metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1600-m1601

Hexa­kis­(1H-imidazole-κN3)iron(II) sulfate–1H-imidazole (1/2)

aInstitute of Macromolecular Chemistry `Petru Poni', Inorganic Polymers Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania, and bInstitute of Applied Physics of the Academy of Science of Moldova, 5 Academiei Street, Chisinau MD-2028, Republic of Moldova
*Correspondence e-mail: shova@usm.md

(Received 25 August 2011; accepted 18 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, [Fe(C3H4N2)6]SO4·2C3H4N2, contains two complex cations, two sulfate anions and four imidazole mol­ecules. In both cations, the FeII atom is coordinated by six monodentate imidazole ligands and exhibits a slightly distorted octa­hedral coordination geometry. The Fe—N distances [2.184 (4)–2.218 (4) Å] point to a high-spin state of the Fe2+ ions. N—H⋯O hydrogen bonds between the ionic components generate a three-dimensional framework containing corrugated channels along [001], which are filled by N—H⋯N hydrogen-bonded imidazole chains.

Related literature

For the crystal structures of other hexa­kis­(imidazole)­iron(II) salts, see: Carver et al. (2003[Carver, G., Tregenna-Piggott, P. L. W., Barra, A. L., Neels, A. & Stride, J. A. (2003). Inorg. Chem. 42, 5771-5777.]); Jian et al. (2004[Jian, F. F., Wang, Q. X., Sun, P. P. & Jiao, K. (2004). Chin. J. Inorg. Chem. 20, 581-585.]). For spin crossover in complexes with the FeN6 core, see: Gütlich & Goodwin (2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]); Lemercier et al. (2006[Lemercier, G., Brefuel, N., Shova, S., Wolny, J. A., Dahan, F., Verelst, M., Paulsen, H., Trautwein, A. X. & Tuchagues, J. P. (2006). Chem. Eur. J. 12, 7421-7432.]). For the influence of counter-ions and solvent mol­ecules on spin crosover behaviour, see: Bousseksou et al. (1996[Bousseksou, A., Verelst, M., Constant-Machado, H., Lemercier, G., Tuchagues, J. P. & Varret, F. (1996). Inorg. Chem. 35, 110-115.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C3H4N2)6]SO4·2C3H4N2

  • Mr = 696.57

  • Triclinic, [P \overline 1]

  • a = 15.4091 (8) Å

  • b = 15.4436 (7) Å

  • c = 15.9883 (11) Å

  • α = 69.813 (5)°

  • β = 69.949 (5)°

  • γ = 73.214 (4)°

  • V = 3291.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.901, Tmax = 0.917

  • 15987 measured reflections

  • 10955 independent reflections

  • 5185 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.107

  • S = 0.85

  • 10955 reflections

  • 829 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H49⋯O4 0.88 1.84 2.679 (5) 160
N4—H50⋯O5 0.88 1.89 2.762 (5) 170
N6—H51⋯O3i 0.88 2.09 2.949 (7) 163
N8—H52⋯O1ii 0.88 1.94 2.822 (5) 176
N10—H53⋯O7iii 0.88 1.85 2.711 (6) 166
N12—H54⋯O7iv 0.88 2.10 2.867 (7) 145
N12—H54⋯O5iv 0.88 2.61 3.434 (7) 157
N14—H55⋯O8v 0.88 1.85 2.716 (5) 167
N16—H56⋯O1vi 0.88 2.22 3.074 (6) 163
N16—H56⋯O4vi 0.88 2.26 2.942 (6) 135
N18—H57⋯O6vii 0.88 2.07 2.937 (6) 169
N18—H57⋯O8vii 0.88 2.47 3.100 (6) 129
N20—H58⋯O6 0.88 2.21 3.071 (6) 166
N20—H58⋯O7 0.88 2.45 3.120 (6) 133
N22—H59⋯O2 0.88 2.18 2.939 (6) 144
N22—H59⋯O3 0.88 2.37 3.186 (6) 155
N24—H60⋯O2viii 0.88 1.84 2.710 (6) 168
N26—H61⋯N29 0.88 1.95 2.825 (6) 177
N27—H62⋯N25 0.88 2.04 2.875 (6) 158
N30—H63⋯N32ix 0.88 2.02 2.869 (6) 160
N31—H64⋯N28 0.88 1.92 2.800 (6) 174
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) x, y-1, z; (vi) x-1, y, z; (vii) -x+1, -y+1, -z; (viii) -x+1, -y, -z+1; (ix) x, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our research of iron(II) complexes with mono- and polydentate N-containing ligands we report the synthesis and crystal structure of [Fe(Im)6]SO4.2Im, where Im = imidazole. The cationic complexes [Fe(Im)6]2+ characterized by an [FeN6] coordination core are increasingly investigated as spin crossover (SC) materials, because their bistability (LS, S=0, 1A1 <-> HS, S=2, 5T2 g) is easily triggered thermally, magnetically, by pressure or by light irradiation (Gütlich & Goodwin, 2004; Lemercier et al., 2006).

The presence of sulfate counteranion in the title compound with respect to the earlier studied hexakis(imidazole)iron(II) dinitrate, [Fe(Im)6]2(NO3) (Carver et al., 2003) and hexakis(imidazole)iron(II) dichloride tetrahydate,[Fe(Im)6]Cl2 4H2O (Jian et al., 2004) is useful as the cationic species could exhibit a large variety of SC behaviors, depending on the non-coordinated counter anions and solvate molecules (Bousseksou et al., 1996). The asymmetric unit of the title compound is depicted in Fig. 1. The FeII atoms have a slightly distorted octahedral environment, being each coordinated by six monodentate imidazole ligands. The interatomic distances of the FeN6 cores allow to conclude that the Fe2+ cation is in a high-spin state. Indeed, the average Fe—N bond lenghs for the two [Fe(Im)6]2+ units A and B is equal to 2.200 (4) Å and 2.210 (4) Å, respectively. The ionic components in the crystal form a three dimensional framework via N—H···O hydrogen bonds (Fig. 2a) and the imidazole molecules form hydrogen bonded chains running in the channels of ionic framework (Fig. 2 b). The geometry of hydrogen bonds is listed in Table 1.

Related literature top

For the crystal structures of other hexakis(imidazole)iron(II) salts, see: Carver et al. (2003); Jian et al. (2004). For spin crossover in complexes with the FeN6 core, see: Gütlich & Goodwin (2004); Lemercier et al. (2006). For the influence of counter-ions and solvent molecules on spin crosover behaviour, see: Bousseksou et al. (1996).

Experimental top

Colourless and transparent single crystals of the title compound were obtained as a principal product from the reaction of iron(III) sulfate pentahydrate (0.06 mmol/0.024 g) and imidazole (0.36 mmol/0.0245 g) in the presence of hexamethyldisilazane (0.06 mmol/0.0096 g), terephtalic acid (0.06 mmol/0.00996 g) and dimethylformamide (6 ml) as solvent. The reaction mixture was placed in a glass reactor, which was sealed and kept at 354 K for 24 h. Then, the mixture was cooled to room temperature with a cooling rate of 0.1 K/min and maintained in these conditions for 20 days. Suitable crystals for X– ray analysis were separated at the bottom of the flask. Elemental analysis calculated for (C24H32N16FeSO4): C 41.39%, H, 4.63%, N, 32.17%, found: C 41.50%; 4.60%, N 32.11%.

Refinement top

The H atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.95 Å, N—H = 0.88 Å and with Uiso(H) = 1.2 x Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit for [Fe(C3H4N2)6]SO4.2C3H4N2 with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagrams showing three-dimensional framework formed by hydrogen-bonded cations and anions (a) and the [0 0 1] chain of hydrogen- bonded imidazole molecules (b). Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown with dashed lines. Symmetry code: (i)1 - x, 1 - y, 1 - z; (ii) x-1, y, z.
Hexakis(1H-imidazole-κN3)iron(II) sulfate– 1H-imidazole (1/2) top
Crystal data top
[Fe(C3H4N2)6]SO4·2C3H4N2Z = 4
Mr = 696.57F(000) = 1448
Triclinic, P1Dx = 1.406 Mg m3
a = 15.4091 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.4436 (7) ÅCell parameters from 3265 reflections
c = 15.9883 (11) Åθ = 2.9–29.1°
α = 69.813 (5)°µ = 0.58 mm1
β = 69.949 (5)°T = 200 K
γ = 73.214 (4)°Prism, colourless
V = 3291.3 (3) Å30.20 × 0.15 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
10955 independent reflections
Radiation source: fine-focus sealed tube5185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 1418
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1818
Tmin = 0.901, Tmax = 0.917l = 1918
15987 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
10955 reflections(Δ/σ)max = 0.001
829 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Fe(C3H4N2)6]SO4·2C3H4N2γ = 73.214 (4)°
Mr = 696.57V = 3291.3 (3) Å3
Triclinic, P1Z = 4
a = 15.4091 (8) ÅMo Kα radiation
b = 15.4436 (7) ŵ = 0.58 mm1
c = 15.9883 (11) ÅT = 200 K
α = 69.813 (5)°0.20 × 0.15 × 0.15 mm
β = 69.949 (5)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
10955 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
5185 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.917Rint = 0.046
15987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.85Δρmax = 0.63 e Å3
10955 reflectionsΔρmin = 0.50 e Å3
829 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8831 (4)0.5306 (3)0.1041 (4)0.0406 (14)
H10.89070.58620.05470.049*
C20.8911 (4)0.4450 (4)0.0941 (4)0.0564 (18)
H20.90630.42930.03760.068*
C30.8569 (3)0.4366 (3)0.2397 (4)0.0408 (14)
H30.84310.41150.30500.049*
C40.6680 (4)0.7430 (4)0.3389 (4)0.0506 (17)
H40.69360.77790.36010.061*
C50.5748 (4)0.7497 (4)0.3535 (4)0.0613 (19)
H50.52380.78720.38700.074*
C60.6578 (4)0.6494 (4)0.2730 (4)0.0485 (15)
H60.67330.60430.23940.058*
C70.8287 (4)0.7768 (3)0.0738 (4)0.0514 (16)
H70.76290.77850.09790.062*
C80.8722 (5)0.8207 (4)0.0143 (5)0.069 (2)
H80.84330.85800.06240.083*
C90.9751 (4)0.7461 (3)0.0637 (4)0.0405 (14)
H91.03370.72220.07860.049*
C100.8820 (4)0.7156 (3)0.4120 (4)0.0486 (16)
H100.87400.65870.45960.058*
C110.8913 (4)0.7942 (4)0.4237 (4)0.0538 (17)
H110.89040.80350.47980.065*
C120.8984 (3)0.8172 (3)0.2799 (4)0.0420 (15)
H120.90410.84710.21600.050*
C131.0812 (4)0.5137 (4)0.1793 (4)0.0497 (17)
H131.05880.48150.15220.060*
C141.1718 (4)0.5038 (4)0.1747 (5)0.066 (2)
H141.22410.46490.14420.079*
C151.0857 (4)0.6036 (4)0.2509 (4)0.0482 (16)
H151.06780.64920.28430.058*
C160.9236 (4)0.4531 (4)0.4261 (4)0.0562 (17)
H160.98920.44500.39590.067*
C170.8826 (5)0.3985 (4)0.5096 (5)0.073 (2)
H170.91340.34430.54710.088*
C180.7769 (5)0.5072 (3)0.4562 (4)0.0522 (17)
H180.71650.54350.45160.063*
C190.3554 (4)0.0387 (4)0.0896 (4)0.0521 (17)
H190.34630.09800.04550.063*
C200.3532 (4)0.0454 (4)0.0809 (4)0.0610 (19)
H200.34130.05520.03070.073*
C210.3814 (3)0.0680 (4)0.2105 (4)0.0495 (17)
H210.39330.09910.26920.059*
C220.1618 (4)0.2330 (4)0.3056 (4)0.0572 (18)
H220.18040.28090.31640.069*
C230.0712 (4)0.2272 (5)0.3179 (5)0.079 (2)
H230.01540.26890.33940.094*
C240.1668 (4)0.1106 (4)0.2685 (4)0.0498 (16)
H240.18920.05490.24860.060*
C250.2971 (4)0.2983 (3)0.0741 (4)0.0421 (14)
H250.23360.29890.11050.050*
C260.3248 (4)0.3585 (4)0.0112 (4)0.0521 (16)
H260.28610.40830.04460.063*
C270.4462 (4)0.2595 (3)0.0288 (4)0.0431 (15)
H270.50950.22790.02590.052*
C280.3728 (4)0.2350 (4)0.3791 (5)0.067 (2)
H280.36010.18250.43110.081*
C290.3862 (5)0.3168 (4)0.3815 (5)0.076 (2)
H290.38490.33210.43460.092*
C300.3982 (4)0.3240 (3)0.2411 (4)0.0489 (17)
H300.40740.34740.17600.059*
C310.5881 (4)0.0190 (4)0.1647 (4)0.0497 (16)
H310.56650.02140.14610.060*
C320.6772 (4)0.0084 (4)0.1642 (5)0.073 (2)
H320.72970.03750.14450.088*
C330.5884 (4)0.1284 (4)0.2165 (4)0.0484 (16)
H330.56960.18080.24130.058*
C340.4485 (4)0.0236 (4)0.4049 (4)0.0511 (16)
H340.51280.02520.37150.061*
C350.4172 (4)0.0696 (4)0.4943 (4)0.0550 (17)
H350.45470.10950.53450.066*
C360.2995 (4)0.0082 (4)0.4388 (4)0.0494 (16)
H360.23660.03270.43460.059*
C370.5915 (4)0.4256 (3)0.0643 (4)0.0439 (15)
H370.53890.47610.06140.053*
C380.6337 (4)0.3757 (4)0.0021 (4)0.0449 (15)
H380.61620.38530.05240.054*
C390.7043 (4)0.3218 (4)0.1094 (4)0.0529 (16)
H390.74740.28420.14460.063*
C400.5647 (4)0.4377 (4)0.3840 (4)0.0502 (16)
H400.52110.49560.37450.060*
C410.5914 (4)0.3905 (4)0.4620 (4)0.0500 (16)
H410.56740.40890.51780.060*
C420.6655 (4)0.3135 (4)0.3643 (4)0.0457 (15)
H420.70570.26600.33590.055*
C430.8919 (4)0.0898 (3)0.0391 (4)0.0453 (15)
H430.91030.06280.01680.054*
C440.9266 (4)0.0552 (3)0.1126 (4)0.0410 (14)
H440.97290.00010.11800.049*
C450.8238 (4)0.1831 (4)0.1424 (4)0.0462 (16)
H450.78550.23460.17470.055*
C460.9204 (4)0.0970 (3)0.5650 (4)0.0405 (14)
H460.97910.05430.55810.049*
C470.8726 (4)0.1345 (4)0.5007 (4)0.0469 (15)
H470.88980.12390.44150.056*
C480.7976 (4)0.1849 (3)0.6218 (4)0.0427 (15)
H480.75030.21790.66240.051*
N10.8625 (3)0.5252 (2)0.1959 (3)0.0332 (11)
N20.8731 (3)0.3863 (3)0.1803 (3)0.0449 (13)
H490.87220.32610.19500.054*
N30.7205 (3)0.6795 (3)0.2899 (3)0.0378 (11)
N40.5702 (3)0.6900 (3)0.3088 (3)0.0463 (12)
H500.51850.68030.30470.056*
N50.8931 (3)0.7305 (2)0.1219 (3)0.0352 (11)
N60.9645 (4)0.8004 (3)0.0195 (3)0.0593 (15)
H511.00990.81940.06870.071*
N70.8855 (3)0.7292 (2)0.3222 (3)0.0322 (11)
N80.9024 (3)0.8574 (3)0.3397 (3)0.0417 (12)
H520.91070.91510.32670.050*
N91.0254 (3)0.5760 (3)0.2280 (3)0.0394 (11)
N101.1739 (3)0.5608 (3)0.2223 (4)0.0571 (14)
H531.22400.56780.23210.068*
N110.8552 (3)0.5217 (3)0.3926 (3)0.0360 (11)
N120.7920 (4)0.4350 (3)0.5287 (4)0.0783 (19)
H540.74910.41530.58000.094*
N130.3731 (3)0.0232 (3)0.1728 (3)0.0383 (12)
N140.3711 (3)0.1118 (3)0.1568 (3)0.0463 (13)
H550.37530.17270.16870.056*
N150.2210 (3)0.1589 (3)0.2754 (3)0.0389 (11)
N160.0771 (4)0.1505 (4)0.2931 (4)0.0773 (18)
H560.02930.13010.29330.093*
N170.3736 (3)0.2371 (3)0.0996 (3)0.0355 (11)
N180.4197 (3)0.3317 (3)0.0379 (3)0.0476 (12)
H570.45740.35770.09060.057*
N190.3804 (3)0.2397 (3)0.2897 (3)0.0443 (13)
N200.4017 (4)0.3723 (3)0.2939 (4)0.0691 (18)
H580.41220.42990.27510.083*
N210.5318 (3)0.0937 (3)0.1948 (3)0.0361 (11)
N220.6758 (3)0.0780 (3)0.1980 (4)0.0661 (16)
H590.72490.08860.20650.079*
N230.3744 (3)0.0256 (3)0.3694 (3)0.0376 (11)
N240.3226 (3)0.0481 (3)0.5157 (3)0.0526 (13)
H600.28350.06750.57010.063*
N250.6377 (3)0.3910 (3)0.1336 (3)0.0469 (13)
N260.7052 (3)0.3096 (3)0.0299 (3)0.0536 (14)
H610.74410.26760.00180.064*
N270.6113 (3)0.3877 (3)0.3215 (3)0.0506 (13)
H620.60670.40130.26480.061*
N280.6587 (3)0.3115 (3)0.4493 (3)0.0561 (14)
N290.8255 (3)0.1704 (3)0.0570 (3)0.0486 (13)
N300.8833 (3)0.1136 (3)0.1778 (3)0.0452 (12)
H630.89220.10740.23300.054*
N310.7945 (3)0.1907 (3)0.5383 (3)0.0460 (12)
H640.74960.22520.51190.055*
N320.8733 (3)0.1284 (3)0.6417 (3)0.0452 (12)
O10.9397 (2)0.0386 (2)0.2964 (3)0.0546 (11)
O20.7783 (3)0.1092 (3)0.3067 (3)0.0821 (14)
O30.8813 (3)0.1121 (4)0.1626 (3)0.1085 (18)
O40.8938 (3)0.1995 (2)0.2527 (4)0.113 (2)
O50.4011 (3)0.6542 (2)0.3180 (3)0.0648 (13)
O60.4728 (3)0.5586 (2)0.2131 (3)0.0780 (14)
O70.3098 (3)0.5833 (3)0.2806 (3)0.0946 (17)
O80.3793 (3)0.7069 (2)0.1671 (3)0.0575 (12)
S10.87346 (9)0.11509 (8)0.25340 (9)0.0254 (3)
S20.39014 (9)0.62584 (8)0.24501 (9)0.0286 (3)
Fe10.87273 (5)0.62872 (4)0.25814 (5)0.03015 (19)
Fe20.37628 (5)0.12942 (5)0.23314 (6)0.0351 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (4)0.037 (3)0.027 (3)0.016 (3)0.011 (3)0.003 (3)
C20.079 (5)0.054 (4)0.040 (4)0.018 (3)0.013 (4)0.016 (3)
C30.051 (4)0.040 (3)0.036 (4)0.015 (3)0.014 (3)0.009 (3)
C40.042 (4)0.048 (4)0.064 (5)0.009 (3)0.017 (4)0.015 (3)
C50.050 (4)0.062 (4)0.075 (6)0.003 (3)0.014 (4)0.036 (4)
C60.049 (4)0.061 (4)0.034 (4)0.009 (3)0.012 (3)0.012 (3)
C70.056 (4)0.052 (4)0.037 (4)0.020 (3)0.019 (4)0.012 (3)
C80.074 (5)0.077 (5)0.051 (5)0.015 (4)0.038 (4)0.012 (4)
C90.046 (4)0.033 (3)0.033 (4)0.013 (3)0.001 (3)0.004 (3)
C100.087 (5)0.034 (3)0.030 (4)0.023 (3)0.014 (3)0.008 (3)
C110.078 (5)0.049 (4)0.039 (4)0.016 (3)0.010 (4)0.021 (3)
C120.057 (4)0.032 (3)0.043 (4)0.017 (3)0.015 (3)0.009 (3)
C130.036 (4)0.053 (4)0.071 (5)0.000 (3)0.015 (3)0.037 (4)
C140.050 (4)0.061 (4)0.084 (6)0.009 (4)0.023 (4)0.028 (4)
C150.040 (4)0.055 (4)0.059 (5)0.008 (3)0.020 (3)0.020 (3)
C160.055 (4)0.062 (4)0.049 (5)0.019 (4)0.019 (4)0.001 (3)
C170.103 (6)0.057 (4)0.048 (5)0.013 (5)0.023 (5)0.002 (4)
C180.079 (5)0.034 (3)0.029 (4)0.009 (3)0.007 (4)0.000 (3)
C190.091 (5)0.039 (3)0.027 (4)0.021 (3)0.018 (4)0.000 (3)
C200.101 (6)0.050 (4)0.042 (4)0.032 (4)0.009 (4)0.020 (3)
C210.049 (4)0.043 (3)0.071 (5)0.006 (3)0.021 (4)0.030 (4)
C220.045 (4)0.043 (4)0.067 (5)0.000 (3)0.005 (4)0.013 (3)
C230.029 (4)0.096 (6)0.066 (6)0.018 (4)0.001 (4)0.007 (5)
C240.041 (4)0.084 (4)0.029 (4)0.032 (4)0.008 (3)0.005 (3)
C250.035 (3)0.053 (3)0.028 (3)0.018 (3)0.004 (3)0.004 (3)
C260.033 (4)0.064 (4)0.045 (4)0.007 (3)0.003 (3)0.007 (3)
C270.029 (3)0.048 (4)0.059 (5)0.010 (3)0.007 (3)0.025 (3)
C280.084 (5)0.078 (5)0.048 (5)0.039 (4)0.003 (4)0.028 (4)
C290.115 (7)0.067 (5)0.072 (6)0.020 (4)0.036 (5)0.037 (4)
C300.058 (4)0.040 (3)0.063 (5)0.013 (3)0.023 (4)0.022 (3)
C310.035 (4)0.060 (4)0.055 (5)0.011 (3)0.003 (3)0.025 (3)
C320.038 (4)0.091 (5)0.092 (7)0.004 (4)0.017 (4)0.034 (5)
C330.045 (4)0.061 (4)0.052 (4)0.016 (3)0.027 (3)0.012 (3)
C340.045 (4)0.061 (4)0.041 (4)0.011 (3)0.012 (3)0.005 (3)
C350.041 (4)0.069 (4)0.048 (5)0.006 (3)0.014 (4)0.011 (4)
C360.047 (4)0.063 (4)0.031 (4)0.026 (3)0.003 (3)0.001 (3)
C370.052 (4)0.041 (3)0.044 (4)0.010 (3)0.019 (3)0.010 (3)
C380.051 (4)0.065 (4)0.021 (3)0.019 (3)0.012 (3)0.007 (3)
C390.073 (5)0.063 (4)0.024 (4)0.020 (4)0.013 (3)0.008 (3)
C400.062 (4)0.050 (4)0.040 (4)0.010 (3)0.012 (4)0.016 (3)
C410.063 (4)0.046 (4)0.032 (4)0.006 (3)0.006 (3)0.010 (3)
C420.045 (4)0.038 (3)0.052 (5)0.005 (3)0.023 (3)0.012 (3)
C430.066 (4)0.049 (4)0.029 (4)0.018 (3)0.017 (3)0.011 (3)
C440.044 (4)0.030 (3)0.042 (4)0.001 (3)0.014 (3)0.004 (3)
C450.046 (4)0.037 (3)0.059 (5)0.004 (3)0.023 (3)0.018 (3)
C460.029 (3)0.047 (3)0.047 (4)0.003 (3)0.013 (3)0.021 (3)
C470.045 (4)0.081 (4)0.023 (4)0.016 (3)0.005 (3)0.025 (3)
C480.047 (4)0.039 (3)0.038 (4)0.001 (3)0.010 (3)0.014 (3)
N10.038 (3)0.025 (2)0.036 (3)0.007 (2)0.014 (2)0.003 (2)
N20.057 (3)0.027 (2)0.058 (4)0.005 (2)0.023 (3)0.016 (3)
N30.040 (3)0.046 (3)0.025 (3)0.014 (2)0.006 (2)0.005 (2)
N40.035 (3)0.063 (3)0.042 (3)0.013 (3)0.014 (3)0.009 (3)
N50.047 (3)0.024 (2)0.031 (3)0.010 (2)0.010 (2)0.000 (2)
N60.088 (4)0.045 (3)0.031 (3)0.022 (3)0.003 (3)0.001 (3)
N70.036 (3)0.031 (2)0.034 (3)0.015 (2)0.007 (2)0.009 (2)
N80.060 (3)0.024 (2)0.047 (3)0.011 (2)0.017 (3)0.012 (2)
N90.040 (3)0.043 (3)0.034 (3)0.015 (2)0.009 (2)0.003 (2)
N100.045 (3)0.060 (3)0.070 (4)0.013 (3)0.020 (3)0.017 (3)
N110.053 (3)0.029 (2)0.031 (3)0.017 (2)0.011 (3)0.006 (2)
N120.119 (5)0.054 (3)0.022 (3)0.010 (4)0.017 (4)0.004 (3)
N130.040 (3)0.029 (2)0.050 (3)0.013 (2)0.013 (3)0.010 (2)
N140.057 (3)0.031 (3)0.055 (4)0.015 (2)0.010 (3)0.018 (3)
N150.035 (3)0.033 (2)0.040 (3)0.015 (2)0.012 (2)0.010 (2)
N160.037 (4)0.137 (5)0.052 (4)0.022 (4)0.020 (3)0.007 (4)
N170.036 (3)0.034 (2)0.038 (3)0.015 (2)0.010 (2)0.005 (2)
N180.060 (4)0.057 (3)0.024 (3)0.023 (3)0.004 (3)0.007 (2)
N190.048 (3)0.044 (3)0.048 (4)0.022 (2)0.002 (3)0.021 (3)
N200.099 (5)0.033 (3)0.097 (5)0.001 (3)0.055 (4)0.028 (3)
N210.028 (3)0.052 (3)0.029 (3)0.014 (2)0.006 (2)0.009 (2)
N220.046 (4)0.073 (4)0.088 (5)0.016 (3)0.044 (3)0.003 (3)
N230.042 (3)0.037 (3)0.035 (3)0.011 (2)0.010 (2)0.010 (2)
N240.048 (3)0.063 (3)0.040 (4)0.012 (3)0.006 (3)0.012 (3)
N250.052 (3)0.048 (3)0.049 (4)0.002 (3)0.017 (3)0.026 (3)
N260.049 (3)0.066 (3)0.048 (4)0.006 (3)0.005 (3)0.031 (3)
N270.054 (3)0.061 (3)0.046 (4)0.009 (3)0.020 (3)0.021 (3)
N280.067 (4)0.046 (3)0.041 (4)0.004 (3)0.016 (3)0.006 (3)
N290.044 (3)0.058 (3)0.049 (4)0.002 (3)0.017 (3)0.027 (3)
N300.047 (3)0.047 (3)0.049 (4)0.011 (2)0.016 (3)0.017 (3)
N310.055 (3)0.051 (3)0.036 (3)0.016 (3)0.019 (3)0.006 (2)
N320.055 (3)0.044 (3)0.039 (3)0.008 (3)0.018 (3)0.010 (2)
O10.064 (3)0.038 (2)0.070 (3)0.0048 (19)0.043 (3)0.012 (2)
O20.040 (3)0.154 (4)0.042 (3)0.025 (3)0.001 (2)0.022 (3)
O30.079 (4)0.205 (5)0.046 (3)0.028 (3)0.031 (3)0.071 (4)
O40.103 (4)0.019 (2)0.229 (7)0.003 (2)0.091 (4)0.009 (3)
O50.063 (3)0.089 (3)0.070 (3)0.007 (2)0.042 (3)0.049 (3)
O60.079 (3)0.059 (2)0.051 (3)0.025 (2)0.002 (3)0.013 (2)
O70.092 (4)0.138 (4)0.071 (4)0.092 (3)0.017 (3)0.003 (3)
O80.092 (3)0.033 (2)0.038 (3)0.001 (2)0.022 (3)0.0052 (19)
S10.0245 (7)0.0285 (7)0.0213 (7)0.0020 (6)0.0054 (6)0.0080 (6)
S20.0324 (8)0.0315 (7)0.0235 (8)0.0044 (6)0.0084 (6)0.0099 (6)
Fe10.0341 (5)0.0300 (4)0.0259 (5)0.0140 (3)0.0048 (4)0.0040 (3)
Fe20.0347 (5)0.0354 (4)0.0384 (5)0.0168 (4)0.0051 (4)0.0107 (4)
Geometric parameters (Å, º) top
C1—C21.351 (6)C31—H310.9500
C1—N11.369 (6)C32—N221.353 (6)
C1—H10.9500C32—H320.9500
C2—N21.349 (6)C33—N211.332 (5)
C2—H20.9500C33—N221.337 (6)
C3—N11.318 (5)C33—H330.9500
C3—N21.342 (6)C34—C351.342 (7)
C3—H30.9500C34—N231.360 (6)
C4—C51.353 (7)C34—H340.9500
C4—N31.366 (6)C35—N241.345 (6)
C4—H40.9500C35—H350.9500
C5—N41.375 (6)C36—N231.315 (6)
C5—H50.9500C36—N241.334 (7)
C6—N31.323 (6)C36—H360.9500
C6—N41.330 (6)C37—C381.342 (6)
C6—H60.9500C37—N251.391 (6)
C7—N51.349 (6)C37—H370.9500
C7—C81.360 (8)C38—N261.352 (6)
C7—H70.9500C38—H380.9500
C8—N61.344 (7)C39—N251.313 (6)
C8—H80.9500C39—N261.343 (6)
C9—N51.318 (6)C39—H390.9500
C9—N61.341 (6)C40—C411.344 (7)
C9—H90.9500C40—N271.352 (6)
C10—C111.345 (6)C40—H400.9500
C10—N71.362 (6)C41—N281.379 (6)
C10—H100.9500C41—H410.9500
C11—N81.349 (6)C42—N281.316 (7)
C11—H110.9500C42—N271.334 (6)
C12—N71.331 (5)C42—H420.9500
C12—N81.333 (6)C43—C441.338 (6)
C12—H120.9500C43—N291.379 (6)
C13—C141.339 (7)C43—H430.9500
C13—N91.361 (6)C44—N301.352 (6)
C13—H130.9500C44—H440.9500
C14—N101.361 (6)C45—N291.319 (7)
C14—H140.9500C45—N301.344 (6)
C15—N91.324 (5)C45—H450.9500
C15—N101.325 (6)C46—C471.341 (7)
C15—H150.9500C46—N321.365 (6)
C16—C171.359 (8)C46—H460.9500
C16—N111.368 (6)C47—N311.350 (6)
C16—H160.9500C47—H470.9500
C17—N121.317 (7)C48—N321.303 (6)
C17—H170.9500C48—N311.323 (6)
C18—N111.302 (6)C48—H480.9500
C18—N121.336 (7)N1—Fe12.218 (4)
C18—H180.9500N2—H490.8800
C19—C201.363 (6)N3—Fe12.185 (4)
C19—N131.377 (6)N4—H500.8800
C19—H190.9500N5—Fe12.184 (4)
C20—N141.344 (7)N6—H510.8800
C20—H200.9500N7—Fe12.215 (3)
C21—N131.314 (6)N8—H520.8800
C21—N141.332 (6)N9—Fe12.195 (4)
C21—H210.9500N10—H530.8800
C22—N151.361 (6)N11—Fe12.199 (4)
C22—C231.367 (7)N12—H540.8800
C22—H220.9500N13—Fe22.189 (4)
C23—N161.344 (7)N14—H550.8800
C23—H230.9500N15—Fe22.205 (4)
C24—N151.321 (5)N16—H560.8800
C24—N161.322 (6)N17—Fe22.213 (4)
C24—H240.9500N18—H570.8800
C25—C261.364 (7)N19—Fe22.211 (4)
C25—N171.368 (6)N20—H580.8800
C25—H250.9500N21—Fe22.210 (4)
C26—N181.355 (6)N22—H590.8800
C26—H260.9500N23—Fe22.211 (4)
C27—N171.318 (6)N24—H600.8800
C27—N181.328 (6)N26—H610.8800
C27—H270.9500N27—H620.8800
C28—C291.353 (6)N30—H630.8800
C28—N191.370 (7)N31—H640.8800
C28—H280.9500O1—S11.460 (3)
C29—N201.347 (7)O2—S11.433 (4)
C29—H290.9500O3—S11.431 (4)
C30—N191.318 (6)O4—S11.422 (3)
C30—N201.328 (6)O5—S21.454 (3)
C30—H300.9500O6—S21.454 (4)
C31—C321.332 (7)O7—S21.421 (3)
C31—N211.355 (5)O8—S21.446 (4)
C2—C1—N1110.0 (5)N32—C46—H46124.6
C2—C1—H1125.0C46—C47—N31105.0 (5)
N1—C1—H1125.0C46—C47—H47127.5
N2—C2—C1106.3 (5)N31—C47—H47127.5
N2—C2—H2126.9N32—C48—N31111.9 (5)
C1—C2—H2126.9N32—C48—H48124.1
N1—C3—N2111.4 (5)N31—C48—H48124.1
N1—C3—H3124.3C3—N1—C1104.8 (4)
N2—C3—H3124.3C3—N1—Fe1125.1 (4)
C5—C4—N3111.3 (5)C1—N1—Fe1128.3 (3)
C5—C4—H4124.4C3—N2—C2107.4 (4)
N3—C4—H4124.4C3—N2—H49126.3
C4—C5—N4104.5 (5)C2—N2—H49126.3
C4—C5—H5127.7C6—N3—C4104.6 (4)
N4—C5—H5127.7C6—N3—Fe1127.4 (4)
N3—C6—N4111.6 (5)C4—N3—Fe1127.8 (3)
N3—C6—H6124.2C6—N4—C5108.1 (5)
N4—C6—H6124.2C6—N4—H50126.0
N5—C7—C8109.8 (5)C5—N4—H50126.0
N5—C7—H7125.1C9—N5—C7105.8 (5)
C8—C7—H7125.1C9—N5—Fe1125.4 (4)
N6—C8—C7106.0 (6)C7—N5—Fe1127.8 (4)
N6—C8—H8127.0C9—N6—C8107.7 (5)
C7—C8—H8127.0C9—N6—H51126.1
N5—C9—N6110.7 (5)C8—N6—H51126.1
N5—C9—H9124.7C12—N7—C10105.0 (4)
N6—C9—H9124.7C12—N7—Fe1126.7 (4)
C11—C10—N7110.3 (5)C10—N7—Fe1128.3 (3)
C11—C10—H10124.9C12—N8—C11108.2 (4)
N7—C10—H10124.9C12—N8—H52125.9
C10—C11—N8106.1 (5)C11—N8—H52125.9
C10—C11—H11127.0C15—N9—C13103.7 (4)
N8—C11—H11127.0C15—N9—Fe1125.9 (4)
N7—C12—N8110.6 (5)C13—N9—Fe1130.4 (3)
N7—C12—H12124.7C15—N10—C14106.4 (5)
N8—C12—H12124.7C15—N10—H53126.8
C14—C13—N9110.8 (5)C14—N10—H53126.8
C14—C13—H13124.6C18—N11—C16104.8 (5)
N9—C13—H13124.6C18—N11—Fe1127.6 (4)
C13—C14—N10106.3 (5)C16—N11—Fe1127.5 (4)
C13—C14—H14126.9C17—N12—C18107.7 (6)
N10—C14—H14126.8C17—N12—H54126.1
N9—C15—N10112.7 (5)C18—N12—H54126.1
N9—C15—H15123.7C21—N13—C19105.0 (4)
N10—C15—H15123.7C21—N13—Fe2127.7 (4)
C17—C16—N11108.9 (6)C19—N13—Fe2127.1 (3)
C17—C16—H16125.6C21—N14—C20107.0 (4)
N11—C16—H16125.6C21—N14—H55126.5
N12—C17—C16106.8 (6)C20—N14—H55126.5
N12—C17—H17126.6C24—N15—C22106.0 (4)
C16—C17—H17126.6C24—N15—Fe2125.6 (4)
N11—C18—N12111.7 (6)C22—N15—Fe2128.2 (3)
N11—C18—H18124.2C24—N16—C23108.7 (5)
N12—C18—H18124.2C24—N16—H56125.7
C20—C19—N13108.6 (5)C23—N16—H56125.7
C20—C19—H19125.7C27—N17—C25104.8 (5)
N13—C19—H19125.7C27—N17—Fe2127.4 (4)
N14—C20—C19107.1 (5)C25—N17—Fe2127.8 (4)
N14—C20—H20126.5C27—N18—C26108.5 (5)
C19—C20—H20126.5C27—N18—H57125.8
N13—C21—N14112.2 (5)C26—N18—H57125.8
N13—C21—H21123.9C30—N19—C28104.8 (4)
N14—C21—H21123.9C30—N19—Fe2125.8 (4)
N15—C22—C23108.8 (5)C28—N19—Fe2129.2 (4)
N15—C22—H22125.6C30—N20—C29107.3 (5)
C23—C22—H22125.6C30—N20—H58126.3
N16—C23—C22105.9 (6)C29—N20—H58126.3
N16—C23—H23127.0C33—N21—C31104.5 (4)
C22—C23—H23127.0C33—N21—Fe2126.1 (4)
N15—C24—N16110.7 (5)C31—N21—Fe2127.8 (3)
N15—C24—H24124.7C33—N22—C32109.6 (5)
N16—C24—H24124.7C33—N22—H59125.2
C26—C25—N17110.3 (5)C32—N22—H59125.2
C26—C25—H25124.9C36—N23—C34104.6 (5)
N17—C25—H25124.9C36—N23—Fe2126.5 (4)
N18—C26—C25104.9 (5)C34—N23—Fe2128.3 (4)
N18—C26—H26127.5C36—N24—C35106.9 (5)
C25—C26—H26127.5C36—N24—H60126.6
N17—C27—N18111.5 (5)C35—N24—H60126.6
N17—C27—H27124.2C39—N25—C37104.4 (5)
N18—C27—H27124.2C39—N26—C38105.3 (5)
C29—C28—N19109.3 (6)C39—N26—H61127.3
C29—C28—H28125.3C38—N26—H61127.3
N19—C28—H28125.3C42—N27—C40105.2 (5)
N20—C29—C28106.6 (6)C42—N27—H62127.4
N20—C29—H29126.7C40—N27—H62127.4
C28—C29—H29126.7C42—N28—C41102.7 (5)
N19—C30—N20111.9 (6)C45—N29—C43104.9 (4)
N19—C30—H30124.0C45—N30—C44107.0 (5)
N20—C30—H30124.0C45—N30—H63126.5
C32—C31—N21112.4 (5)C44—N30—H63126.5
C32—C31—H31123.8C48—N31—C47108.0 (5)
N21—C31—H31123.8C48—N31—H64126.0
C31—C32—N22104.1 (5)C47—N31—H64126.0
C31—C32—H32128.0C48—N32—C46104.3 (5)
N22—C32—H32128.0O4—S1—O3112.3 (3)
N21—C33—N22109.4 (5)O4—S1—O2109.2 (3)
N21—C33—H33125.3O3—S1—O2106.9 (3)
N22—C33—H33125.3O4—S1—O1105.9 (2)
C35—C34—N23110.0 (5)O3—S1—O1111.7 (2)
C35—C34—H34125.0O2—S1—O1110.9 (2)
N23—C34—H34125.0O7—S2—O8110.4 (3)
C34—C35—N24106.6 (6)O7—S2—O5108.7 (3)
C34—C35—H35126.7O8—S2—O5109.9 (2)
N24—C35—H35126.7O7—S2—O6109.2 (3)
N23—C36—N24111.8 (5)O8—S2—O6108.1 (2)
N23—C36—H36124.1O5—S2—O6110.5 (2)
N24—C36—H36124.1N5—Fe1—N391.34 (16)
C38—C37—N25108.5 (5)N5—Fe1—N989.46 (16)
C38—C37—H37125.7N3—Fe1—N9179.19 (16)
N25—C37—H37125.7N5—Fe1—N11177.69 (15)
C37—C38—N26108.6 (5)N3—Fe1—N1189.94 (16)
C37—C38—H38125.7N9—Fe1—N1189.25 (16)
N26—C38—H38125.7N5—Fe1—N791.76 (15)
N25—C39—N26113.1 (5)N3—Fe1—N789.64 (15)
N25—C39—H39123.4N9—Fe1—N790.47 (14)
N26—C39—H39123.4N11—Fe1—N790.17 (14)
C41—C40—N27107.5 (5)N5—Fe1—N189.24 (15)
C41—C40—H40126.3N3—Fe1—N191.41 (15)
N27—C40—H40126.3N9—Fe1—N188.46 (15)
C40—C41—N28110.2 (5)N11—Fe1—N188.80 (14)
C40—C41—H41124.9N7—Fe1—N1178.53 (15)
N28—C41—H41124.9N13—Fe2—N1588.93 (15)
N28—C42—N27114.4 (5)N13—Fe2—N2189.99 (15)
N28—C42—H42122.8N15—Fe2—N21177.53 (15)
N27—C42—H42122.8N13—Fe2—N19178.24 (18)
C44—C43—N29109.6 (5)N15—Fe2—N1991.41 (16)
C44—C43—H43125.2N21—Fe2—N1989.74 (15)
N29—C43—H43125.2N13—Fe2—N2391.88 (15)
C43—C44—N30107.2 (5)N15—Fe2—N2388.94 (15)
C43—C44—H44126.4N21—Fe2—N2388.88 (16)
N30—C44—H44126.4N19—Fe2—N2389.85 (16)
N29—C45—N30111.3 (5)N13—Fe2—N1789.60 (15)
N29—C45—H45124.3N15—Fe2—N1789.37 (16)
N30—C45—H45124.3N21—Fe2—N1792.84 (15)
C47—C46—N32110.8 (5)N19—Fe2—N1788.68 (16)
C47—C46—H46124.6N23—Fe2—N17177.73 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H49···O40.881.842.679 (5)160
N4—H50···O50.881.892.762 (5)170
N6—H51···O3i0.882.092.949 (7)163
N8—H52···O1ii0.881.942.822 (5)176
N10—H53···O7iii0.881.852.711 (6)166
N12—H54···O7iv0.882.102.867 (7)145
N12—H54···O5iv0.882.613.434 (7)157
N14—H55···O8v0.881.852.716 (5)167
N16—H56···O1vi0.882.223.074 (6)163
N16—H56···O4vi0.882.262.942 (6)135
N18—H57···O6vii0.882.072.937 (6)169
N18—H57···O8vii0.882.473.100 (6)129
N20—H58···O60.882.213.071 (6)166
N20—H58···O70.882.453.120 (6)133
N22—H59···O20.882.182.939 (6)144
N22—H59···O30.882.373.186 (6)155
N24—H60···O2viii0.881.842.710 (6)168
N26—H61···N290.881.952.825 (6)177
N27—H62···N250.882.042.875 (6)158
N30—H63···N32ix0.882.022.869 (6)160
N31—H64···N280.881.922.800 (6)174
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z+1; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formula[Fe(C3H4N2)6]SO4·2C3H4N2
Mr696.57
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)15.4091 (8), 15.4436 (7), 15.9883 (11)
α, β, γ (°)69.813 (5), 69.949 (5), 73.214 (4)
V3)3291.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.901, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
15987, 10955, 5185
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.107, 0.85
No. of reflections10955
No. of parameters829
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H49···O40.881.842.679 (5)160
N4—H50···O50.881.892.762 (5)170
N6—H51···O3i0.882.092.949 (7)163
N8—H52···O1ii0.881.942.822 (5)176
N10—H53···O7iii0.881.852.711 (6)166
N12—H54···O7iv0.882.102.867 (7)145
N12—H54···O5iv0.882.613.434 (7)157
N14—H55···O8v0.881.852.716 (5)167
N16—H56···O1vi0.882.223.074 (6)163
N16—H56···O4vi0.882.262.942 (6)135
N18—H57···O6vii0.882.072.937 (6)169
N18—H57···O8vii0.882.473.100 (6)129
N20—H58···O60.882.213.071 (6)166
N20—H58···O70.882.453.120 (6)133
N22—H59···O20.882.182.939 (6)144
N22—H59···O30.882.373.186 (6)155
N24—H60···O2viii0.881.842.710 (6)168
N26—H61···N290.881.952.825 (6)177
N27—H62···N250.882.042.875 (6)158
N30—H63···N32ix0.882.022.869 (6)160
N31—H64···N280.881.922.800 (6)174
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z+1; (ix) x, y, z1.
 

Acknowledgements

This research was financially supported by the European Regional Development Fund, Sectoral Operational Programme `Increase of Economic Competitiveness', Priority Axis 2 (SOP IEC-A2–O2.1.2–2009–2, ID 570, COD SMIS-CSNR: 12473, contract 129/2010-POLISILMET).

References

First citationBousseksou, A., Verelst, M., Constant-Machado, H., Lemercier, G., Tuchagues, J. P. & Varret, F. (1996). Inorg. Chem. 35, 110–115.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationCarver, G., Tregenna-Piggott, P. L. W., Barra, A. L., Neels, A. & Stride, J. A. (2003). Inorg. Chem. 42, 5771–5777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationJian, F. F., Wang, Q. X., Sun, P. P. & Jiao, K. (2004). Chin. J. Inorg. Chem. 20, 581–585.  CAS Google Scholar
First citationLemercier, G., Brefuel, N., Shova, S., Wolny, J. A., Dahan, F., Verelst, M., Paulsen, H., Trautwein, A. X. & Tuchagues, J. P. (2006). Chem. Eur. J. 12, 7421–7432.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1600-m1601
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds