organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Fluoro­phen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 10 October 2011; accepted 14 October 2011; online 22 October 2011)

In the title compound, C21H15FOS, the dihedral angles between the mean plane of the benzofuran fragment and the pendant 3-fluoro­phenyl and phenyl rings are 1.76 (5) and 32.29 (5)°, respectively. In the crystal, mol­ecules are linked by a slipped ππ inter­action between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.665 (2) Å, inter­planar distance = 3.391 (2) Å and slippage = 1.390 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For related structures, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o802.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FOS

  • Mr = 334.39

  • Triclinic, [P \overline 1]

  • a = 4.7692 (1) Å

  • b = 9.6442 (2) Å

  • c = 17.4049 (3) Å

  • α = 89.7700 (1)°

  • β = 87.589 (1)°

  • γ = 80.061 (1)°

  • V = 787.82 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.974

  • 13895 measured reflections

  • 3590 independent reflections

  • 3234 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.04

  • 3590 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds having a benzofuran moiety have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of benzofuranderivatives containing either 2-(4-fluorophenyl) (Choi et al., 2009) or 2-(4-chlorophenyl) (Choi et al., 2010) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the 4-fluorophenyl and phenyl rings are 1.76 (5)° and 32.29 (5)°, respectively. The crystal packing (Fig. 2) is stabilized by a slipped ππ interaction between the furan and benzene rings of adjacent molecules, with a Cg1···Cg2i distance of 3.665 (2) Å and an interplanar distance of 3.391 (2) Å resulting in a slippage of 1.390 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For related structures, see: Choi et al. (2009, 2010).

Experimental top

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-phenylphenol (340 mg, 2.0 mmol) and 2-chloro-2-methylsulfanyl-3'-fluoroacetophenone (437 mg, 2.0 mmol) in dichloromethane (30 mL) at room temperature, and stirring was continued at the same temperature for 1h. The reaction was quenched by the addition of water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–benzene, 5:2 v/v) to afford the title compound as a colorless solid [yield 54%, m.p. 357–358 K; Rf = 0.61 (hexane–benzene, 5:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]
2-(3-Fluorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran top
Crystal data top
C21H15FOSZ = 2
Mr = 334.39F(000) = 348
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7692 (1) ÅCell parameters from 7407 reflections
b = 9.6442 (2) Åθ = 2.3–27.5°
c = 17.4049 (3) ŵ = 0.22 mm1
α = 89.7700 (1)°T = 296 K
β = 87.589 (1)°Block, colourless
γ = 80.061 (1)°0.34 × 0.25 × 0.12 mm
V = 787.82 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3590 independent reflections
Radiation source: rotating anode3234 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.1°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.929, Tmax = 0.974l = 2222
13895 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.3462P]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H15FOSγ = 80.061 (1)°
Mr = 334.39V = 787.82 (3) Å3
Triclinic, P1Z = 2
a = 4.7692 (1) ÅMo Kα radiation
b = 9.6442 (2) ŵ = 0.22 mm1
c = 17.4049 (3) ÅT = 296 K
α = 89.7700 (1)°0.34 × 0.25 × 0.12 mm
β = 87.589 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3590 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3234 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.974Rint = 0.023
13895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3590 reflectionsΔρmin = 0.25 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94952 (7)0.43069 (3)0.147672 (18)0.02311 (10)
F10.2102 (2)0.79398 (10)0.01953 (5)0.0391 (2)
O11.05781 (19)0.76869 (9)0.26561 (5)0.0218 (2)
C11.0423 (3)0.56199 (13)0.20611 (7)0.0196 (2)
C21.2552 (3)0.53713 (13)0.26345 (7)0.0199 (2)
C31.4383 (3)0.41893 (13)0.28916 (7)0.0198 (2)
H31.43910.33100.26740.024*
C41.6195 (3)0.43454 (13)0.34781 (7)0.0200 (2)
C51.6144 (3)0.56915 (14)0.38003 (7)0.0232 (3)
H51.73780.57870.41890.028*
C61.4325 (3)0.68749 (14)0.35590 (7)0.0238 (3)
H61.42950.77570.37770.029*
C71.2556 (3)0.66699 (13)0.29759 (7)0.0205 (2)
C80.9298 (3)0.70255 (13)0.20980 (7)0.0203 (2)
C91.8215 (3)0.31190 (13)0.37610 (7)0.0211 (3)
C101.9415 (3)0.20260 (14)0.32642 (8)0.0248 (3)
H101.89100.20550.27530.030*
C112.1353 (3)0.08960 (14)0.35218 (8)0.0308 (3)
H112.21430.01760.31840.037*
C122.2111 (4)0.08401 (15)0.42809 (9)0.0367 (4)
H122.34200.00870.44530.044*
C132.0914 (4)0.19081 (16)0.47824 (9)0.0362 (4)
H132.14060.18670.52940.043*
C141.8985 (3)0.30393 (15)0.45263 (8)0.0279 (3)
H141.81950.37530.48680.034*
C150.7126 (3)0.79758 (13)0.16924 (7)0.0212 (3)
C160.6597 (3)0.94127 (15)0.18697 (8)0.0299 (3)
H160.76100.97560.22500.036*
C170.4572 (3)1.03289 (16)0.14822 (9)0.0357 (3)
H170.42391.12810.16080.043*
C180.3041 (3)0.98512 (16)0.09120 (8)0.0315 (3)
H180.16921.04640.06480.038*
C190.3592 (3)0.84369 (15)0.07508 (8)0.0262 (3)
C200.5568 (3)0.74876 (14)0.11223 (7)0.0237 (3)
H200.58590.65360.09950.028*
C211.2261 (3)0.41386 (17)0.07312 (9)0.0352 (3)
H21A1.21590.50140.04610.053*
H21B1.20170.34100.03790.053*
H21C1.40860.39020.09560.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02386 (17)0.02130 (17)0.02495 (17)0.00512 (12)0.00487 (12)0.00323 (12)
F10.0392 (5)0.0395 (5)0.0387 (5)0.0029 (4)0.0205 (4)0.0007 (4)
O10.0230 (5)0.0190 (4)0.0229 (4)0.0008 (3)0.0057 (3)0.0021 (3)
C10.0188 (6)0.0206 (6)0.0196 (6)0.0038 (4)0.0018 (4)0.0009 (4)
C20.0189 (6)0.0217 (6)0.0194 (6)0.0048 (5)0.0001 (4)0.0014 (5)
C30.0204 (6)0.0181 (6)0.0212 (6)0.0042 (4)0.0001 (4)0.0014 (4)
C40.0204 (6)0.0192 (6)0.0204 (6)0.0033 (5)0.0001 (4)0.0004 (4)
C50.0248 (6)0.0236 (6)0.0214 (6)0.0035 (5)0.0054 (5)0.0022 (5)
C60.0278 (7)0.0193 (6)0.0243 (6)0.0029 (5)0.0040 (5)0.0048 (5)
C70.0204 (6)0.0186 (6)0.0217 (6)0.0009 (4)0.0021 (5)0.0003 (5)
C80.0204 (6)0.0222 (6)0.0189 (6)0.0051 (5)0.0018 (4)0.0016 (5)
C90.0208 (6)0.0198 (6)0.0235 (6)0.0053 (5)0.0033 (5)0.0022 (5)
C100.0297 (7)0.0203 (6)0.0245 (6)0.0038 (5)0.0056 (5)0.0008 (5)
C110.0365 (8)0.0198 (6)0.0342 (8)0.0015 (5)0.0069 (6)0.0032 (5)
C120.0435 (9)0.0221 (7)0.0427 (9)0.0034 (6)0.0199 (7)0.0010 (6)
C130.0486 (9)0.0287 (7)0.0307 (7)0.0009 (6)0.0183 (7)0.0010 (6)
C140.0344 (7)0.0241 (7)0.0245 (7)0.0015 (5)0.0061 (5)0.0022 (5)
C150.0189 (6)0.0223 (6)0.0219 (6)0.0024 (5)0.0002 (5)0.0012 (5)
C160.0318 (7)0.0243 (7)0.0328 (7)0.0010 (5)0.0093 (6)0.0027 (5)
C170.0408 (8)0.0227 (7)0.0413 (8)0.0030 (6)0.0113 (7)0.0011 (6)
C180.0284 (7)0.0310 (7)0.0327 (7)0.0030 (6)0.0067 (6)0.0060 (6)
C190.0229 (6)0.0330 (7)0.0233 (6)0.0054 (5)0.0049 (5)0.0007 (5)
C200.0235 (6)0.0235 (6)0.0240 (6)0.0031 (5)0.0023 (5)0.0000 (5)
C210.0333 (8)0.0419 (9)0.0319 (7)0.0110 (6)0.0015 (6)0.0137 (6)
Geometric parameters (Å, º) top
S1—C11.7537 (13)C10—H100.9300
S1—C211.7984 (15)C11—C121.383 (2)
F1—C191.3597 (16)C11—H110.9300
O1—C71.3719 (14)C12—C131.382 (2)
O1—C81.3830 (15)C12—H120.9300
C1—C81.3698 (17)C13—C141.3854 (19)
C1—C21.4435 (17)C13—H130.9300
C2—C71.3887 (17)C14—H140.9300
C2—C31.3955 (17)C15—C201.3946 (18)
C3—C41.3897 (17)C15—C161.3984 (19)
C3—H30.9300C16—C171.387 (2)
C4—C51.4122 (18)C16—H160.9300
C4—C91.4873 (17)C17—C181.383 (2)
C5—C61.3843 (18)C17—H170.9300
C5—H50.9300C18—C191.372 (2)
C6—C71.3829 (18)C18—H180.9300
C6—H60.9300C19—C201.3758 (18)
C8—C151.4629 (17)C20—H200.9300
C9—C101.3942 (18)C21—H21A0.9600
C9—C141.3948 (18)C21—H21B0.9600
C10—C111.3879 (18)C21—H21C0.9600
C1—S1—C21101.72 (6)C10—C11—H11120.0
C7—O1—C8106.60 (9)C13—C12—C11119.73 (13)
C8—C1—C2106.46 (11)C13—C12—H12120.1
C8—C1—S1129.09 (10)C11—C12—H12120.1
C2—C1—S1124.41 (9)C12—C13—C14120.36 (13)
C7—C2—C3119.37 (11)C12—C13—H13119.8
C7—C2—C1105.75 (11)C14—C13—H13119.8
C3—C2—C1134.88 (12)C13—C14—C9120.69 (13)
C4—C3—C2119.05 (11)C13—C14—H14119.7
C4—C3—H3120.5C9—C14—H14119.7
C2—C3—H3120.5C20—C15—C16118.60 (12)
C3—C4—C5119.45 (12)C20—C15—C8121.58 (12)
C3—C4—C9120.87 (11)C16—C15—C8119.82 (12)
C5—C4—C9119.67 (11)C17—C16—C15120.44 (13)
C6—C5—C4122.43 (12)C17—C16—H16119.8
C6—C5—H5118.8C15—C16—H16119.8
C4—C5—H5118.8C18—C17—C16121.14 (14)
C7—C6—C5116.14 (12)C18—C17—H17119.4
C7—C6—H6121.9C16—C17—H17119.4
C5—C6—H6121.9C19—C18—C17117.29 (13)
O1—C7—C6125.91 (11)C19—C18—H18121.4
O1—C7—C2110.53 (11)C17—C18—H18121.4
C6—C7—C2123.56 (12)F1—C19—C18118.41 (12)
C1—C8—O1110.66 (11)F1—C19—C20117.96 (13)
C1—C8—C15135.74 (12)C18—C19—C20123.63 (13)
O1—C8—C15113.59 (11)C19—C20—C15118.90 (12)
C10—C9—C14118.30 (12)C19—C20—H20120.6
C10—C9—C4120.71 (11)C15—C20—H20120.6
C14—C9—C4120.98 (12)S1—C21—H21A109.5
C11—C10—C9120.88 (12)S1—C21—H21B109.5
C11—C10—H10119.6H21A—C21—H21B109.5
C9—C10—H10119.6S1—C21—H21C109.5
C12—C11—C10120.04 (13)H21A—C21—H21C109.5
C12—C11—H11120.0H21B—C21—H21C109.5
C21—S1—C1—C8100.68 (13)C3—C4—C9—C1032.27 (18)
C21—S1—C1—C281.81 (12)C5—C4—C9—C10146.70 (13)
C8—C1—C2—C70.32 (13)C3—C4—C9—C14148.48 (13)
S1—C1—C2—C7178.30 (9)C5—C4—C9—C1432.55 (18)
C8—C1—C2—C3178.54 (13)C14—C9—C10—C110.8 (2)
S1—C1—C2—C30.6 (2)C4—C9—C10—C11178.47 (13)
C7—C2—C3—C40.78 (18)C9—C10—C11—C120.3 (2)
C1—C2—C3—C4179.52 (13)C10—C11—C12—C130.5 (2)
C2—C3—C4—C50.00 (18)C11—C12—C13—C140.7 (3)
C2—C3—C4—C9178.97 (11)C12—C13—C14—C90.1 (2)
C3—C4—C5—C60.65 (19)C10—C9—C14—C130.6 (2)
C9—C4—C5—C6179.63 (12)C4—C9—C14—C13178.66 (14)
C4—C5—C6—C70.48 (19)C1—C8—C15—C202.0 (2)
C8—O1—C7—C6179.95 (12)O1—C8—C15—C20178.56 (11)
C8—O1—C7—C20.27 (13)C1—C8—C15—C16177.34 (14)
C5—C6—C7—O1179.30 (12)O1—C8—C15—C162.05 (17)
C5—C6—C7—C20.4 (2)C20—C15—C16—C170.3 (2)
C3—C2—C7—O1178.71 (10)C8—C15—C16—C17179.10 (13)
C1—C2—C7—O10.36 (14)C15—C16—C17—C180.3 (2)
C3—C2—C7—C60.99 (19)C16—C17—C18—C190.5 (2)
C1—C2—C7—C6179.94 (12)C17—C18—C19—F1179.64 (13)
C2—C1—C8—O10.17 (14)C17—C18—C19—C200.1 (2)
S1—C1—C8—O1178.03 (9)F1—C19—C20—C15179.80 (11)
C2—C1—C8—C15179.58 (14)C18—C19—C20—C150.4 (2)
S1—C1—C8—C152.6 (2)C16—C15—C20—C190.63 (19)
C7—O1—C8—C10.05 (13)C8—C15—C20—C19178.76 (12)
C7—O1—C8—C15179.50 (10)

Experimental details

Crystal data
Chemical formulaC21H15FOS
Mr334.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.7692 (1), 9.6442 (2), 17.4049 (3)
α, β, γ (°)89.7700 (1), 87.589 (1), 80.061 (1)
V3)787.82 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.929, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
13895, 3590, 3234
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.04
No. of reflections3590
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o802.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds