metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(2,2′-bi­pyridine-κ2N,N′)cobalt(II)]-μ-(E)-3,3′-(but-2-ene-2,3-di­yl)dibenzoato-κ4O,O′:O′′,O′′′] hemihydrate]

aCollege of Safety and Environmental Engineering, Capital University of Economics and Business, Beijing 100070, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 October 2011; accepted 10 October 2011; online 22 October 2011)

The title coordination polymer, {[Co(C18H14O4)(C10H8N2)]·0.5H2O}n, features a helical polymeric chain that runs along the b axis. The Co atoms are chelated by the carboxyl­ate groups of two 3,3′-(but-2-ene-2,3-di­yl)dibenzoate ligands and the N atoms of a 2,2′-bipyridine ligand. The lattice water mol­ecule is disordered about a center of inversion and is connected to the chain by an O—H⋯O hydrogen bond. The CoII atom shows a distorted octa­hedral coordination.

Related literature

For a review of the adducts of metal carboxyl­ates with 2,2′-bipyridine-like ligands, see: Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]). For details of the synthesis, see: McMurry (1989[McMurry, J. E. (1989). Chem. Rev. 89, 1513-1524.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C18H14O4)(C10H8N2)]·0.5H2O

  • Mr = 518.41

  • Monoclinic, P 21 /n

  • a = 8.7028 (9) Å

  • b = 19.872 (2) Å

  • c = 14.5181 (14) Å

  • β = 97.845 (2)°

  • V = 2487.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.28 × 0.17 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.822, Tmax = 0.965

  • 14695 measured reflections

  • 5667 independent reflections

  • 3153 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 0.96

  • 5667 reflections

  • 327 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1 0.84 1.98 2.812 (5) 173

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Meta(II) dicarboxylates generally adopt three-dimensional polymeric architectures as the carboxyl –CO2 ends of the dianion are both capable of binding to more than one metal atom. The three-dimensional motifs can be altered to two-dimensional layers or even linear chains through the formation of adducts with 2,2'-bipyridine like ligands; the molecular architectures of such adducts of metal carboxylates with such α,α'-dimine ligands have been reviewed (Ye et al., 2005).

We have synthesized (E)-3,3'-(but-2-ene-2,3-diyl)dibenzoic acid in a multi-step synthesis for use in another research projecttheme; we have used this rigid dicarboxylic acid to form a coordination polymer as no derivatives of this acid have been reported. The dicarboxylate ion of the coordination polymer, [Co(C10H8N2)(C18H14O4).0.5H2O]n (Scheme I, Fig. 1), has its carboxyl –CO2 ends each chelating a 2,2'-bipyridine chelated CoII atom to generate a helical polymeric chain that runs along the b-axis of the monoclinic unit cell (Fig. 2). The CoII atom shows octahedral coordination. The lattice water molecule is disordered about a center-of-inversion and is connected to the chain by an O–H···O hydrogen bond (Table 1).

Related literature top

For a review of the adducts of metal carboxylates with 2,2'-bipyridine-like ligands, see: Ye et al. (2005). For details of the synthesis, see: McMurry (1989).

Experimental top

2,3-Bis-(3-bromophenyl)-2-butene was synthesized from the cross-coupling of 3-bromoacetophenone catalyzed by low-valent titanium (McMurry, 1989).

2,3-Bis-(3-bromophenyl)-2-butene (17.3 g, 0.048 mol) was added to a solution of n-butyllithium (2.5 M in hexane, 40 ml, 0.10 mol) in ether (400 ml) at 200 K. The reaction was carried out under nitrogen. The mixture was warmed to room temperature and then stirred overnight. The reaction was quenched with water (100 ml) and the organic compounds were extracted with ether. The aqueous phase was adjusted to a pH of 1 by the addition of concentrated hydrochloric acid. The precipitate was collected, washed with ethyl acetate and dried to yield 3,3'-(but-2-ene-2,3-diyl)dibenzoic acid (yield 9.8 g, 70%) as a mixture of E and Z isomers.

3,3'-(But-2-ene-2,3-diyl)dibenzoic acid (10 g, 0.034 mol), thionyl chloride (12.0 ml) and methanol (150 ml) were heated for 2 h. The solvent was evaporated and the residue was purified by silica gel chromatography to yield 2.2 g of (Z)-dimethyl 3,3'-(but-2-ene-2,3-diyl)dibenzoate and 6.6 g of (E)-dimethyl 3,3'-(but-2-ene-2,3-diyl)dibenzoate.

To (E)-dimethyl 3,3'-(but-2-ene-2,3-diyl)dibenzoate (5.0 g,15.4 mmol) in THF (30 ml) was added lithium hydroxide (1.48 g, 61.6 mmol) in water (30 ml). The mixture was stirred overnight. The solvent was removed and then acidified with concentrated hydrochloric acid; the reaction was carried out at 273 K. The precipitate was collected, washed with ethyl acetate and dried to give to (E)-3,3'-(but-2-ene-2,3-diyl)dibenzoic acid (yield 4.3 g, 95%) as a white solid.

(E)-3,3'-(But-2-ene-2,3-diyl)dibenzoic acid (15.3 mg, 0.05 mmol), sodium hydroxide (4.1 mg, 0.10 mmol), cobalt(II) chloride hexahydrate (11.8 mg, 0.05 mmol) and 2,2'-bipyridine (7.8 mg, 0.05 mol) were mixed in water (4 ml). This was transferred to a 25-mLTeflon-lined stainless-steel Parr bomb. The bomb was heated at 408 K for 3 days. The bomb was cooled slowly to room temperature. Red block-shaped crystals were obtained; yield: 10.8 mg (40% based on the acid). CH&N elemental analysis. Calcd. (%): C, 65.00; H, 4.22; N, 5.33. Found (%): C, 65.29; H, 4.05; N, 5.32.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The water molecule lies near a center-of-inversion, and was assigned half site-occupancy. The H atoms were placed in a chemically sensible position on the basis of one hydrogen bonding interaction.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid plot (Barbour, 2001) of a portion of polymeric Co(C10H8N2)(C18H14O4).0.5H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Chain structure; the lattice water molecules are not shown.
catena-Poly[[[(2,2'-bipyridine-κ2N,N')cobalt(II)]- µ-(E)-3,3'-(but-2-ene-2,3-diyl)dibenzoato- κ4O,O':O'',O'''] hemihydrate] top
Crystal data top
[Co(C18H14O4)(C10H8N2)]·0.5H2OF(000) = 1072
Mr = 518.41Dx = 1.384 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2090 reflections
a = 8.7028 (9) Åθ = 2.6–21.1°
b = 19.872 (2) ŵ = 0.73 mm1
c = 14.5181 (14) ÅT = 293 K
β = 97.845 (2)°Plate, red
V = 2487.2 (4) Å30.28 × 0.17 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5667 independent reflections
Radiation source: fine-focus sealed tube3153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.822, Tmax = 0.965k = 2325
14695 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
5667 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.23 e Å3
6 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Co(C18H14O4)(C10H8N2)]·0.5H2OV = 2487.2 (4) Å3
Mr = 518.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7028 (9) ŵ = 0.73 mm1
b = 19.872 (2) ÅT = 293 K
c = 14.5181 (14) Å0.28 × 0.17 × 0.05 mm
β = 97.845 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5667 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3153 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.965Rint = 0.046
14695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.96Δρmax = 0.23 e Å3
5667 reflectionsΔρmin = 0.20 e Å3
327 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.72581 (4)0.433780 (19)0.65569 (3)0.05411 (15)
O10.6416 (2)0.49163 (10)0.76819 (13)0.0630 (5)
O20.6521 (2)0.53304 (10)0.63038 (14)0.0648 (6)
O30.0199 (2)0.88087 (10)0.90530 (14)0.0629 (5)
O40.2047 (2)0.83205 (10)0.81231 (14)0.0659 (6)
O1W0.6236 (8)0.4682 (3)0.9574 (3)0.125 (2)0.50
H110.62190.47750.90090.188*0.50
H120.54990.48830.97740.188*0.50
N10.9576 (3)0.44197 (11)0.71738 (18)0.0564 (6)
N20.8468 (3)0.41977 (11)0.54323 (17)0.0555 (6)
C10.6243 (3)0.54056 (14)0.7128 (2)0.0507 (7)
C20.5758 (3)0.60753 (14)0.74361 (19)0.0468 (6)
C30.5469 (3)0.66010 (15)0.68050 (19)0.0526 (7)
H30.55760.65340.61830.063*
C40.5025 (3)0.72181 (15)0.7100 (2)0.0590 (8)
H40.48170.75670.66740.071*
C50.4887 (3)0.73232 (15)0.8025 (2)0.0571 (7)
H50.45810.77440.82150.069*
C60.5193 (3)0.68143 (14)0.86754 (18)0.0497 (7)
C70.5619 (3)0.61921 (14)0.83632 (18)0.0490 (7)
H70.58170.58420.87880.059*
C80.5183 (3)0.69319 (14)0.96955 (19)0.0547 (7)
C90.6782 (4)0.69610 (19)1.0248 (2)0.0845 (11)
H9A0.72950.73661.00960.127*
H9B0.73730.65771.01000.127*
H9C0.66960.69581.09000.127*
C100.3872 (4)0.70120 (14)1.00524 (19)0.0569 (7)
C110.3799 (4)0.71311 (19)1.1077 (2)0.0856 (11)
H11A0.33640.67431.13380.128*
H11B0.31600.75161.11480.128*
H11C0.48250.72101.13930.128*
C120.2327 (3)0.70095 (14)0.94623 (19)0.0528 (7)
C130.1647 (4)0.64333 (16)0.9054 (2)0.0682 (9)
H130.21700.60250.91370.082*
C140.0202 (4)0.64560 (16)0.8527 (2)0.0714 (9)
H140.02430.60620.82680.086*
C150.0583 (3)0.70517 (15)0.83819 (19)0.0570 (7)
H150.15480.70630.80170.068*
C160.0063 (3)0.76353 (14)0.87795 (18)0.0494 (7)
C170.0770 (3)0.82881 (14)0.8639 (2)0.0516 (7)
C180.1496 (3)0.76036 (14)0.93232 (19)0.0522 (7)
H180.19160.79950.96050.063*
C191.0053 (4)0.45294 (16)0.8071 (3)0.0727 (9)
H190.93110.45870.84680.087*
C201.1591 (4)0.45614 (18)0.8438 (3)0.0845 (11)
H201.18810.46460.90680.101*
C211.2687 (4)0.44668 (18)0.7861 (4)0.0916 (12)
H211.37360.44830.80940.110*
C221.2228 (4)0.43482 (16)0.6937 (3)0.0752 (10)
H221.29610.42820.65360.090*
C231.0648 (3)0.43281 (13)0.6601 (2)0.0560 (7)
C241.0024 (3)0.42047 (12)0.5620 (2)0.0534 (7)
C251.0942 (4)0.41078 (15)0.4925 (3)0.0668 (9)
H251.20170.41300.50570.080*
C261.0246 (4)0.39784 (16)0.4041 (3)0.0786 (10)
H261.08500.39020.35700.094*
C270.8642 (4)0.39610 (17)0.3846 (2)0.0772 (10)
H270.81510.38680.32500.093*
C280.7805 (4)0.40859 (16)0.4565 (2)0.0690 (9)
H280.67280.40930.44400.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0452 (2)0.0561 (3)0.0637 (3)0.00109 (18)0.01649 (18)0.00717 (19)
O10.0733 (14)0.0552 (13)0.0637 (13)0.0107 (10)0.0214 (10)0.0004 (10)
O20.0729 (14)0.0641 (13)0.0623 (13)0.0021 (11)0.0270 (11)0.0056 (10)
O30.0502 (11)0.0490 (12)0.0899 (15)0.0008 (9)0.0108 (10)0.0069 (11)
O40.0546 (13)0.0654 (14)0.0750 (14)0.0052 (10)0.0008 (11)0.0053 (11)
O1W0.195 (6)0.101 (4)0.076 (3)0.032 (4)0.004 (4)0.017 (3)
N10.0516 (14)0.0506 (15)0.0675 (17)0.0005 (11)0.0100 (13)0.0047 (12)
N20.0477 (14)0.0553 (15)0.0660 (17)0.0051 (11)0.0173 (12)0.0059 (12)
C10.0376 (14)0.0565 (18)0.060 (2)0.0061 (12)0.0143 (13)0.0038 (15)
C20.0357 (14)0.0509 (17)0.0553 (18)0.0017 (12)0.0121 (12)0.0022 (13)
C30.0452 (15)0.063 (2)0.0500 (17)0.0050 (13)0.0085 (13)0.0020 (14)
C40.0589 (18)0.0581 (19)0.059 (2)0.0031 (14)0.0046 (15)0.0098 (15)
C50.0559 (18)0.0522 (18)0.063 (2)0.0081 (13)0.0087 (15)0.0016 (15)
C60.0432 (15)0.0542 (18)0.0518 (17)0.0053 (13)0.0074 (13)0.0008 (14)
C70.0447 (15)0.0525 (17)0.0504 (18)0.0053 (12)0.0085 (13)0.0065 (13)
C80.0573 (18)0.0546 (18)0.0519 (18)0.0078 (14)0.0069 (14)0.0023 (13)
C90.071 (2)0.111 (3)0.069 (2)0.020 (2)0.0006 (18)0.007 (2)
C100.0654 (19)0.0571 (18)0.0490 (17)0.0085 (15)0.0102 (15)0.0058 (14)
C110.092 (3)0.112 (3)0.054 (2)0.021 (2)0.0129 (18)0.0125 (19)
C120.0551 (17)0.0531 (18)0.0540 (18)0.0050 (14)0.0212 (14)0.0063 (14)
C130.072 (2)0.056 (2)0.078 (2)0.0121 (16)0.0171 (18)0.0117 (16)
C140.073 (2)0.054 (2)0.086 (2)0.0048 (16)0.0092 (19)0.0178 (17)
C150.0517 (17)0.061 (2)0.0591 (19)0.0024 (14)0.0079 (14)0.0079 (15)
C160.0511 (16)0.0510 (17)0.0499 (17)0.0044 (13)0.0203 (13)0.0050 (13)
C170.0474 (17)0.0536 (18)0.0587 (19)0.0001 (14)0.0242 (14)0.0004 (14)
C180.0505 (16)0.0525 (18)0.0560 (17)0.0027 (13)0.0156 (14)0.0093 (13)
C190.067 (2)0.071 (2)0.079 (3)0.0006 (16)0.0034 (19)0.0085 (18)
C200.076 (3)0.082 (3)0.089 (3)0.0013 (19)0.011 (2)0.004 (2)
C210.058 (2)0.087 (3)0.123 (4)0.0026 (19)0.011 (2)0.010 (2)
C220.0490 (18)0.068 (2)0.110 (3)0.0052 (16)0.0142 (19)0.009 (2)
C230.0467 (16)0.0398 (15)0.083 (2)0.0018 (12)0.0147 (16)0.0018 (15)
C240.0496 (16)0.0379 (16)0.077 (2)0.0009 (12)0.0226 (15)0.0019 (13)
C250.063 (2)0.0564 (19)0.087 (3)0.0040 (15)0.0340 (19)0.0061 (17)
C260.090 (3)0.067 (2)0.090 (3)0.0024 (19)0.052 (2)0.0011 (19)
C270.089 (3)0.080 (2)0.068 (2)0.013 (2)0.030 (2)0.0066 (18)
C280.063 (2)0.075 (2)0.073 (2)0.0135 (16)0.0221 (18)0.0075 (18)
Geometric parameters (Å, º) top
Co1—N22.079 (2)C10—C121.492 (4)
Co1—O4i2.088 (2)C10—C111.515 (4)
Co1—O22.091 (2)C11—H11A0.9600
Co1—N12.099 (2)C11—H11B0.9600
Co1—O3i2.1602 (18)C11—H11C0.9600
Co1—O12.2030 (19)C12—C131.385 (4)
O1—C11.257 (3)C12—C181.385 (4)
O2—C11.262 (3)C13—C141.381 (4)
O3—C171.264 (3)C13—H130.9300
O3—Co1ii2.1602 (18)C14—C151.369 (4)
O4—C171.254 (3)C14—H140.9300
O4—Co1ii2.088 (2)C15—C161.381 (3)
O1W—H110.8400C15—H150.9300
O1W—H120.8401C16—C181.383 (4)
N1—C191.330 (4)C16—C171.487 (4)
N1—C231.344 (4)C17—Co1ii2.451 (3)
N2—C281.330 (3)C18—H180.9300
N2—C241.345 (3)C19—C201.372 (4)
C1—C21.483 (4)C19—H190.9300
C2—C71.387 (3)C20—C211.366 (5)
C2—C31.390 (4)C20—H200.9300
C3—C41.371 (4)C21—C221.367 (5)
C3—H30.9300C21—H210.9300
C4—C51.382 (4)C22—C231.395 (4)
C4—H40.9300C22—H220.9300
C5—C61.384 (4)C23—C241.473 (4)
C5—H50.9300C24—C251.384 (4)
C6—C71.385 (4)C25—C261.366 (4)
C6—C81.501 (4)C25—H250.9300
C7—H70.9300C26—C271.387 (5)
C8—C101.325 (4)C26—H260.9300
C8—C91.510 (4)C27—C281.375 (4)
C9—H9A0.9600C27—H270.9300
C9—H9B0.9600C28—H280.9300
C9—H9C0.9600
N2—Co1—O4i96.57 (8)C10—C11—H11B109.5
N2—Co1—O299.46 (8)H11A—C11—H11B109.5
O4i—Co1—O2156.66 (8)C10—C11—H11C109.5
N2—Co1—N177.60 (10)H11A—C11—H11C109.5
O4i—Co1—N195.09 (8)H11B—C11—H11C109.5
O2—Co1—N1104.82 (8)C13—C12—C18117.3 (3)
N2—Co1—O3i95.36 (9)C13—C12—C10123.2 (3)
O4i—Co1—O3i61.75 (7)C18—C12—C10119.5 (3)
O2—Co1—O3i99.77 (8)C12—C13—C14120.9 (3)
N1—Co1—O3i155.20 (8)C12—C13—H13119.5
N2—Co1—O1155.19 (8)C14—C13—H13119.5
O4i—Co1—O1106.98 (8)C15—C14—C13120.8 (3)
O2—Co1—O160.85 (7)C15—C14—H14119.6
N1—Co1—O192.34 (9)C13—C14—H14119.6
O3i—Co1—O1102.51 (8)C14—C15—C16119.7 (3)
C1—O1—Co187.29 (16)C14—C15—H15120.1
C1—O2—Co192.23 (17)C16—C15—H15120.1
C17—O3—Co1ii87.33 (16)C15—C16—C18119.0 (3)
C17—O4—Co1ii90.83 (16)C15—C16—C17120.8 (3)
H11—O1W—H12108.6C18—C16—C17120.2 (3)
C19—N1—C23118.5 (3)O4—C17—O3120.0 (3)
C19—N1—Co1125.8 (2)O4—C17—C16120.2 (3)
C23—N1—Co1115.7 (2)O3—C17—C16119.8 (3)
C28—N2—C24119.2 (3)O4—C17—Co1ii58.40 (14)
C28—N2—Co1124.42 (19)O3—C17—Co1ii61.68 (14)
C24—N2—Co1116.3 (2)C16—C17—Co1ii177.01 (19)
O1—C1—O2119.5 (3)C16—C18—C12122.3 (3)
O1—C1—C2121.0 (3)C16—C18—H18118.9
O2—C1—C2119.4 (3)C12—C18—H18118.9
C7—C2—C3118.8 (3)N1—C19—C20123.1 (4)
C7—C2—C1120.5 (3)N1—C19—H19118.5
C3—C2—C1120.6 (2)C20—C19—H19118.5
C4—C3—C2120.0 (3)C21—C20—C19118.7 (4)
C4—C3—H3120.0C21—C20—H20120.6
C2—C3—H3120.0C19—C20—H20120.6
C3—C4—C5120.3 (3)C22—C21—C20119.4 (3)
C3—C4—H4119.9C22—C21—H21120.3
C5—C4—H4119.9C20—C21—H21120.3
C4—C5—C6121.2 (3)C21—C22—C23119.3 (3)
C4—C5—H5119.4C21—C22—H22120.3
C6—C5—H5119.4C23—C22—H22120.3
C5—C6—C7117.7 (3)N1—C23—C22120.9 (3)
C5—C6—C8122.2 (3)N1—C23—C24115.2 (2)
C7—C6—C8120.0 (2)C22—C23—C24123.9 (3)
C6—C7—C2122.0 (3)N2—C24—C25121.1 (3)
C6—C7—H7119.0N2—C24—C23115.2 (2)
C2—C7—H7119.0C25—C24—C23123.7 (3)
C10—C8—C6121.8 (3)C26—C25—C24119.1 (3)
C10—C8—C9124.6 (3)C26—C25—H25120.5
C6—C8—C9113.6 (2)C24—C25—H25120.5
C8—C9—H9A109.5C25—C26—C27120.1 (3)
C8—C9—H9B109.5C25—C26—H26119.9
H9A—C9—H9B109.5C27—C26—H26119.9
C8—C9—H9C109.5C28—C27—C26117.6 (3)
H9A—C9—H9C109.5C28—C27—H27121.2
H9B—C9—H9C109.5C26—C27—H27121.2
C8—C10—C12122.1 (2)N2—C28—C27122.9 (3)
C8—C10—C11123.8 (3)N2—C28—H28118.6
C12—C10—C11114.1 (3)C27—C28—H28118.6
C10—C11—H11A109.5
N2—Co1—O1—C138.9 (3)C6—C8—C10—C121.7 (4)
O4i—Co1—O1—C1160.09 (16)C9—C8—C10—C12177.1 (3)
O2—Co1—O1—C11.82 (15)C6—C8—C10—C11179.9 (3)
N1—Co1—O1—C1103.86 (16)C9—C8—C10—C111.3 (5)
O3i—Co1—O1—C196.14 (16)C8—C10—C12—C1372.2 (4)
N2—Co1—O2—C1162.06 (17)C11—C10—C12—C13109.3 (3)
O4i—Co1—O2—C165.2 (3)C8—C10—C12—C18109.3 (3)
N1—Co1—O2—C182.50 (18)C11—C10—C12—C1869.2 (4)
O3i—Co1—O2—C1100.77 (17)C18—C12—C13—C140.4 (4)
O1—Co1—O2—C11.81 (15)C10—C12—C13—C14178.9 (3)
N2—Co1—N1—C19179.5 (2)C12—C13—C14—C151.1 (5)
O4i—Co1—N1—C1983.9 (2)C13—C14—C15—C161.1 (5)
O2—Co1—N1—C1983.8 (2)C14—C15—C16—C180.3 (4)
O3i—Co1—N1—C19103.9 (3)C14—C15—C16—C17179.5 (3)
O1—Co1—N1—C1923.4 (2)Co1ii—O4—C17—O32.0 (3)
N2—Co1—N1—C231.95 (18)Co1ii—O4—C17—C16176.9 (2)
O4i—Co1—N1—C2393.68 (19)Co1ii—O3—C17—O42.0 (3)
O2—Co1—N1—C2398.61 (19)Co1ii—O3—C17—C16177.0 (2)
O3i—Co1—N1—C2373.7 (3)C15—C16—C17—O43.1 (4)
O1—Co1—N1—C23159.04 (19)C18—C16—C17—O4177.8 (3)
O4i—Co1—N2—C2886.1 (2)C15—C16—C17—O3175.9 (2)
O2—Co1—N2—C2876.9 (2)C18—C16—C17—O33.3 (4)
N1—Co1—N2—C28179.9 (2)C15—C16—C18—C121.8 (4)
O3i—Co1—N2—C2824.0 (2)C17—C16—C18—C12179.0 (2)
O1—Co1—N2—C28112.2 (3)C13—C12—C18—C161.8 (4)
O4i—Co1—N2—C2491.99 (19)C10—C12—C18—C16179.6 (3)
O2—Co1—N2—C24105.04 (19)C23—N1—C19—C200.8 (4)
N1—Co1—N2—C241.81 (18)Co1—N1—C19—C20178.3 (2)
O3i—Co1—N2—C24154.10 (19)N1—C19—C20—C211.0 (5)
O1—Co1—N2—C2469.7 (3)C19—C20—C21—C220.5 (5)
Co1—O1—C1—O23.0 (3)C20—C21—C22—C230.2 (5)
Co1—O1—C1—C2175.3 (2)C19—N1—C23—C220.1 (4)
Co1—O2—C1—O13.2 (3)Co1—N1—C23—C22177.9 (2)
Co1—O2—C1—C2175.1 (2)C19—N1—C23—C24179.6 (2)
O1—C1—C2—C75.8 (4)Co1—N1—C23—C241.8 (3)
O2—C1—C2—C7172.5 (2)C21—C22—C23—N10.4 (4)
O1—C1—C2—C3175.7 (2)C21—C22—C23—C24180.0 (3)
O2—C1—C2—C36.0 (4)C28—N2—C24—C251.0 (4)
C7—C2—C3—C41.3 (4)Co1—N2—C24—C25179.2 (2)
C1—C2—C3—C4179.8 (2)C28—N2—C24—C23179.6 (2)
C2—C3—C4—C51.0 (4)Co1—N2—C24—C231.4 (3)
C3—C4—C5—C60.2 (4)N1—C23—C24—N20.3 (3)
C4—C5—C6—C71.1 (4)C22—C23—C24—N2179.4 (3)
C4—C5—C6—C8174.7 (3)N1—C23—C24—C25179.1 (3)
C5—C6—C7—C20.8 (4)C22—C23—C24—C251.2 (4)
C8—C6—C7—C2175.1 (2)N2—C24—C25—C262.5 (4)
C3—C2—C7—C60.4 (4)C23—C24—C25—C26178.2 (3)
C1—C2—C7—C6178.9 (2)C24—C25—C26—C271.5 (5)
C5—C6—C8—C1074.1 (4)C25—C26—C27—C280.8 (5)
C7—C6—C8—C10110.3 (3)C24—N2—C28—C271.5 (4)
C5—C6—C8—C9104.9 (3)Co1—N2—C28—C27176.5 (2)
C7—C6—C8—C970.8 (3)C26—C27—C28—N22.4 (5)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.841.982.812 (5)173

Experimental details

Crystal data
Chemical formula[Co(C18H14O4)(C10H8N2)]·0.5H2O
Mr518.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.7028 (9), 19.872 (2), 14.5181 (14)
β (°) 97.845 (2)
V3)2487.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.28 × 0.17 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.822, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
14695, 5667, 3153
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 0.96
No. of reflections5667
No. of parameters327
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.841.982.812 (5)173
 

Acknowledgements

We thank the Beijing Municipal Commission of Educational S&T Development Foundation (KM201010038002) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcMurry, J. E. (1989). Chem. Rev. 89, 1513–1524.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds