metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-2,2′-di­ethyl-1,1′-(butane-1,4-di­yl)di­imidazole-κ2N3:N3′](μ2-5-hy­droxy­isophthalato-κ2O1:O3)zinc]

aDepartment of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: liuyy21@yahoo.com.cn

(Received 19 September 2011; accepted 26 September 2011; online 5 October 2011)

In the title coordination polymer, [Zn(C8H4O5)(C14H22N4)]n, the ZnII cation is coordinated by an O2N2 donor set in a distorted tetra­hedral geometry. The ZnII ions are linked by μ2-OH-bdc (OH-H2bdc = 5-hy­droxy­isophthalic acid) and bbie ligands [bbie = 2,2′-diethyl-1,1′-(butane-1,4-di­yl)diimidazole], forming a two-dimensional layer parallel to the ab plane. The layers are further connected through intermolecular C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional supramolecular structure. In the bbie ligand, the two C atoms in the ethyl group are each disordered over two positions with a site-occupancy ratio of 0.69:0.31.

Related literature

For background information on bis­(imidazole) ligands, see: Kan et al. (2011[Kan, W.-Q., Liu, Y.-Y., Yang, J., Liu, Y.-Y. & Ma, J.-F. (2011). CrystEngComm, 13, 4256-4269.]); Liu et al. (2007[Liu, Y.-Y., Ma, J.-F. & Zhang, L.-P. (2007). Acta Cryst. E63, m2317.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O5)(C14H22N4)]

  • Mr = 491.84

  • Monoclinic, P 21 /n

  • a = 13.5120 (12) Å

  • b = 12.765 (1) Å

  • c = 13.5910 (12) Å

  • β = 103.933 (2)°

  • V = 2275.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.73, Tmax = 0.79

  • 13890 measured reflections

  • 5467 independent reflections

  • 3988 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.03

  • 5467 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9662 (15)
Zn1—O4i 1.9682 (14)
Zn1—N4ii 2.0020 (18)
Zn1—N1 2.0286 (17)
O1—Zn1—O4i 102.54 (6)
O1—Zn1—N4ii 117.20 (7)
O4i—Zn1—N4ii 118.18 (7)
O1—Zn1—N1 115.96 (7)
O4i—Zn1—N1 98.33 (6)
N4ii—Zn1—N1 103.59 (7)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1iii 0.93 2.62 3.417 (3) 144
C14—H14⋯O5iii 0.93 2.49 3.398 (3) 166
O5—H5⋯O2iv 0.82 1.88 2.697 (2) 171
Symmetry code: (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of an investigation of the transition metal application there is a need to prepare further examples of these compounds. In this paper, the structure of the title compound, (I), is described.

As shown in Fig. 1, the ZnII ions is four-coordinated by two oxygen atoms from two oxygen atoms of two OH-bdc anions and two nitrogen atoms of two bbie ligands. Each carboxylate group of OH-bdc acts in a monodentate mode, and the hydroxyl group is not involved in coordination. The bbie molecule coordinates to two ZnII cations through its two aromatic N atoms, thus acing as a bridging bidentate ligand. As illustrated in Fig. 2, The ZnII cations are connected by OH-bdc and bbie ligands to form a layer parallel to the ab plane. There exist hydrogen-binding interactions among adjacent layers. The layers are further connected by these hydrogen bonds to a 3D supramolecular architecture.

Related literature top

For background information on bis(imidazole) ligands, see: Kan et al. (2011); Liu et al. (2007).

Experimental top

The ligand bbie was synthesized according to the literature Liu et al., (2007), but 2-phenylimidazole was replaced by 2-ethylimidazole. A mixture of ZnCO3 (0.050 g, 0.40 mmol), OH—H2bdc (0.043 g, 0.40 mmol), bbie (0.099 g, 0.40 mmol), and water (8 ml) was sealed in a Teflon reactor (18 ml) and heated at 140 °C for 3 days. After the mixture had been cooled to room temperature at 10 °C.h-1, colorless crystals of (I) were obtained. Yield: 43%.

Refinement top

Disorderd bbie ligand was refined using C17 and C18 atoms split over two sites, with a total occupancy of 1. A l l H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and 0.97 Å, Uiso = 1.5Ueq(C) for CH2 atoms. Hydroxyl H atoms were refined using a riding model with d(O—H) = 0.82 Å, Uiso =1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the ZnII cation of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the two-dimensional layer of (I).
Poly[[µ2-2,2'-diethyl-1,1'-(butane-1,4-diyl)diimidazole- κ2N3:N3'](µ2-5-hydroxyisophthalato- κ2O1:O3)zinc] top
Crystal data top
[Zn(C8H4O5)(C14H22N4)]F(000) = 1024
Mr = 491.84Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 3988 reflections
a = 13.5120 (12) Åθ = 1.9–28.3°
b = 12.765 (1) ŵ = 1.12 mm1
c = 13.5910 (12) ÅT = 293 K
β = 103.933 (2)°Block, colorless
V = 2275.2 (3) Å30.28 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5467 independent reflections
Radiation source: fine-focus sealed tube3988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1317
Tmin = 0.73, Tmax = 0.79k = 1417
13890 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.1596P]
where P = (Fo2 + 2Fc2)/3
5467 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C8H4O5)(C14H22N4)]V = 2275.2 (3) Å3
Mr = 491.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5120 (12) ŵ = 1.12 mm1
b = 12.765 (1) ÅT = 293 K
c = 13.5910 (12) Å0.28 × 0.24 × 0.21 mm
β = 103.933 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5467 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3988 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.79Rint = 0.034
13890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
5467 reflectionsΔρmin = 0.29 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.582734 (18)0.485563 (18)0.336590 (17)0.03285 (9)
C10.35185 (15)0.26820 (15)0.21865 (15)0.0328 (4)
C20.30834 (15)0.23700 (16)0.11970 (15)0.0354 (5)
H20.31830.27710.06580.042*
C30.24997 (15)0.14625 (16)0.10089 (15)0.0339 (5)
C40.23245 (15)0.08795 (16)0.18177 (15)0.0338 (5)
H40.19280.02760.16950.041*
C50.27431 (15)0.12020 (16)0.28070 (15)0.0349 (5)
C60.33484 (16)0.20925 (16)0.29951 (15)0.0358 (5)
H60.36400.22960.36590.043*
C70.41726 (16)0.36460 (16)0.23657 (16)0.0349 (5)
C80.20549 (16)0.11336 (17)0.00696 (16)0.0368 (5)
C90.48306 (15)0.70092 (16)0.27233 (15)0.0355 (5)
C100.51820 (17)0.67354 (18)0.43504 (16)0.0414 (5)
H100.54030.64130.49780.050*
C110.47890 (18)0.77010 (18)0.41969 (18)0.0466 (6)
H110.46830.81620.46910.056*
C120.46889 (18)0.68667 (19)0.16100 (16)0.0464 (6)
H12A0.40150.71190.12750.056*
H12B0.47070.61220.14720.056*
C130.5467 (2)0.7414 (2)0.1135 (2)0.0665 (8)
H13A0.53870.71730.04510.100*
H13B0.61440.72550.15210.100*
H13C0.53600.81580.11340.100*
C140.7862 (2)1.0000 (2)0.4101 (2)0.0739 (9)
H140.78470.98670.47700.089*
C150.8584 (2)0.9700 (2)0.36442 (19)0.0632 (7)
H150.91660.93230.39500.076*
C160.74705 (18)1.05462 (18)0.25407 (18)0.0443 (5)
C170.6885 (7)1.1012 (7)0.1514 (6)0.062 (2)0.688 (10)
H17A0.70641.06270.09660.074*0.688 (10)
H17B0.61581.09320.14470.074*0.688 (10)
C180.7127 (4)1.2139 (4)0.1428 (5)0.097 (2)0.688 (10)
H18A0.67501.24040.07860.146*0.688 (10)
H18B0.78441.22180.14790.146*0.688 (10)
H18C0.69431.25230.19650.146*0.688 (10)
C18'0.6330 (13)1.0952 (16)0.0904 (14)0.156 (10)0.312 (10)
H18D0.61351.15240.04390.234*0.312 (10)
H18E0.57411.06940.11050.234*0.312 (10)
H18F0.66171.04000.05800.234*0.312 (10)
C17'0.7098 (17)1.132 (2)0.1811 (16)0.099 (10)0.312 (10)
H17C0.76691.16150.15920.119*0.312 (10)
H17D0.67971.18730.21290.119*0.312 (10)
C190.41398 (18)0.88519 (17)0.2671 (2)0.0536 (6)
H19A0.36500.91290.30210.064*
H19B0.37770.86930.19810.064*
C200.49432 (19)0.96907 (18)0.26511 (19)0.0514 (6)
H20A0.54740.93820.23740.062*
H20B0.46271.02450.21950.062*
C210.5432 (2)1.01699 (19)0.3666 (2)0.0540 (7)
H21A0.57520.96190.41250.065*
H21B0.49051.04840.39450.065*
C220.6228 (2)1.1000 (2)0.3613 (2)0.0618 (7)
H22A0.59391.15000.30840.074*
H22B0.64081.13770.42520.074*
N10.52069 (13)0.62938 (13)0.34288 (12)0.0348 (4)
N20.45730 (14)0.78804 (13)0.31714 (14)0.0407 (4)
N30.71500 (15)1.05383 (16)0.34053 (15)0.0490 (5)
N40.83402 (14)1.00315 (13)0.26584 (13)0.0379 (4)
O10.48724 (12)0.36689 (12)0.31780 (11)0.0484 (4)
O20.40181 (12)0.43621 (12)0.17278 (11)0.0460 (4)
O30.21788 (14)0.16868 (13)0.07723 (11)0.0565 (5)
O40.15489 (12)0.02734 (11)0.01974 (10)0.0400 (4)
O50.26148 (12)0.06464 (12)0.36316 (10)0.0482 (4)
H50.21210.02570.34590.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03576 (15)0.03453 (14)0.02655 (13)0.00202 (10)0.00417 (10)0.00010 (10)
C10.0291 (11)0.0328 (11)0.0340 (11)0.0004 (8)0.0028 (9)0.0028 (9)
C20.0374 (12)0.0369 (11)0.0307 (10)0.0007 (9)0.0057 (9)0.0014 (9)
C30.0328 (11)0.0366 (11)0.0297 (10)0.0016 (9)0.0023 (9)0.0023 (9)
C40.0302 (11)0.0338 (11)0.0350 (11)0.0027 (9)0.0032 (9)0.0004 (9)
C50.0334 (11)0.0396 (12)0.0310 (11)0.0013 (9)0.0062 (9)0.0041 (9)
C60.0372 (12)0.0393 (12)0.0274 (10)0.0012 (9)0.0006 (9)0.0048 (9)
C70.0341 (12)0.0373 (11)0.0342 (11)0.0003 (9)0.0095 (9)0.0065 (9)
C80.0360 (12)0.0382 (12)0.0326 (11)0.0019 (9)0.0014 (9)0.0008 (9)
C90.0331 (11)0.0359 (11)0.0365 (11)0.0023 (9)0.0065 (9)0.0013 (9)
C100.0458 (13)0.0450 (13)0.0352 (12)0.0027 (10)0.0130 (10)0.0027 (10)
C110.0515 (15)0.0464 (14)0.0465 (14)0.0030 (11)0.0211 (12)0.0109 (11)
C120.0518 (14)0.0470 (14)0.0370 (12)0.0041 (11)0.0042 (11)0.0047 (10)
C130.089 (2)0.0669 (18)0.0512 (15)0.0035 (16)0.0321 (15)0.0076 (13)
C140.076 (2)0.112 (3)0.0406 (15)0.0171 (18)0.0274 (15)0.0192 (15)
C150.0628 (18)0.088 (2)0.0404 (14)0.0194 (15)0.0163 (13)0.0225 (14)
C160.0472 (14)0.0423 (13)0.0471 (13)0.0010 (11)0.0186 (11)0.0030 (11)
C170.060 (4)0.074 (4)0.044 (4)0.027 (3)0.001 (3)0.006 (3)
C180.090 (4)0.082 (4)0.112 (5)0.013 (3)0.011 (3)0.059 (3)
C18'0.092 (12)0.26 (2)0.110 (13)0.064 (14)0.018 (10)0.090 (14)
C17'0.066 (12)0.19 (3)0.055 (12)0.051 (13)0.036 (10)0.035 (12)
C190.0472 (15)0.0385 (13)0.0748 (18)0.0058 (11)0.0140 (13)0.0050 (12)
C200.0549 (16)0.0382 (13)0.0642 (17)0.0024 (11)0.0202 (13)0.0052 (12)
C210.0518 (15)0.0517 (15)0.0673 (17)0.0062 (12)0.0312 (14)0.0104 (13)
C220.0590 (17)0.0528 (16)0.086 (2)0.0054 (13)0.0416 (15)0.0192 (14)
N10.0374 (10)0.0359 (10)0.0310 (9)0.0003 (8)0.0081 (8)0.0001 (8)
N20.0395 (11)0.0332 (10)0.0507 (11)0.0010 (8)0.0133 (9)0.0009 (8)
N30.0498 (12)0.0519 (12)0.0509 (12)0.0039 (10)0.0231 (10)0.0098 (10)
N40.0409 (11)0.0412 (10)0.0325 (9)0.0015 (8)0.0104 (8)0.0013 (8)
O10.0477 (10)0.0477 (9)0.0418 (9)0.0153 (8)0.0048 (7)0.0006 (7)
O20.0533 (10)0.0365 (9)0.0454 (9)0.0049 (7)0.0066 (8)0.0031 (7)
O30.0758 (12)0.0585 (11)0.0317 (8)0.0190 (9)0.0063 (8)0.0016 (8)
O40.0453 (9)0.0381 (8)0.0312 (8)0.0052 (7)0.0013 (7)0.0039 (6)
O50.0563 (10)0.0549 (10)0.0313 (8)0.0147 (8)0.0066 (7)0.0049 (7)
Geometric parameters (Å, º) top
Zn1—O11.9662 (15)C14—H140.9300
Zn1—O4i1.9682 (14)C15—N41.367 (3)
Zn1—N4ii2.0020 (18)C15—H150.9300
Zn1—N12.0286 (17)C16—N41.322 (3)
C1—C21.390 (3)C16—N31.347 (3)
C1—C61.396 (3)C16—C17'1.40 (3)
C1—C71.500 (3)C16—C171.547 (9)
C2—C31.390 (3)C17—C181.486 (12)
C2—H20.9300C17—H17A0.9700
C3—C41.394 (3)C17—H17B0.9700
C3—C81.504 (3)C18—H18A0.9600
C4—C51.390 (3)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—O51.372 (2)C18'—C17'1.48 (3)
C5—C61.388 (3)C18'—H18D0.9600
C6—H60.9300C18'—H18E0.9600
C7—O21.243 (2)C18'—H18F0.9600
C7—O11.269 (2)C17'—H17C0.9700
C8—O31.231 (3)C17'—H17D0.9700
C8—O41.283 (2)C19—N21.467 (3)
C9—N11.333 (2)C19—C201.530 (3)
C9—N21.353 (3)C19—H19A0.9700
C9—C121.490 (3)C19—H19B0.9700
C10—C111.338 (3)C20—C211.508 (3)
C10—N11.381 (3)C20—H20A0.9700
C10—H100.9300C20—H20B0.9700
C11—N21.373 (3)C21—C221.524 (3)
C11—H110.9300C21—H21A0.9700
C12—C131.530 (3)C21—H21B0.9700
C12—H12A0.9700C22—N31.466 (3)
C12—H12B0.9700C22—H22A0.9700
C13—H13A0.9600C22—H22B0.9700
C13—H13B0.9600N4—Zn1iii2.0020 (18)
C13—H13C0.9600O4—Zn1iv1.9682 (14)
C14—C151.333 (4)O5—H50.8200
C14—N31.362 (3)
O1—Zn1—O4i102.54 (6)C18—C17—H17A109.3
O1—Zn1—N4ii117.20 (7)C16—C17—H17A109.3
O4i—Zn1—N4ii118.18 (7)C18—C17—H17B109.3
O1—Zn1—N1115.96 (7)C16—C17—H17B109.3
O4i—Zn1—N198.33 (6)H17A—C17—H17B108.0
N4ii—Zn1—N1103.59 (7)C17—C18—H18A109.5
C2—C1—C6119.72 (18)C17—C18—H18B109.5
C2—C1—C7119.17 (18)H18A—C18—H18B109.5
C6—C1—C7121.11 (17)C17—C18—H18C109.5
C3—C2—C1120.38 (19)H18A—C18—H18C109.5
C3—C2—H2119.8H18B—C18—H18C109.5
C1—C2—H2119.8C17'—C18'—H18D109.5
C2—C3—C4119.76 (18)C17'—C18'—H18E109.5
C2—C3—C8119.19 (19)H18D—C18'—H18E109.5
C4—C3—C8121.04 (18)C17'—C18'—H18F109.5
C5—C4—C3119.87 (19)H18D—C18'—H18F109.5
C5—C4—H4120.1H18E—C18'—H18F109.5
C3—C4—H4120.1C16—C17'—C18'115 (2)
O5—C5—C6117.24 (17)C16—C17'—H17C108.4
O5—C5—C4122.36 (19)C18'—C17'—H17C108.4
C6—C5—C4120.36 (19)C16—C17'—H17D108.4
C5—C6—C1119.87 (18)C18'—C17'—H17D108.4
C5—C6—H6120.1H17C—C17'—H17D107.5
C1—C6—H6120.1N2—C19—C20113.23 (19)
O2—C7—O1123.70 (19)N2—C19—H19A108.9
O2—C7—C1119.78 (18)C20—C19—H19A108.9
O1—C7—C1116.52 (18)N2—C19—H19B108.9
O3—C8—O4123.61 (19)C20—C19—H19B108.9
O3—C8—C3119.93 (19)H19A—C19—H19B107.7
O4—C8—C3116.46 (18)C21—C20—C19115.1 (2)
N1—C9—N2109.52 (18)C21—C20—H20A108.5
N1—C9—C12125.47 (19)C19—C20—H20A108.5
N2—C9—C12124.99 (19)C21—C20—H20B108.5
C11—C10—N1109.3 (2)C19—C20—H20B108.5
C11—C10—H10125.4H20A—C20—H20B107.5
N1—C10—H10125.4C20—C21—C22113.4 (2)
C10—C11—N2106.9 (2)C20—C21—H21A108.9
C10—C11—H11126.5C22—C21—H21A108.9
N2—C11—H11126.5C20—C21—H21B108.9
C9—C12—C13116.1 (2)C22—C21—H21B108.9
C9—C12—H12A108.3H21A—C21—H21B107.7
C13—C12—H12A108.3N3—C22—C21111.8 (2)
C9—C12—H12B108.3N3—C22—H22A109.3
C13—C12—H12B108.3C21—C22—H22A109.3
H12A—C12—H12B107.4N3—C22—H22B109.3
C12—C13—H13A109.5C21—C22—H22B109.3
C12—C13—H13B109.5H22A—C22—H22B107.9
H13A—C13—H13B109.5C9—N1—C10106.52 (17)
C12—C13—H13C109.5C9—N1—Zn1132.81 (14)
H13A—C13—H13C109.5C10—N1—Zn1120.54 (14)
H13B—C13—H13C109.5C9—N2—C11107.76 (18)
C15—C14—N3107.1 (2)C9—N2—C19127.13 (19)
C15—C14—H14126.4C11—N2—C19125.11 (19)
N3—C14—H14126.4C16—N3—C14106.8 (2)
C14—C15—N4109.7 (2)C16—N3—C22129.2 (2)
C14—C15—H15125.1C14—N3—C22124.1 (2)
N4—C15—H15125.1C16—N4—C15105.6 (2)
N4—C16—N3110.7 (2)C16—N4—Zn1iii127.12 (15)
N4—C16—C17'126.3 (9)C15—N4—Zn1iii127.13 (17)
N3—C16—C17'119.1 (9)C7—O1—Zn1117.32 (14)
N4—C16—C17123.1 (4)C8—O4—Zn1iv109.05 (13)
N3—C16—C17126.0 (4)C5—O5—H5109.5
C18—C17—C16111.6 (6)
C6—C1—C2—C31.4 (3)O1—Zn1—N1—C991.05 (19)
C7—C1—C2—C3178.03 (18)O4i—Zn1—N1—C9160.56 (18)
C1—C2—C3—C41.9 (3)N4ii—Zn1—N1—C938.8 (2)
C1—C2—C3—C8178.86 (19)O1—Zn1—N1—C1093.79 (16)
C2—C3—C4—C50.7 (3)O4i—Zn1—N1—C1014.60 (17)
C8—C3—C4—C5179.88 (18)N4ii—Zn1—N1—C10136.36 (16)
C3—C4—C5—O5178.50 (19)N1—C9—N2—C110.5 (2)
C3—C4—C5—C61.0 (3)C12—C9—N2—C11178.1 (2)
O5—C5—C6—C1179.13 (18)N1—C9—N2—C19179.53 (19)
C4—C5—C6—C11.5 (3)C12—C9—N2—C191.9 (3)
C2—C1—C6—C50.3 (3)C10—C11—N2—C90.7 (2)
C7—C1—C6—C5179.75 (19)C10—C11—N2—C19179.3 (2)
C2—C1—C7—O228.3 (3)C20—C19—N2—C995.4 (3)
C6—C1—C7—O2152.2 (2)C20—C19—N2—C1184.6 (3)
C2—C1—C7—O1151.0 (2)N4—C16—N3—C140.6 (3)
C6—C1—C7—O128.4 (3)C17'—C16—N3—C14158.6 (11)
C2—C3—C8—O32.7 (3)C17—C16—N3—C14176.4 (5)
C4—C3—C8—O3176.5 (2)N4—C16—N3—C22179.4 (2)
C2—C3—C8—O4177.98 (19)C17'—C16—N3—C2221.4 (12)
C4—C3—C8—O42.8 (3)C17—C16—N3—C223.7 (6)
N1—C10—C11—N20.7 (3)C15—C14—N3—C160.0 (3)
N1—C9—C12—C13104.2 (3)C15—C14—N3—C22180.0 (2)
N2—C9—C12—C1377.4 (3)C21—C22—N3—C16105.4 (3)
N3—C14—C15—N40.6 (4)C21—C22—N3—C1474.7 (3)
N4—C16—C17—C1896.2 (6)N3—C16—N4—C151.0 (3)
N3—C16—C17—C1888.6 (7)C17'—C16—N4—C15156.4 (12)
C17'—C16—C17—C1810 (3)C17—C16—N4—C15176.8 (5)
N4—C16—C17'—C18'99.1 (17)N3—C16—N4—Zn1iii177.31 (14)
N3—C16—C17'—C18'105.3 (15)C17'—C16—N4—Zn1iii19.9 (12)
C17—C16—C17'—C18'9.4 (19)C17—C16—N4—Zn1iii6.8 (5)
N2—C19—C20—C2169.9 (3)C14—C15—N4—C160.9 (3)
C19—C20—C21—C22179.9 (2)C14—C15—N4—Zn1iii177.28 (19)
C20—C21—C22—N370.7 (3)O2—C7—O1—Zn15.3 (3)
N2—C9—N1—C100.1 (2)C1—C7—O1—Zn1173.94 (13)
C12—C9—N1—C10178.5 (2)O4i—Zn1—O1—C7168.10 (15)
N2—C9—N1—Zn1175.60 (14)N4ii—Zn1—O1—C760.73 (17)
C12—C9—N1—Zn15.8 (3)N1—Zn1—O1—C762.23 (17)
C11—C10—N1—C90.4 (2)O3—C8—O4—Zn1iv10.2 (3)
C11—C10—N1—Zn1176.70 (15)C3—C8—O4—Zn1iv169.17 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1v0.932.623.417 (3)144
C14—H14···O5v0.932.493.398 (3)166
O5—H5···O2vi0.821.882.697 (2)171
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O5)(C14H22N4)]
Mr491.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.5120 (12), 12.765 (1), 13.5910 (12)
β (°) 103.933 (2)
V3)2275.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.28 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.73, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
13890, 5467, 3988
Rint0.034
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.03
No. of reflections5467
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.9662 (15)Zn1—N4ii2.0020 (18)
Zn1—O4i1.9682 (14)Zn1—N12.0286 (17)
O1—Zn1—O4i102.54 (6)O1—Zn1—N1115.96 (7)
O1—Zn1—N4ii117.20 (7)O4i—Zn1—N198.33 (6)
O4i—Zn1—N4ii118.18 (7)N4ii—Zn1—N1103.59 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1iii0.932.623.417 (3)144
C14—H14···O5iii0.932.493.398 (3)166
O5—H5···O2iv0.821.882.697 (2)171
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank the China Postdoctoral Science Foundation (20100471379) for support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKan, W.-Q., Liu, Y.-Y., Yang, J., Liu, Y.-Y. & Ma, J.-F. (2011). CrystEngComm, 13, 4256–4269.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-Y., Ma, J.-F. & Zhang, L.-P. (2007). Acta Cryst. E63, m2317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds