben et al. (1995[Freiesleben, D., Polborn, K., Robl, C., Sünkel, K. & Beck, W. (1995). Can. J. Chem. 73, 1164-1174.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12NO2+·Cl

  • Mr = 201.65

  • Orthorhombic, P 21 21 21

  • a = 5.0290 (7) Å

  • b = 5.4900 (8) Å

  • c = 36.254 (5) Å

  • V = 1000.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 200 K

  • 0.53 × 0.40 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.585, Tmax = 1.000

  • 7535 measured reflections

  • 2376 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.177

  • S = 1.34

  • 2376 reflections

  • 125 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 903 Friedel pairs

  • Flack parameter: 0.1 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.84 2.26 3.048 (3) 157
N1—H71⋯Cl1ii 0.86 (6) 2.31 (6) 3.166 (5) 178 (6)
N1—H72⋯Cl1 1.07 (6) 2.15 (6) 3.148 (5) 154 (5)
C2—H2A⋯O1iii 0.99 2.48 3.364 (7) 148
C2—H2B⋯O1iv 0.99 2.50 3.383 (7) 148
C16—H16⋯Cl1ii 0.95 2.78 3.654 (6) 154
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Amino acids play a major role in the metabolism of living creatures and are characterized by their omnipresence as well as their easy availability in both nature as well as industry. From a chemical viewpoint, their molecular set-up denotes them as potential chelate ligands whose denticity and charge can be influenced by simple variation of the pH value. Coordination compounds featuring amino acids in their ligand sphere might have interesting pharmaceutical properties, especially when keeping in mind that derivatization of the respective amino acids can be used for fine-tuning thermodynamic as well as kinetic characteristics of the compounds and the tailoring of secretion rates on grounds of hydrophilicity. In our continuous efforts in elucidating the rules guiding the formation of N,O-supported chelate ligands, we investigated the crystal structure of the title compound to enable comparative studies of metrical parameters in envisioned metal complexes. Information about the molecular and crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzylglycine is apparent in the literature (Freiesleben et al., 1995).

Intracyclic C–C–C angles cover a range of 118.0 (5)–121.5 (6) ° with the smallest angle found on the substituted carbon atom and the biggest angle in ortho position to this atom. The non-hydrogen atoms of the alkyl part of the molecule are nearly in plane (r.m.s of all fitted non-hydrogen atoms = 0.0142 Å). The least-squares planes defined by these atoms on the one hand and the carbon atoms of the aromatic system on the other hand enclose an angle of 60.21 (21) ° (Fig. 1).

In the crystal structure, classical hydrogen bonds as well as C–H···O contacts and C–H···Cl contacts whose range falls by up to more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms are observed. The classical hydrogen bonds are apparent between the nitrogen- and oxygen-bonded hydrogen atoms as donors and – exclusively – the chloride anion as acceptor While the C–H···O contacts are apparent between both hydrogen atoms of the amino acid's methylene group and the oxygen atom of the hydroxyl group, the C–H···Cl contacts stem from one of the aromatic system's hydrogen atoms in ortho position to the substituent. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level while the C–H-supported contacts necessitate a DC11(4)C11(4) descriptor on the same level. The C–H···O contacts are present as antidromic chains. In total, the entities of the title compound are connected to a three-dimensional network. π-Stacking is not a prominent feature with the shortest intercentroid distance between two aromatic systems found at 5.029 (4) Å, the length of the a axis (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzylglycine as a ligand, see: Freiesleben et al. (1995). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (Fluka). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of an aqueous solution of the compound at ambient temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for the methylene group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Selected intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate classical hydrogen bonds, green dashed lines C–H···O contacts. Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 2, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
1-Carboxy-3-phenylpropan-2-aminium chloride top
Crystal data top
C9H12NO2+·ClF(000) = 424
Mr = 201.65Dx = 1.338 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 7358 reflections
a = 5.0290 (7) Åθ = 2.3–28.5°
b = 5.4900 (8) ŵ = 0.35 mm1
c = 36.254 (5) ÅT = 200 K
V = 1000.9 (2) Å3Platelet, colourless
Z = 40.53 × 0.40 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2376 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.585, Tmax = 1.000k = 76
7535 measured reflectionsl = 4747
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.P)2 + 3.0055P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
2376 reflectionsΔρmax = 0.33 e Å3
125 parametersΔρmin = 0.57 e Å3
0 restraintsAbsolute structure: Flack (1983), 903 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Crystal data top
C9H12NO2+·ClV = 1000.9 (2) Å3
Mr = 201.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0290 (7) ŵ = 0.35 mm1
b = 5.4900 (8) ÅT = 200 K
c = 36.254 (5) Å0.53 × 0.40 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2376 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2273 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 1.000Rint = 0.048
7535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177Δρmax = 0.33 e Å3
S = 1.34Δρmin = 0.57 e Å3
2376 reflectionsAbsolute structure: Flack (1983), 903 Friedel pairs
125 parametersAbsolute structure parameter: 0.1 (3)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8269 (6)0.7682 (8)0.26326 (8)0.0246 (7)
H10.71570.77320.28050.037*
O20.4647 (6)0.7619 (9)0.22798 (8)0.0277 (7)
N10.7400 (7)0.7563 (9)0.16416 (10)0.0223 (7)
H710.661 (12)0.894 (12)0.1630 (17)0.033*
H720.585 (12)0.623 (10)0.1641 (16)0.033*
C10.7017 (8)0.7659 (11)0.23163 (12)0.0225 (8)
C20.8894 (8)0.7703 (11)0.19964 (11)0.0252 (9)
H2A0.99530.92220.20030.030*
H2B1.01360.63080.20140.030*
C30.9244 (10)0.7587 (12)0.13153 (11)0.0314 (9)
H3A1.06720.63710.13530.038*
H3B1.00850.92120.12940.038*
C110.7770 (10)0.7013 (9)0.09631 (13)0.0292 (11)
C120.8329 (16)0.4968 (12)0.07646 (18)0.0483 (17)
H120.96570.38700.08490.058*
C130.6936 (18)0.4473 (14)0.04329 (18)0.056 (2)
H130.73500.30460.02960.068*
C140.5016 (16)0.6007 (14)0.03072 (17)0.0542 (19)
H140.40670.56540.00870.065*
C150.4480 (15)0.8087 (12)0.05065 (15)0.0494 (17)
H150.31770.92020.04200.059*
C160.5817 (13)0.8566 (11)0.08306 (15)0.0396 (13)
H160.53900.99940.09660.048*
Cl10.4309 (2)0.2582 (2)0.16068 (3)0.0287 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (13)0.0257 (17)0.0256 (14)0.0029 (17)0.0031 (11)0.0055 (18)
O20.0164 (13)0.0295 (16)0.0370 (16)0.0029 (19)0.0019 (12)0.001 (2)
N10.0199 (16)0.0205 (16)0.0266 (16)0.0063 (19)0.0008 (13)0.000 (2)
C10.0207 (18)0.012 (2)0.035 (2)0.002 (2)0.0030 (16)0.005 (2)
C20.0186 (19)0.027 (2)0.030 (2)0.011 (2)0.0074 (16)0.001 (2)
C30.026 (2)0.035 (2)0.034 (2)0.002 (4)0.0066 (19)0.002 (3)
C110.030 (2)0.031 (3)0.027 (2)0.008 (2)0.0090 (19)0.0008 (19)
C120.069 (5)0.034 (3)0.042 (3)0.007 (3)0.008 (3)0.002 (3)
C130.082 (6)0.049 (4)0.039 (3)0.007 (4)0.012 (4)0.013 (3)
C140.063 (5)0.069 (5)0.031 (3)0.019 (4)0.002 (3)0.010 (3)
C150.052 (4)0.064 (5)0.032 (3)0.002 (4)0.007 (3)0.003 (3)
C160.040 (3)0.048 (3)0.031 (3)0.001 (3)0.002 (3)0.005 (2)
Cl10.0357 (5)0.0192 (4)0.0312 (5)0.0014 (7)0.0024 (5)0.0005 (6)
Geometric parameters (Å, º) top
O1—C11.308 (5)C3—H3B0.9900
O1—H10.8400C11—C121.363 (8)
O2—C11.199 (5)C11—C161.386 (8)
N1—C21.492 (5)C12—C131.418 (10)
N1—C31.503 (5)C12—H120.9500
N1—H710.86 (6)C13—C141.360 (11)
N1—H721.07 (6)C13—H130.9500
C1—C21.496 (6)C14—C151.378 (9)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.379 (8)
C3—C111.510 (6)C15—H150.9500
C3—H3A0.9900C16—H160.9500
C1—O1—H1109.5C11—C3—H3B109.4
C2—N1—C3111.5 (3)H3A—C3—H3B108.0
C2—N1—H71103 (4)C12—C11—C16118.0 (5)
C3—N1—H71104 (4)C12—C11—C3121.1 (5)
C2—N1—H72114 (3)C16—C11—C3120.8 (5)
C3—N1—H72117 (3)C11—C12—C13120.2 (7)
H71—N1—H72105 (5)C11—C12—H12119.9
O2—C1—O1125.1 (4)C13—C12—H12119.9
O2—C1—C2122.8 (4)C14—C13—C12121.1 (7)
O1—C1—C2112.1 (4)C14—C13—H13119.5
N1—C2—C1110.5 (3)C12—C13—H13119.5
N1—C2—H2A109.6C13—C14—C15118.5 (6)
C1—C2—H2A109.6C13—C14—H14120.8
N1—C2—H2B109.6C15—C14—H14120.8
C1—C2—H2B109.6C14—C15—C16120.6 (7)
H2A—C2—H2B108.1C14—C15—H15119.7
N1—C3—C11111.1 (4)C16—C15—H15119.7
N1—C3—H3A109.4C15—C16—C11121.5 (6)
C11—C3—H3A109.4C15—C16—H16119.2
N1—C3—H3B109.4C11—C16—H16119.2
C3—N1—C2—C1179.6 (5)C3—C11—C12—C13179.5 (6)
O2—C1—C2—N12.8 (9)C11—C12—C13—C140.4 (11)
O1—C1—C2—N1177.5 (5)C12—C13—C14—C151.1 (11)
C2—N1—C3—C11170.2 (5)C13—C14—C15—C161.6 (10)
N1—C3—C11—C12115.9 (6)C14—C15—C16—C111.3 (10)
N1—C3—C11—C1664.6 (7)C12—C11—C16—C150.5 (9)
C16—C11—C12—C130.0 (9)C3—C11—C16—C15179.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.842.263.048 (3)157
N1—H71···Cl1ii0.86 (6)2.31 (6)3.166 (5)178 (6)
N1—H72···Cl11.07 (6)2.15 (6)3.148 (5)154 (5)
C2—H2A···O1iii0.992.483.364 (7)148
C2—H2B···O1iv0.992.503.383 (7)148
C2—H2B···O2v0.992.573.070 (5)111
C16—H16···Cl1ii0.952.783.654 (6)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H12NO2+·Cl
Mr201.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)5.0290 (7), 5.4900 (8), 36.254 (5)
V3)1000.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.53 × 0.40 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.585, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7535, 2376, 2273
Rint0.048
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.177, 1.34
No. of reflections2376
No. of parameters125
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.57
Absolute structureFlack (1983), 903 Friedel pairs
Absolute structure parameter0.1 (3)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.842.263.048 (3)157.0
N1—H71···Cl1ii0.86 (6)2.31 (6)3.166 (5)178 (6)
N1—H72···Cl11.07 (6)2.15 (6)3.148 (5)154 (5)
C2—H2A···O1iii0.992.483.364 (7)148.4
C2—H2B···O1iv0.992.503.383 (7)148.4
C2—H2B···O2v0.992.573.070 (5)111.4
C16—H16···Cl1ii0.952.783.654 (6)154.1
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y, z.
 

Acknowledgements

The authors thank Dr Marc van der Vyver for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreiesleben, D., Polborn, K., Robl, C., Sünkel, K. & Beck, W. (1995). Can. J. Chem. 73, 1164–1174.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds