metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1493-m1494

Poly[[(μ-benzene-1,4-di­carboxyl­ato)bis­­[μ-4-(1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthren-2-yl)benzoato]dizinc] tetra­hydrate]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: , guangbochejl@yahoo.com

(Received 14 September 2011; accepted 29 September 2011; online 5 October 2011)

In the title complex, [Zn2(C8H4O4)(C20H11N4O2)2]·4H2O, the ZnII atom is six-coordinated by two carboxyl­ate O atoms from one bidentate benzene-1,4-dicarboxyl­ate (1,4-BDC) ligand, two carboxyl­ate O atoms from two different monodentate 4-(1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthren-2-yl)benzoate (HNCP) ligands and two HNCP N atoms. The ZnII atoms are bridged by the centrosymmetric 1,4-BDC ligands, forming an extended single-chain structure. Neighbouring single chains are connected by the HNCP ligands from two opposite directions, resulting in a sheet. In addition, there are N—H⋯O hydrogen-bonding inter­actions between adjacent layers. As a result, the polymeric sheets are further extended into a three-dimensional supra­molecular structure.

Related literature

For the preparation of the 4-(1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthren-2-yl)benzoate (HNCP) ligand, see: Yongqin et al. (2007[Yongqin, W., Yunfang, Y. & Kechen, W. (2007). Cryst. Growth Des. 7, 2262—2264.]). For coordination polymers with a variety of supra­molecular structures, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Chen & Liu (2002[Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.]). For HNCP-based complexes, see Yongqin et al. (2007[Yongqin, W., Yunfang, Y. & Kechen, W. (2007). Cryst. Growth Des. 7, 2262—2264.]); Hsu et al. (2005[Hsu, Y.-C., Zheng, H., Lin, J. T. & Ho, K.-C. (2005). Solar Energy Mater. Solar Cells, 87, 357-367.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H4O4)(C20H11N4O2)2]·4H2O

  • Mr = 1037.54

  • Triclinic, [P \overline 1]

  • a = 9.7477 (16) Å

  • b = 10.2610 (18) Å

  • c = 11.0480 (19) Å

  • α = 88.849 (3)°

  • β = 72.115 (4)°

  • γ = 83.121 (3)°

  • V = 1043.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 0.782

  • 5406 measured reflections

  • 3783 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.139

  • S = 1.02

  • 3783 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H4⋯O3i 0.86 2.10 2.781 (5) 136
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers with a variety of supramolecular structures have been studied extensively because of their novel topologies and potential applications as functional materials (Eddaoudi et al., 2001). 1,10-Phenanthroline (phen), as a common organic ligand, has been widely used in the construction of metal-organic coordination polymers (Chen & Liu, 2002). The phen derivative 4-(1H-1, 3, 7, 8-Tetraaza-cyclopenta [l]phenanthren-2-yl)-benzoic acid (HNCP) with both phenanthroline ring and carboxylate groups, is a good building block for construction of coordination polymers. Moreover, the long-conjugated system and the carboxylate groups are inclined to form π-π stacking interactions and hydrogen bonding interactions, which are important factors in the formation of supramolecular architectures. However, to date, only a handful of supramolecular architectures based on HNCP molecules have been described (Yongqin et al., 2007; Hsu et al., 2005). We selected benzene-1,4-dicarboxylic acid (1,4-BDC) as a linker and HNCP as a secondary ligand, generating a new coordination polymer, [Zn2(1,4-BDC)(NCP)2(H2O)4] (I), which is reported here.

In compound (I), the Zn atom is coordinated by two N atoms from one HNCP ligand, two O atoms from one 1,4-BDC ligand, and two O atoms from two different HNCP ligands in a distorted octahedral coordination (Fig. 1). The single unique 1,4-BDC species is generated from the atoms of the asymmetric unit by inversion. Two ZnII centers are bridged by the carboxylate groups of HNCP ligands to furnish a binuclear unit with a ZnII···ZnII distance of 3.2224 (9) Å. Neighbouring binuclear units are bridged by 1,4-BDC ligands, forming a single-chain structure. The neighboring single chains constructed by the 1,4-BDC ligand and the ZnII atoms are connected by the HNCP ligands from two opposite directions and result in a two-dimensional sheet (Fig. 2).

Even though the H atoms pertaining to water molecules could not be confidently found, and accordingly were not included in the model, the short O1···O2Wi 2.891 (9)Å; O1W···O2Wii 2.886 (14)Å; O1W···N4: 2.899 (10)Å distances, (i): x, -1+y, -1+z; (ii): 1-x,-y,1-z might indicate the formation of hydrogen bonds between these atoms.

Besides, there are hydrogen bonding interactions between adjacent layers. The imidazole nitrogen atoms of HNCP ligands act as hydrogen bond donors, while the carboxylate oxygen atoms of 1,4-BDC ligands from the neighboring layer act as hydrogen bond acceptors (N3—H···O3) (Table 1). As a result, these two-dimensional polymeric sheets are further extended into three-dimensional supramolecular structures through these hydrogen-bonding interactions(Fig. 3).

Related literature top

For the preparation of the 4-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)benzoate (HNCP) ligand, see: Yongqin et al. (2007). For coordination polymers with a variety of supramolecular structures, see: Eddaoudi et al. (2001); Chen & Liu (2002). For HNCP-based complexes, see Yongqin et al. (2007); Hsu et al.(2005).

Experimental top

HNCP was prepared according to the literature method (Yongqin et al., 2007). Other reagents were commercially available and used without further purification. Zn(CH3COO)2 (0.2 mmol), 1,4-BDC (0.1 mmol), and HNCP (0.1 mmol) were mixed in 10 ml deionized water. And its pH value was controlled in the range of 7–8 with 1 mol/L NaOH solution. Then, the resulting precursor was placed in 25 ml Teflon-lined stainless steel reactor, and heated at 433 K for 3 d. Cooling slowly to room temperature, the yellow block crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

All C- and N- attached H atoms were positioned geometrically (N—H = 0.86Å and C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). Hydrogen atoms corresponding to water molecules could not be confidently located and were not included in the model.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), together with further atoms to complete the Zn1 coordination and the 1,4-BDC ligand. Displacement ellipsoids are drawn at the 30% probability level. (arbitrary spheres for the H atoms). Atoms O2A, O2B and C21A/C22A/C23A/C24A/O3A/O4A are generated by the symmetry code (x, -y + 1, -z + 1), (-x + 1, -y, -z) and (-x, -y + 1, -z + 2), respectively.
[Figure 2] Fig. 2. View of the two-dimensional sheet formed by HNCP linked linear chain. H atoms have been omitted.
[Figure 3] Fig. 3. A view of the three-dimensional structure of 1 linked by hydrogen bonds between the adjacent sheets. H atoms have been omitted.
Poly[[(µ-benzene-1,4-dicarboxylato)bis[µ-4-(1H-1,3,7,8- tetraazacyclopenta[l]phenanthren-2-yl)benzoato]dizinc] tetrahydrate] top
Crystal data top
[Zn2(C8H4O4)(C20H11N4O2)2]·4H2OZ = 1
Mr = 1037.54F(000) = 526
Triclinic, P1Dx = 1.651 Mg m3
Dm = 1.651 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7477 (16) ÅCell parameters from 5729 reflections
b = 10.2610 (18) Åθ = 2.9–25.3°
c = 11.0480 (19) ŵ = 1.23 mm1
α = 88.849 (3)°T = 293 K
β = 72.115 (4)°Block, yellow
γ = 83.121 (3)°0.2 × 0.2 × 0.2 mm
V = 1043.9 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3783 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1110
Tmin = 0.782, Tmax = 0.782k = 1211
5406 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.7102P]
where P = (Fo2 + 2Fc2)/3
3783 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Zn2(C8H4O4)(C20H11N4O2)2]·4H2Oγ = 83.121 (3)°
Mr = 1037.54V = 1043.9 (3) Å3
Triclinic, P1Z = 1
a = 9.7477 (16) ÅMo Kα radiation
b = 10.2610 (18) ŵ = 1.23 mm1
c = 11.0480 (19) ÅT = 293 K
α = 88.849 (3)°0.2 × 0.2 × 0.2 mm
β = 72.115 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3783 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2797 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.782Rint = 0.029
5406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.94 e Å3
3783 reflectionsΔρmin = 0.66 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.39808 (6)0.38395 (5)0.54113 (5)0.0246 (2)
C10.6671 (5)0.1755 (5)0.4727 (5)0.0305 (12)
H10.70210.22530.52350.037*
C20.7546 (5)0.0643 (5)0.4098 (5)0.0318 (12)
H20.84540.04030.42000.038*
C30.7059 (5)0.0093 (5)0.3327 (5)0.0304 (12)
H30.76320.08350.29000.036*
C40.5686 (5)0.0291 (4)0.3194 (4)0.0212 (10)
C50.5041 (5)0.0321 (4)0.2395 (4)0.0237 (11)
C60.3733 (5)0.0143 (4)0.2210 (5)0.0252 (11)
C70.2859 (5)0.1260 (5)0.2933 (5)0.0253 (11)
C80.1468 (5)0.1777 (5)0.2890 (5)0.0333 (12)
H80.10480.14020.23520.040*
C90.0745 (6)0.2835 (5)0.3647 (5)0.0380 (14)
H90.01810.31760.36410.046*
C100.1403 (5)0.3396 (5)0.4423 (5)0.0333 (13)
H100.09030.41240.49240.040*
C110.3431 (5)0.1878 (4)0.3759 (4)0.0232 (10)
C120.4856 (5)0.1422 (4)0.3874 (4)0.0208 (10)
C130.4616 (5)0.1529 (4)0.0957 (5)0.0243 (11)
C140.4894 (5)0.2566 (4)0.0019 (5)0.0255 (11)
C150.6139 (5)0.3454 (5)0.0274 (5)0.0299 (12)
H150.67670.34150.02070.036*
C160.6468 (5)0.4398 (5)0.1230 (5)0.0298 (12)
H160.72980.49980.13710.036*
C170.5563 (5)0.4452 (4)0.1980 (4)0.0246 (11)
C180.4302 (5)0.3563 (4)0.1718 (4)0.0251 (11)
H180.36800.35870.22060.030*
C190.3971 (5)0.2648 (5)0.0741 (5)0.0271 (11)
H190.31140.20790.05660.033*
C200.5974 (6)0.5445 (5)0.3046 (5)0.0296 (12)
C210.0493 (5)0.4022 (5)1.0852 (5)0.0307 (12)
H230.08200.33661.14240.037*
C220.0434 (5)0.3690 (5)0.9641 (5)0.0315 (12)
H220.07210.28120.94010.038*
C230.0935 (5)0.4665 (5)0.8785 (5)0.0291 (12)
C240.1997 (5)0.4312 (5)0.7506 (5)0.0261 (11)
N10.5364 (4)0.2129 (4)0.4629 (4)0.0230 (9)
N20.2706 (4)0.2945 (4)0.4484 (4)0.0248 (9)
N30.5581 (4)0.1389 (4)0.1592 (4)0.0242 (9)
H40.63850.18800.15060.029*
N40.3485 (4)0.0610 (4)0.1302 (4)0.0256 (9)
O10.6824 (5)0.6414 (4)0.3044 (4)0.0562 (12)
O20.5370 (4)0.5184 (3)0.3944 (3)0.0269 (8)
O30.2806 (4)0.3234 (3)0.7355 (3)0.0326 (8)
O40.2120 (4)0.5109 (3)0.6606 (3)0.0333 (8)
O1W0.0693 (8)0.0278 (10)0.0842 (10)0.193 (5)
O2W0.9457 (7)0.2012 (9)0.7044 (9)0.165 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0281 (3)0.0233 (3)0.0200 (3)0.0011 (2)0.0043 (2)0.0080 (2)
C10.030 (3)0.034 (3)0.028 (3)0.000 (2)0.011 (2)0.012 (2)
C20.023 (3)0.038 (3)0.038 (3)0.001 (2)0.015 (2)0.011 (2)
C30.032 (3)0.026 (3)0.033 (3)0.005 (2)0.013 (2)0.008 (2)
C40.027 (2)0.017 (2)0.019 (2)0.0010 (19)0.007 (2)0.0037 (19)
C50.029 (3)0.022 (2)0.019 (3)0.002 (2)0.009 (2)0.008 (2)
C60.032 (3)0.025 (3)0.020 (3)0.006 (2)0.009 (2)0.003 (2)
C70.030 (3)0.025 (2)0.022 (3)0.001 (2)0.011 (2)0.003 (2)
C80.032 (3)0.031 (3)0.040 (3)0.002 (2)0.018 (3)0.009 (2)
C90.033 (3)0.036 (3)0.046 (4)0.011 (2)0.019 (3)0.011 (3)
C100.028 (3)0.030 (3)0.037 (3)0.009 (2)0.007 (2)0.010 (2)
C110.024 (2)0.027 (3)0.017 (3)0.004 (2)0.004 (2)0.001 (2)
C120.024 (2)0.018 (2)0.017 (2)0.0006 (19)0.003 (2)0.0024 (19)
C130.028 (3)0.024 (3)0.023 (3)0.001 (2)0.011 (2)0.001 (2)
C140.033 (3)0.022 (2)0.021 (3)0.004 (2)0.007 (2)0.003 (2)
C150.039 (3)0.028 (3)0.027 (3)0.003 (2)0.019 (2)0.011 (2)
C160.034 (3)0.025 (3)0.033 (3)0.003 (2)0.016 (2)0.005 (2)
C170.039 (3)0.019 (2)0.018 (3)0.004 (2)0.011 (2)0.0010 (19)
C180.033 (3)0.025 (3)0.021 (3)0.008 (2)0.012 (2)0.001 (2)
C190.028 (3)0.028 (3)0.025 (3)0.001 (2)0.008 (2)0.004 (2)
C200.036 (3)0.024 (3)0.029 (3)0.000 (2)0.012 (2)0.004 (2)
C210.029 (3)0.032 (3)0.026 (3)0.002 (2)0.003 (2)0.001 (2)
C220.029 (3)0.033 (3)0.027 (3)0.002 (2)0.002 (2)0.009 (2)
C230.025 (3)0.038 (3)0.022 (3)0.002 (2)0.004 (2)0.010 (2)
C240.022 (2)0.032 (3)0.024 (3)0.000 (2)0.008 (2)0.009 (2)
N10.026 (2)0.022 (2)0.022 (2)0.0031 (17)0.0075 (18)0.0031 (17)
N20.030 (2)0.020 (2)0.023 (2)0.0034 (17)0.0070 (18)0.0079 (17)
N30.024 (2)0.025 (2)0.024 (2)0.0051 (17)0.0101 (18)0.0102 (17)
N40.029 (2)0.025 (2)0.024 (2)0.0014 (17)0.0113 (18)0.0052 (17)
O10.084 (3)0.042 (2)0.048 (3)0.023 (2)0.038 (2)0.021 (2)
O20.0374 (19)0.0286 (18)0.0185 (18)0.0098 (15)0.0122 (16)0.0003 (14)
O30.0286 (18)0.037 (2)0.026 (2)0.0072 (16)0.0025 (16)0.0083 (16)
O40.034 (2)0.038 (2)0.022 (2)0.0040 (16)0.0042 (16)0.0012 (16)
O1W0.133 (6)0.237 (10)0.239 (11)0.082 (6)0.129 (7)0.141 (9)
O2W0.077 (5)0.214 (9)0.183 (9)0.004 (5)0.022 (5)0.052 (7)
Geometric parameters (Å, º) top
Zn1—O2i2.071 (3)C13—N41.326 (6)
Zn1—O2ii2.102 (3)C13—N31.356 (6)
Zn1—N12.103 (4)C13—C141.472 (6)
Zn1—N22.128 (4)C14—C191.384 (7)
Zn1—O42.182 (3)C14—C151.385 (6)
Zn1—O32.217 (4)C15—C161.384 (7)
Zn1—C242.530 (5)C15—H150.9300
C1—N11.322 (6)C16—C171.390 (7)
C1—C21.396 (7)C16—H160.9300
C1—H10.9300C17—C181.396 (6)
C2—C31.371 (7)C17—C201.499 (6)
C2—H20.9300C18—C191.380 (6)
C3—C41.400 (6)C18—H180.9300
C3—H30.9300C19—H190.9300
C4—C121.415 (6)C20—O11.216 (6)
C4—C51.424 (6)C20—O21.310 (6)
C5—N31.370 (5)C21—C221.388 (7)
C5—C61.379 (6)C21—C23iii1.392 (7)
C6—N41.374 (6)C21—H230.9300
C6—C71.436 (6)C22—C231.388 (7)
C7—C111.403 (6)C22—H220.9300
C7—C81.410 (6)C23—C21iii1.392 (7)
C8—C91.366 (7)C23—C241.494 (7)
C8—H80.9300C24—O41.260 (6)
C9—C101.388 (7)C24—O31.261 (5)
C9—H90.9300N3—H40.8600
C10—N21.320 (6)O2—Zn1iv2.071 (3)
C10—H100.9300O2—Zn1ii2.102 (3)
C11—N21.358 (6)O1—O2Wiv2.891 (9)
C11—C121.455 (6)O1W—O2Wv2.886 (14)
C12—N11.352 (6)O1W—N42.899 (10)
O2i—Zn1—O2ii78.91 (13)C4—C12—C11120.6 (4)
O2i—Zn1—N1100.31 (14)N4—C13—N3111.6 (4)
O2ii—Zn1—N1101.54 (14)N4—C13—C14127.0 (4)
O2i—Zn1—N2171.64 (14)N3—C13—C14121.4 (4)
O2ii—Zn1—N293.17 (14)C19—C14—C15118.3 (4)
N1—Zn1—N278.50 (14)C19—C14—C13121.7 (4)
O2i—Zn1—O490.24 (13)C15—C14—C13120.0 (4)
O2ii—Zn1—O496.74 (13)C16—C15—C14121.4 (5)
N1—Zn1—O4160.32 (14)C16—C15—H15119.3
N2—Zn1—O493.37 (14)C14—C15—H15119.3
O2i—Zn1—O392.56 (13)C15—C16—C17120.2 (5)
O2ii—Zn1—O3155.21 (12)C15—C16—H16119.9
N1—Zn1—O3102.89 (14)C17—C16—H16119.9
N2—Zn1—O395.77 (14)C16—C17—C18118.4 (4)
O4—Zn1—O359.73 (13)C16—C17—C20119.3 (4)
O2i—Zn1—C2490.48 (14)C18—C17—C20122.3 (4)
O2ii—Zn1—C24126.02 (15)C19—C18—C17120.6 (4)
N1—Zn1—C24132.44 (16)C19—C18—H18119.7
N2—Zn1—C2496.40 (15)C17—C18—H18119.7
O4—Zn1—C2429.87 (14)C18—C19—C14121.0 (4)
O3—Zn1—C2429.89 (14)C18—C19—H19119.5
N1—C1—C2122.6 (4)C14—C19—H19119.5
N1—C1—H1118.7O1—C20—O2124.2 (5)
C2—C1—H1118.7O1—C20—C17120.2 (5)
C3—C2—C1119.6 (4)O2—C20—C17115.6 (4)
C3—C2—H2120.2C22—C21—C23iii120.2 (5)
C1—C2—H2120.2C22—C21—H23119.9
C2—C3—C4118.9 (4)C23iii—C21—H23119.9
C2—C3—H3120.5C21—C22—C23120.3 (5)
C4—C3—H3120.5C21—C22—H22119.9
C3—C4—C12118.2 (4)C23—C22—H22119.9
C3—C4—C5126.3 (4)C22—C23—C21iii119.5 (5)
C12—C4—C5115.5 (4)C22—C23—C24120.4 (4)
N3—C5—C6105.5 (4)C21iii—C23—C24120.0 (5)
N3—C5—C4129.5 (4)O4—C24—O3120.6 (4)
C6—C5—C4124.8 (4)O4—C24—C23120.1 (4)
N4—C6—C5110.1 (4)O3—C24—C23119.2 (5)
N4—C6—C7129.9 (4)O4—C24—Zn159.6 (2)
C5—C6—C7120.0 (4)O3—C24—Zn161.2 (2)
C11—C7—C8117.4 (4)C23—C24—Zn1174.0 (3)
C11—C7—C6117.2 (4)C1—N1—C12119.0 (4)
C8—C7—C6125.4 (4)C1—N1—Zn1127.1 (3)
C9—C8—C7119.3 (5)C12—N1—Zn1113.7 (3)
C9—C8—H8120.4C10—N2—C11118.4 (4)
C7—C8—H8120.4C10—N2—Zn1127.5 (3)
C8—C9—C10119.4 (5)C11—N2—Zn1113.5 (3)
C8—C9—H9120.3C13—N3—C5107.5 (4)
C10—C9—H9120.3C13—N3—H4126.2
N2—C10—C9123.1 (5)C5—N3—H4126.2
N2—C10—H10118.5C13—N4—C6105.3 (4)
C9—C10—H10118.5C20—O2—Zn1iv132.2 (3)
N2—C11—C7122.4 (4)C20—O2—Zn1ii125.3 (3)
N2—C11—C12115.9 (4)Zn1iv—O2—Zn1ii101.09 (13)
C7—C11—C12121.8 (4)C24—O3—Zn188.9 (3)
N1—C12—C4121.7 (4)C24—O4—Zn190.6 (3)
N1—C12—C11117.7 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z+2; (iv) x, y1, z1; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4···O3v0.862.102.781 (5)136
Symmetry code: (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C8H4O4)(C20H11N4O2)2]·4H2O
Mr1037.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7477 (16), 10.2610 (18), 11.0480 (19)
α, β, γ (°)88.849 (3), 72.115 (4), 83.121 (3)
V3)1043.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.782, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
5406, 3783, 2797
Rint0.029
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.02
No. of reflections3783
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.66

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4···O3i0.862.102.781 (5)135.7
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHsu, Y.-C., Zheng, H., Lin, J. T. & Ho, K.-C. (2005). Solar Energy Mater. Solar Cells, 87, 357–367.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYongqin, W., Yunfang, Y. & Kechen, W. (2007). Cryst. Growth Des. 7, 2262—2264.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1493-m1494
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds