organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Chloro­benzyl­­idene)-2-[4-(methyl­sulfan­yl)phen­yl]acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, Mangalore, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 September 2011; accepted 28 September 2011; online 5 October 2011)

In the title compound, C16H15ClN2OS, the hydrazine group is twisted slightly: the C—N—N—C torsion angle is 175.46 (13)°. The dihedral angle between the two terminal aromatic rings is 87.01 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are further linked by weak C—H⋯π inter­actions.

Related literature

For further details of aroyl­hydro­zones, see: Li & Qu (2011[Li, T.-Y. & Qu, Y.-G. (2011). Acta Cryst. E67, o330.]); Zhang (2011[Zhang, Z. (2011). Acta Cryst. E67, o301.]); Fan et al. (2010[Fan, C. D., Su, H., Zhao, B. X., Zhanz, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.]). Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClN2OS

  • Mr = 318.81

  • Monoclinic, P 21 /c

  • a = 17.0923 (13) Å

  • b = 9.6719 (7) Å

  • c = 9.5592 (7) Å

  • β = 92.399 (1)°

  • V = 1578.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.91 × 0.49 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.728, Tmax = 0.967

  • 17083 measured reflections

  • 4748 independent reflections

  • 3306 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.04

  • 4748 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.95 2.03 2.9784 (17) 176
C14—H14ACg1ii 0.93 2.89 3.7627 (17) 156
C5—H5ACg2iii 0.93 2.98 3.4638 (17) 114
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Large number of aroylhydrozones have been synthesized in the recent years (Li & Qu, 2011; Zhang, 2011; Fan et al., 2010) which can serve as intermediates in synthesizing biologically active compounds (Ajani et al., 2010; Avaji et al., 2009; Rasras et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The hydrazine group is twisted slightly, with C7-N1-N2-C8, N1-N2-C8-C9 and N2-N1-C7-C6 torsion angles of 175.46 (13)°, 5.6 (2)° and -177.96 (12)°, respectively. The dihedral angle between the two terminal (C1–C6/C10–C15) phenyl rings is 87.01 (8)°.

In the crystal structure, (Fig. 2), centrosymmetrically related molecules are linked into dimers via pairs of intermolecular N2—H1N2···O1 (Table 1) hydrogen bonds, generating R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by C—H···π interactions involving the centroids of the C1–C6 (Cg1) and C10–C15 (Cg2) rings.

Related literature top

For further details of aroylhydrozones, see: Li & Qu (2011); Zhang (2011); Fan et al. (2010). Ajani et al. (2010); Avaji et al. (2009); Rasras et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

An equimolar mixture of 2-(4-methylsulfanylphenyl)acetohydrazide and 4-chlorobenzaldehyde was refluxed for four hours in the presence of few drops of acid catalyst and ethanol as solvent.The compound obtained was filtered, washed, dried and recrystalised from ethanol to yield colourless plates.

Refinement top

All hydrogen atoms were positioned geometrically [N–H = 0.9458 Å and C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
N'-(4-Chlorobenzylidene)-2-[4-(methylsulfanyl)phenyl]acetohydrazide top
Crystal data top
C16H15ClN2OSF(000) = 664
Mr = 318.81Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4828 reflections
a = 17.0923 (13) Åθ = 3.0–29.5°
b = 9.6719 (7) ŵ = 0.37 mm1
c = 9.5592 (7) ÅT = 296 K
β = 92.399 (1)°Plate, colourless
V = 1578.9 (2) Å30.91 × 0.49 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
4748 independent reflections
Radiation source: fine-focus sealed tube3306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 30.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.728, Tmax = 0.967k = 1313
17083 measured reflectionsl = 913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3224P]
where P = (Fo2 + 2Fc2)/3
4748 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H15ClN2OSV = 1578.9 (2) Å3
Mr = 318.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0923 (13) ŵ = 0.37 mm1
b = 9.6719 (7) ÅT = 296 K
c = 9.5592 (7) Å0.91 × 0.49 × 0.09 mm
β = 92.399 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
4748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3306 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.967Rint = 0.025
17083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
4748 reflectionsΔρmin = 0.41 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89531 (3)0.48335 (6)0.00009 (6)0.0873 (2)
S10.08573 (3)0.40633 (6)0.47773 (6)0.07612 (17)
O10.42041 (6)0.12422 (11)0.50622 (11)0.0523 (3)
N10.57757 (7)0.23664 (12)0.31358 (13)0.0471 (3)
N20.52912 (7)0.15328 (13)0.38944 (14)0.0509 (3)
H1N20.54580.06420.41860.061*
C10.68893 (8)0.38659 (15)0.15181 (15)0.0457 (3)
H1A0.63930.42550.15430.055*
C20.74751 (9)0.45572 (16)0.08466 (16)0.0525 (3)
H2A0.73750.54040.04140.063*
C30.82114 (8)0.39671 (17)0.08305 (17)0.0534 (4)
C40.83721 (9)0.27056 (18)0.14429 (18)0.0574 (4)
H4A0.88690.23180.14090.069*
C50.77820 (8)0.20250 (16)0.21090 (17)0.0509 (3)
H5A0.78850.11740.25310.061*
C60.70357 (7)0.25944 (14)0.21570 (14)0.0409 (3)
C70.64405 (8)0.18409 (14)0.29029 (15)0.0448 (3)
H7A0.65510.09490.32170.054*
C80.45912 (7)0.19818 (14)0.43038 (15)0.0429 (3)
C90.43186 (8)0.33897 (16)0.37856 (19)0.0542 (4)
H9A0.46150.41010.42890.065*
H9B0.44230.34760.28000.065*
C100.34576 (8)0.36138 (14)0.39812 (16)0.0468 (3)
C110.29124 (9)0.30706 (16)0.30280 (18)0.0566 (4)
H11A0.30850.26210.22380.068*
C120.21138 (9)0.31748 (17)0.32120 (19)0.0570 (4)
H12A0.17590.27890.25590.068*
C130.18467 (8)0.38616 (16)0.43821 (17)0.0508 (3)
C140.23916 (9)0.44558 (18)0.53125 (16)0.0557 (4)
H14A0.22210.49460.60790.067*
C150.31841 (9)0.43303 (17)0.51179 (16)0.0527 (3)
H15A0.35400.47320.57590.063*
C160.03229 (11)0.3267 (3)0.3351 (3)0.0869 (6)
H16A0.02270.33110.35110.130*
H16B0.04800.23180.32770.130*
H16C0.04280.37440.24990.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0641 (3)0.1044 (4)0.0953 (4)0.0326 (3)0.0244 (3)0.0087 (3)
S10.0464 (2)0.0932 (4)0.0895 (4)0.0137 (2)0.0113 (2)0.0114 (3)
O10.0428 (5)0.0508 (6)0.0643 (7)0.0037 (4)0.0130 (5)0.0114 (5)
N10.0419 (6)0.0468 (6)0.0534 (7)0.0020 (5)0.0129 (5)0.0063 (5)
N20.0442 (6)0.0456 (6)0.0642 (8)0.0015 (5)0.0160 (5)0.0132 (6)
C10.0417 (6)0.0492 (8)0.0466 (7)0.0028 (5)0.0053 (5)0.0008 (6)
C20.0561 (8)0.0507 (8)0.0511 (8)0.0055 (7)0.0068 (6)0.0041 (6)
C30.0450 (7)0.0645 (9)0.0513 (8)0.0145 (7)0.0091 (6)0.0050 (7)
C40.0384 (7)0.0679 (10)0.0665 (10)0.0024 (7)0.0094 (6)0.0055 (8)
C50.0453 (7)0.0493 (8)0.0587 (9)0.0054 (6)0.0099 (6)0.0006 (7)
C60.0396 (6)0.0431 (7)0.0402 (7)0.0001 (5)0.0061 (5)0.0034 (5)
C70.0445 (7)0.0419 (7)0.0486 (8)0.0006 (5)0.0076 (6)0.0021 (6)
C80.0384 (6)0.0435 (7)0.0472 (7)0.0051 (5)0.0064 (5)0.0006 (6)
C90.0457 (7)0.0458 (8)0.0722 (10)0.0010 (6)0.0166 (7)0.0080 (7)
C100.0454 (7)0.0394 (7)0.0563 (8)0.0023 (5)0.0108 (6)0.0070 (6)
C110.0557 (8)0.0532 (8)0.0619 (10)0.0023 (7)0.0143 (7)0.0126 (7)
C120.0505 (8)0.0545 (9)0.0659 (10)0.0017 (7)0.0031 (7)0.0119 (7)
C130.0457 (7)0.0502 (8)0.0569 (9)0.0093 (6)0.0067 (6)0.0044 (7)
C140.0541 (8)0.0666 (10)0.0468 (8)0.0132 (7)0.0065 (6)0.0047 (7)
C150.0504 (8)0.0575 (9)0.0501 (8)0.0046 (6)0.0007 (6)0.0003 (7)
C160.0516 (10)0.1089 (18)0.0998 (16)0.0040 (10)0.0003 (10)0.0019 (13)
Geometric parameters (Å, º) top
Cl1—C31.7386 (15)C7—H7A0.9300
S1—C131.7590 (15)C8—C91.516 (2)
S1—C161.783 (2)C9—C101.5069 (19)
O1—C81.2310 (16)C9—H9A0.9700
N1—C71.2728 (17)C9—H9B0.9700
N1—N21.3828 (15)C10—C111.380 (2)
N2—C81.3462 (17)C10—C151.386 (2)
N2—H1N20.9458C11—C121.387 (2)
C1—C21.3840 (19)C11—H11A0.9300
C1—C61.391 (2)C12—C131.394 (2)
C1—H1A0.9300C12—H12A0.9300
C2—C31.383 (2)C13—C141.385 (2)
C2—H2A0.9300C14—C151.380 (2)
C3—C41.376 (2)C14—H14A0.9300
C4—C51.382 (2)C15—H15A0.9300
C4—H4A0.9300C16—H16A0.9600
C5—C61.3920 (18)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.4612 (18)
C13—S1—C16104.73 (9)C10—C9—H9A109.2
C7—N1—N2114.68 (12)C8—C9—H9A109.2
C8—N2—N1121.57 (12)C10—C9—H9B109.2
C8—N2—H1N2117.9C8—C9—H9B109.2
N1—N2—H1N2120.4H9A—C9—H9B107.9
C2—C1—C6120.69 (13)C11—C10—C15117.86 (13)
C2—C1—H1A119.7C11—C10—C9119.97 (14)
C6—C1—H1A119.7C15—C10—C9122.16 (14)
C3—C2—C1118.83 (14)C10—C11—C12121.98 (14)
C3—C2—H2A120.6C10—C11—H11A119.0
C1—C2—H2A120.6C12—C11—H11A119.0
C4—C3—C2121.80 (14)C11—C12—C13119.56 (15)
C4—C3—Cl1119.02 (12)C11—C12—H12A120.2
C2—C3—Cl1119.18 (13)C13—C12—H12A120.2
C3—C4—C5118.81 (14)C14—C13—C12118.61 (14)
C3—C4—H4A120.6C14—C13—S1116.28 (12)
C5—C4—H4A120.6C12—C13—S1125.11 (13)
C4—C5—C6120.94 (14)C15—C14—C13120.94 (14)
C4—C5—H5A119.5C15—C14—H14A119.5
C6—C5—H5A119.5C13—C14—H14A119.5
C1—C6—C5118.92 (13)C14—C15—C10120.97 (15)
C1—C6—C7122.62 (12)C14—C15—H15A119.5
C5—C6—C7118.45 (13)C10—C15—H15A119.5
N1—C7—C6122.07 (13)S1—C16—H16A109.5
N1—C7—H7A119.0S1—C16—H16B109.5
C6—C7—H7A119.0H16A—C16—H16B109.5
O1—C8—N2119.34 (13)S1—C16—H16C109.5
O1—C8—C9123.30 (12)H16A—C16—H16C109.5
N2—C8—C9117.36 (12)H16B—C16—H16C109.5
C10—C9—C8112.16 (11)
C7—N1—N2—C8175.46 (13)O1—C8—C9—C1014.8 (2)
C6—C1—C2—C30.5 (2)N2—C8—C9—C10164.74 (14)
C1—C2—C3—C41.1 (2)C8—C9—C10—C1181.06 (19)
C1—C2—C3—Cl1179.53 (11)C8—C9—C10—C1597.43 (17)
C2—C3—C4—C51.0 (2)C15—C10—C11—C122.7 (2)
Cl1—C3—C4—C5179.58 (12)C9—C10—C11—C12175.83 (15)
C3—C4—C5—C60.4 (2)C10—C11—C12—C130.8 (3)
C2—C1—C6—C50.1 (2)C11—C12—C13—C141.7 (2)
C2—C1—C6—C7178.68 (14)C11—C12—C13—S1179.14 (13)
C4—C5—C6—C10.1 (2)C16—S1—C13—C14177.21 (14)
C4—C5—C6—C7178.68 (14)C16—S1—C13—C121.93 (18)
N2—N1—C7—C6177.96 (12)C12—C13—C14—C152.3 (2)
C1—C6—C7—N17.3 (2)S1—C13—C14—C15178.46 (13)
C5—C6—C7—N1171.47 (14)C13—C14—C15—C100.4 (2)
N1—N2—C8—O1174.81 (13)C11—C10—C15—C142.1 (2)
N1—N2—C8—C95.6 (2)C9—C10—C15—C14176.42 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.952.032.9784 (17)176
C14—H14A···Cg1ii0.932.893.7627 (17)156
C5—H5A···Cg2iii0.932.983.4638 (17)114
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15ClN2OS
Mr318.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.0923 (13), 9.6719 (7), 9.5592 (7)
β (°) 92.399 (1)
V3)1578.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.91 × 0.49 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.728, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
17083, 4748, 3306
Rint0.025
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.04
No. of reflections4748
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.952.032.9784 (17)176
C14—H14A···Cg1ii0.932.893.7627 (17)156
C5—H5A···Cg2iii0.932.983.4638 (17)114
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C. D., Su, H., Zhao, B. X., Zhanz, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, T.-Y. & Qu, Y.-G. (2011). Acta Cryst. E67, o330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o301.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds