organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2881-o2882

14-Hy­dr­oxy-11-[(E)-4-meth­­oxy­benzyl­­idene]-8-(4-meth­­oxy­phen­yl)-5-thia-3,13-di­aza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15(23),16,18,20-pentaen-10-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 September 2011; accepted 3 October 2011; online 8 October 2011)

In the title compound, C36H32N2O4S, the piperidine ring adopts a chair conformation, while the five-membered pyrrolidine (with a C atom as the flap atom) and thia­zolidine (with the S atom as the flap atom) rings adopt envelope conformations. The naphthalene ring system makes dihedral angles of 18.82 (5) and 40.92 (5)° with the two meth­oxy-substituted benzene rings. In the crystal, centrosymmetrically-related mol­ecules are linked into dimers via pairs of C—H⋯O and C—H⋯N hydrogen bonds. An intra­molecular O—H⋯N hydrogen bond is also observed. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For details of cyclo­addition, see: Tsuge & Kanemasa (1989[Tsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Aicher et al. (1998[Aicher, T. D., Balkan, B., Bell, P. A., Brand, L. J., Cheon, S. H., Deems, R. O., Fell, J. B., Fillers, W. S., Fraser, J. D., Gao, J., Knorr, D. C., Kahle, G. G., Leone, C. L., Nadelson, J., Simpson, R. & Smith, H. C. (1998). J. Med. Chem. 41, 4556-4566.]); Lalezari & Schwartz (1988[Lalezari, I. & Schwartz, E. L. (1988). J. Med. Chem. 31, 1427-1429.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C36H32N2O4S

  • Mr = 588.70

  • Triclinic, [P \overline 1]

  • a = 10.6287 (1) Å

  • b = 11.8672 (2) Å

  • c = 12.6588 (2) Å

  • α = 84.439 (1)°

  • β = 75.105 (1)°

  • γ = 68.553 (1)°

  • V = 1436.19 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.37 × 0.25 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.975

  • 39492 measured reflections

  • 11591 independent reflections

  • 9231 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.02

  • 11591 reflections

  • 394 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 and Cg9 centroids of the C20–C25 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N2 0.86 (2) 1.96 (2) 2.6253 (14) 133.3 (19)
C24—H24A⋯N1i 0.95 2.61 3.4447 (15) 146
C26—H26C⋯O1i 0.98 2.48 3.4078 (17) 157
C19—H19BCg7ii 0.98 2.82 3.4652 (18) 124
C26—H26BCg7iii 0.98 2.87 3.7720 (14) 154
C9—H9BCg9iv 0.99 2.87 3.8211 (14) 161
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Three-component reactions involving [3+2]-cycloaddition of azomethine ylides to olefinic dipolarophiles constitutes a facile approach for the construction of five membered heterocyclic rings of biological importance (Tsuge & Kanemasa, 1989; Nair & Suja, 2007). Among these heterocycles, pyrrolo[2,1-b]thiazole is an unusual ring system with antineoplastic (Lalezari & Schwartz, 1988) and hypoglycemic (Aicher et al., 1998) activities. In this paper we wish to report the crystal structure determination of the title compound possessing the biologically-active pyrrolothiazole ring.

The asymmetric unit of the title compound is shown in Fig. 1. The six-membered piperidine (N1/C1–C5) ring adopts a chair conformation [Q = 0.6172 (12) Å; θ = 138.18 (11)° and ϕ = 119.73 (17)°; Cremer & Pople, 1975] while the five-membered pyrrolidine (N2/C4/C6,C7/C10) and thiazolidine (S1/N2/C7–C9) rings adopt an envelope conformation with the C6 (displacement -0.217 (1) Å) and the S1 (displacement 0.284 (1) Å) atoms as the flap atoms and with puckering parameters, Q = 0.3565 (13) Å; ϕ = 89.37 (19)°; and Q = 0.5087 (11) Å; and ϕ = 0.44 (14)° repectively. The naphthalene (C27–C36) ring makes dihedral angles of 18.82 (5)° and 40.92 (5)° with the two methoxy-substituted (C13–C18)/(C20–C25) phenyl rings.

In the crystal structure, (Fig. 2), the centrosymmetrically-related molecules are linked into dimers via pairs of intermolecular C—H···O and C—H···N (Table 1) hydrogen bonds. An intramolecular O—H..N hydrogen bond is also observed. The crystal structure is further stabilized by weak C—H···π interactions involving the centroids Cg7 and Cg9 of the (C20–C25) and (C31–C36) rings, respectively.

Related literature top

For details of cycloaddition, see: Tsuge & Kanemasa (1989); Nair & Suja (2007); Aicher et al. (1998); Lalezari & Schwartz (1988). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-(4-methoxyphenyl) methylidene]-tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and thiazolidine-4-carboxylic acid (1 mmol) were dissolved in methanol (5 mL) and refluxed for 1 hour. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallisation from pet.ether-ethylacetate mixture to yield colourless blocks of (I).

Refinement top

Atom H1O1 was located from a difference Fourier maps and refined freely [O–H = 0.86 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
14-Hydroxy-11-[(E)-4-methoxybenzylidene]-8-(4-methoxyphenyl)-5- thia-3,13- diazaheptacyclo[13.7.1.19,13.02,9.02,14.03,7.019,23]tetracosa- 1(22),15 (23),16,18,20-pentaen-10-one top
Crystal data top
C36H32N2O4SZ = 2
Mr = 588.70F(000) = 620
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6287 (1) ÅCell parameters from 9888 reflections
b = 11.8672 (2) Åθ = 2.3–35.1°
c = 12.6588 (2) ŵ = 0.16 mm1
α = 84.439 (1)°T = 100 K
β = 75.105 (1)°Block, colourless
γ = 68.553 (1)°0.37 × 0.25 × 0.16 mm
V = 1436.19 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
11591 independent reflections
Radiation source: fine-focus sealed tube9231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 34.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1316
Tmin = 0.943, Tmax = 0.975k = 1818
39492 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.5144P]
where P = (Fo2 + 2Fc2)/3
11591 reflections(Δ/σ)max = 0.001
394 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C36H32N2O4Sγ = 68.553 (1)°
Mr = 588.70V = 1436.19 (4) Å3
Triclinic, P1Z = 2
a = 10.6287 (1) ÅMo Kα radiation
b = 11.8672 (2) ŵ = 0.16 mm1
c = 12.6588 (2) ÅT = 100 K
α = 84.439 (1)°0.37 × 0.25 × 0.16 mm
β = 75.105 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
11591 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
9231 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.975Rint = 0.036
39492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.66 e Å3
11591 reflectionsΔρmin = 0.38 e Å3
394 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79522 (3)0.60158 (3)0.48963 (2)0.02192 (7)
O10.36989 (8)0.50498 (7)0.72474 (7)0.01646 (15)
O20.46670 (9)0.92470 (8)0.78875 (8)0.02136 (17)
O30.38126 (10)1.24757 (10)0.79511 (9)0.0306 (2)
O40.89106 (10)0.68108 (9)1.10873 (8)0.02435 (19)
N10.28341 (9)0.66632 (8)0.84751 (8)0.01489 (16)
N20.58835 (9)0.56730 (9)0.64184 (8)0.01619 (17)
C10.18792 (11)0.79213 (10)0.87130 (9)0.01641 (19)
H1A0.15110.80090.95150.020*
H1B0.10810.80720.83850.020*
C20.25141 (11)0.88926 (10)0.83004 (9)0.01574 (18)
C30.40668 (11)0.85241 (10)0.80088 (9)0.01529 (18)
C40.48625 (10)0.71733 (10)0.78310 (9)0.01380 (17)
C50.41421 (11)0.65015 (10)0.87649 (9)0.01572 (18)
H5A0.47190.56330.87850.019*
H5B0.39610.68670.94840.019*
C60.64462 (11)0.67997 (10)0.75962 (9)0.01479 (18)
H6A0.67150.73930.70550.018*
C70.69662 (11)0.55899 (10)0.69999 (9)0.01564 (18)
H7A0.70410.49160.75470.019*
C80.83679 (11)0.53339 (11)0.61614 (10)0.0188 (2)
H8A0.88760.44510.60700.023*
H8B0.89530.56960.64000.023*
C90.64853 (12)0.54767 (12)0.52515 (10)0.0212 (2)
H9A0.57840.59310.48330.025*
H9B0.68100.46050.50780.025*
C100.46097 (10)0.67354 (10)0.68033 (9)0.01421 (17)
C110.32921 (10)0.63151 (10)0.73099 (9)0.01408 (17)
C120.17995 (11)1.00541 (10)0.80811 (10)0.01742 (19)
H12A0.23451.05530.78510.021*
C130.03109 (11)1.06591 (10)0.81448 (10)0.01782 (19)
C140.07494 (12)1.02983 (10)0.88129 (10)0.0185 (2)
H14A0.05130.96390.93030.022*
C150.21409 (12)1.08765 (11)0.87811 (10)0.0202 (2)
H15A0.28381.06080.92390.024*
C160.24999 (12)1.18508 (11)0.80725 (11)0.0225 (2)
C170.14648 (13)1.22501 (12)0.74238 (12)0.0259 (2)
H17A0.17081.29250.69510.031*
C180.00926 (13)1.16714 (11)0.74650 (11)0.0234 (2)
H18A0.05951.19630.70250.028*
C190.48594 (14)1.19644 (15)0.84307 (14)0.0335 (3)
H19A0.57141.24260.81920.050*
H19B0.50511.19970.92290.050*
H19C0.45301.11200.81990.050*
C200.70703 (11)0.67646 (10)0.85510 (9)0.01501 (18)
C210.75256 (12)0.76997 (11)0.86841 (10)0.0190 (2)
H21A0.74180.83560.81800.023*
C220.81297 (13)0.76854 (11)0.95352 (11)0.0215 (2)
H22A0.84250.83320.96120.026*
C230.83076 (12)0.67281 (11)1.02806 (9)0.0180 (2)
C240.78598 (12)0.57861 (10)1.01762 (9)0.01754 (19)
H24A0.79680.51321.06830.021*
C250.72497 (12)0.58202 (10)0.93148 (9)0.01717 (19)
H25A0.69450.51780.92450.021*
C260.90991 (13)0.58491 (12)1.18668 (10)0.0228 (2)
H26A0.95470.60001.23970.034*
H26B0.96880.50831.14900.034*
H26C0.81920.58031.22480.034*
C270.41283 (11)0.76642 (10)0.59441 (9)0.01534 (18)
C280.47477 (12)0.83835 (11)0.52540 (10)0.0191 (2)
H28A0.56350.83720.52880.023*
C290.40394 (13)0.91443 (11)0.44894 (10)0.0217 (2)
H29A0.44760.96300.40060.026*
C300.27418 (13)0.92003 (11)0.44276 (10)0.0217 (2)
H30A0.23010.97160.39060.026*
C310.20612 (12)0.84865 (10)0.51443 (10)0.0183 (2)
C320.07319 (12)0.84443 (11)0.51840 (11)0.0217 (2)
H32A0.01990.89340.47000.026*
C330.02096 (12)0.76951 (11)0.59229 (11)0.0216 (2)
H33A0.06800.76780.59330.026*
C340.09598 (11)0.69493 (10)0.66679 (10)0.0186 (2)
H34A0.05770.64460.71740.022*
C350.22508 (11)0.69716 (10)0.66413 (9)0.01528 (18)
C360.27902 (11)0.77326 (10)0.58842 (9)0.01567 (18)
H1O10.459 (2)0.4815 (19)0.7015 (17)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01679 (12)0.03083 (16)0.01653 (13)0.00899 (11)0.00024 (9)0.00062 (11)
O10.0143 (3)0.0127 (3)0.0219 (4)0.0046 (3)0.0028 (3)0.0023 (3)
O20.0192 (4)0.0174 (4)0.0302 (5)0.0093 (3)0.0059 (3)0.0015 (3)
O30.0181 (4)0.0280 (5)0.0396 (6)0.0001 (3)0.0079 (4)0.0013 (4)
O40.0323 (5)0.0277 (5)0.0232 (4)0.0175 (4)0.0158 (4)0.0060 (4)
N10.0150 (4)0.0148 (4)0.0147 (4)0.0059 (3)0.0015 (3)0.0021 (3)
N20.0135 (4)0.0190 (4)0.0157 (4)0.0057 (3)0.0012 (3)0.0052 (3)
C10.0153 (4)0.0151 (4)0.0181 (5)0.0059 (3)0.0004 (3)0.0037 (4)
C20.0151 (4)0.0160 (5)0.0164 (5)0.0064 (3)0.0016 (3)0.0035 (4)
C30.0161 (4)0.0157 (4)0.0149 (4)0.0065 (3)0.0031 (3)0.0026 (4)
C40.0138 (4)0.0144 (4)0.0140 (4)0.0060 (3)0.0030 (3)0.0010 (3)
C50.0155 (4)0.0162 (4)0.0158 (4)0.0065 (3)0.0026 (3)0.0007 (4)
C60.0139 (4)0.0156 (4)0.0153 (4)0.0061 (3)0.0030 (3)0.0004 (3)
C70.0132 (4)0.0163 (5)0.0166 (5)0.0047 (3)0.0025 (3)0.0017 (4)
C80.0143 (4)0.0213 (5)0.0193 (5)0.0054 (4)0.0023 (4)0.0022 (4)
C90.0175 (5)0.0289 (6)0.0174 (5)0.0085 (4)0.0010 (4)0.0085 (4)
C100.0131 (4)0.0146 (4)0.0151 (4)0.0056 (3)0.0021 (3)0.0017 (3)
C110.0140 (4)0.0135 (4)0.0154 (4)0.0059 (3)0.0024 (3)0.0017 (3)
C120.0167 (4)0.0153 (5)0.0203 (5)0.0065 (4)0.0027 (4)0.0020 (4)
C130.0170 (4)0.0148 (5)0.0209 (5)0.0051 (4)0.0032 (4)0.0025 (4)
C140.0176 (4)0.0153 (5)0.0213 (5)0.0051 (4)0.0028 (4)0.0026 (4)
C150.0164 (4)0.0188 (5)0.0238 (5)0.0052 (4)0.0023 (4)0.0041 (4)
C160.0190 (5)0.0184 (5)0.0269 (6)0.0016 (4)0.0053 (4)0.0050 (4)
C170.0232 (5)0.0170 (5)0.0318 (7)0.0023 (4)0.0049 (5)0.0022 (5)
C180.0218 (5)0.0162 (5)0.0293 (6)0.0057 (4)0.0034 (4)0.0019 (4)
C190.0169 (5)0.0400 (8)0.0387 (8)0.0043 (5)0.0039 (5)0.0079 (6)
C200.0142 (4)0.0163 (4)0.0155 (4)0.0066 (3)0.0034 (3)0.0003 (4)
C210.0216 (5)0.0188 (5)0.0210 (5)0.0113 (4)0.0083 (4)0.0043 (4)
C220.0268 (5)0.0209 (5)0.0245 (6)0.0145 (4)0.0119 (4)0.0047 (4)
C230.0183 (4)0.0210 (5)0.0177 (5)0.0093 (4)0.0067 (4)0.0015 (4)
C240.0194 (5)0.0177 (5)0.0169 (5)0.0082 (4)0.0052 (4)0.0022 (4)
C250.0191 (4)0.0168 (5)0.0178 (5)0.0088 (4)0.0049 (4)0.0010 (4)
C260.0241 (5)0.0287 (6)0.0194 (5)0.0121 (5)0.0093 (4)0.0050 (4)
C270.0166 (4)0.0165 (5)0.0145 (4)0.0076 (4)0.0034 (3)0.0013 (4)
C280.0210 (5)0.0208 (5)0.0183 (5)0.0113 (4)0.0039 (4)0.0005 (4)
C290.0256 (5)0.0209 (5)0.0207 (5)0.0116 (4)0.0055 (4)0.0030 (4)
C300.0251 (5)0.0198 (5)0.0212 (5)0.0081 (4)0.0082 (4)0.0036 (4)
C310.0195 (5)0.0165 (5)0.0198 (5)0.0061 (4)0.0069 (4)0.0003 (4)
C320.0204 (5)0.0195 (5)0.0263 (6)0.0055 (4)0.0103 (4)0.0010 (4)
C330.0166 (5)0.0205 (5)0.0291 (6)0.0063 (4)0.0082 (4)0.0007 (4)
C340.0155 (4)0.0169 (5)0.0238 (5)0.0065 (4)0.0046 (4)0.0005 (4)
C350.0146 (4)0.0144 (4)0.0171 (5)0.0055 (3)0.0029 (3)0.0021 (4)
C360.0161 (4)0.0151 (4)0.0167 (5)0.0061 (3)0.0040 (3)0.0017 (4)
Geometric parameters (Å, º) top
S1—C81.8072 (12)C14—C151.3939 (16)
S1—C91.8318 (12)C14—H14A0.9500
O1—C111.4066 (13)C15—C161.3927 (18)
O1—H1O10.86 (2)C15—H15A0.9500
O2—C31.2209 (13)C16—C171.3966 (19)
O3—C161.3608 (15)C17—C181.3789 (18)
O3—C191.4317 (19)C17—H17A0.9500
O4—C231.3657 (14)C18—H18A0.9500
O4—C261.4256 (15)C19—H19A0.9800
N1—C51.4689 (14)C19—H19B0.9800
N1—C11.4737 (14)C19—H19C0.9800
N1—C111.4783 (14)C20—C251.3985 (15)
N2—C91.4552 (15)C20—C211.4018 (15)
N2—C101.4805 (14)C21—C221.3847 (17)
N2—C71.4879 (14)C21—H21A0.9500
C1—C21.5257 (15)C22—C231.3941 (16)
C1—H1A0.9900C22—H22A0.9500
C1—H1B0.9900C23—C241.3943 (16)
C2—C121.3499 (16)C24—C251.3953 (16)
C2—C31.4971 (15)C24—H24A0.9500
C3—C41.5219 (15)C25—H25A0.9500
C4—C61.5300 (14)C26—H26A0.9800
C4—C51.5549 (14)C26—H26B0.9800
C4—C101.5645 (15)C26—H26C0.9800
C5—H5A0.9900C27—C281.3768 (15)
C5—H5B0.9900C27—C361.4159 (15)
C6—C201.5115 (15)C28—C291.4237 (17)
C6—C71.5336 (16)C28—H28A0.9500
C6—H6A1.0000C29—C301.3785 (17)
C7—C81.5352 (15)C29—H29A0.9500
C7—H7A1.0000C30—C311.4233 (16)
C8—H8A0.9900C30—H30A0.9500
C8—H8B0.9900C31—C361.4077 (16)
C9—H9A0.9900C31—C321.4199 (16)
C9—H9B0.9900C32—C331.3806 (17)
C10—C271.5169 (15)C32—H32A0.9500
C10—C111.6150 (14)C33—C341.4204 (17)
C11—C351.5071 (15)C33—H33A0.9500
C12—C131.4629 (15)C34—C351.3738 (15)
C12—H12A0.9500C34—H34A0.9500
C13—C141.4005 (16)C35—C361.4111 (15)
C13—C181.4072 (17)
C8—S1—C986.85 (5)C15—C14—C13122.04 (11)
C11—O1—H1O1103.5 (14)C15—C14—H14A119.0
C16—O3—C19117.38 (11)C13—C14—H14A119.0
C23—O4—C26116.72 (10)C16—C15—C14119.42 (11)
C5—N1—C1108.80 (8)C16—C15—H15A120.3
C5—N1—C11103.25 (8)C14—C15—H15A120.3
C1—N1—C11115.53 (9)O3—C16—C15125.09 (12)
C9—N2—C10119.67 (10)O3—C16—C17115.42 (12)
C9—N2—C7110.77 (8)C15—C16—C17119.49 (11)
C10—N2—C7110.49 (8)C18—C17—C16120.48 (12)
N1—C1—C2115.45 (9)C18—C17—H17A119.8
N1—C1—H1A108.4C16—C17—H17A119.8
C2—C1—H1A108.4C17—C18—C13121.44 (11)
N1—C1—H1B108.4C17—C18—H18A119.3
C2—C1—H1B108.4C13—C18—H18A119.3
H1A—C1—H1B107.5O3—C19—H19A109.5
C12—C2—C3115.93 (10)O3—C19—H19B109.5
C12—C2—C1125.44 (10)H19A—C19—H19B109.5
C3—C2—C1118.37 (9)O3—C19—H19C109.5
O2—C3—C2123.17 (10)H19A—C19—H19C109.5
O2—C3—C4121.64 (10)H19B—C19—H19C109.5
C2—C3—C4115.15 (9)C25—C20—C21117.17 (10)
C3—C4—C6114.65 (8)C25—C20—C6123.15 (10)
C3—C4—C5107.25 (8)C21—C20—C6119.67 (10)
C6—C4—C5117.84 (9)C22—C21—C20121.30 (10)
C3—C4—C10110.70 (9)C22—C21—H21A119.4
C6—C4—C10104.10 (8)C20—C21—H21A119.4
C5—C4—C10101.35 (8)C21—C22—C23120.42 (11)
N1—C5—C4103.40 (8)C21—C22—H22A119.8
N1—C5—H5A111.1C23—C22—H22A119.8
C4—C5—H5A111.1O4—C23—C22115.36 (10)
N1—C5—H5B111.1O4—C23—C24124.82 (10)
C4—C5—H5B111.1C22—C23—C24119.81 (10)
H5A—C5—H5B109.0C23—C24—C25118.84 (10)
C20—C6—C4117.40 (9)C23—C24—H24A120.6
C20—C6—C7114.59 (9)C25—C24—H24A120.6
C4—C6—C7102.88 (8)C24—C25—C20122.46 (10)
C20—C6—H6A107.1C24—C25—H25A118.8
C4—C6—H6A107.1C20—C25—H25A118.8
C7—C6—H6A107.1O4—C26—H26A109.5
N2—C7—C6105.66 (8)O4—C26—H26B109.5
N2—C7—C8108.84 (9)H26A—C26—H26B109.5
C6—C7—C8113.73 (9)O4—C26—H26C109.5
N2—C7—H7A109.5H26A—C26—H26C109.5
C6—C7—H7A109.5H26B—C26—H26C109.5
C8—C7—H7A109.5C28—C27—C36118.55 (10)
C7—C8—S1105.83 (7)C28—C27—C10132.36 (10)
C7—C8—H8A110.6C36—C27—C10109.08 (9)
S1—C8—H8A110.6C27—C28—C29119.05 (10)
C7—C8—H8B110.6C27—C28—H28A120.5
S1—C8—H8B110.6C29—C28—H28A120.5
H8A—C8—H8B108.7C30—C29—C28122.19 (11)
N2—C9—S1107.06 (8)C30—C29—H29A118.9
N2—C9—H9A110.3C28—C29—H29A118.9
S1—C9—H9A110.3C29—C30—C31120.14 (11)
N2—C9—H9B110.3C29—C30—H30A119.9
S1—C9—H9B110.3C31—C30—H30A119.9
H9A—C9—H9B108.6C36—C31—C32116.57 (10)
N2—C10—C27116.57 (9)C36—C31—C30116.52 (10)
N2—C10—C4103.90 (8)C32—C31—C30126.90 (11)
C27—C10—C4118.45 (9)C33—C32—C31120.32 (11)
N2—C10—C11110.50 (8)C33—C32—H32A119.8
C27—C10—C11103.54 (8)C31—C32—H32A119.8
C4—C10—C11103.06 (8)C32—C33—C34122.12 (10)
O1—C11—N1108.47 (9)C32—C33—H33A118.9
O1—C11—C35112.32 (9)C34—C33—H33A118.9
N1—C11—C35114.67 (9)C35—C34—C33118.58 (11)
O1—C11—C10110.43 (8)C35—C34—H34A120.7
N1—C11—C10105.60 (8)C33—C34—H34A120.7
C35—C11—C10105.07 (8)C34—C35—C36119.45 (10)
C2—C12—C13129.67 (10)C34—C35—C11131.91 (10)
C2—C12—H12A115.2C36—C35—C11108.64 (9)
C13—C12—H12A115.2C31—C36—C35122.96 (10)
C14—C13—C18117.06 (11)C31—C36—C27123.53 (10)
C14—C13—C12125.30 (11)C35—C36—C27113.51 (10)
C18—C13—C12117.63 (10)
C5—N1—C1—C247.19 (12)C3—C2—C12—C13172.17 (11)
C11—N1—C1—C268.33 (12)C1—C2—C12—C131.9 (2)
N1—C1—C2—C12156.00 (11)C2—C12—C13—C1425.1 (2)
N1—C1—C2—C317.89 (14)C2—C12—C13—C18153.53 (13)
C12—C2—C3—O220.91 (17)C18—C13—C14—C152.62 (18)
C1—C2—C3—O2164.63 (11)C12—C13—C14—C15176.01 (11)
C12—C2—C3—C4156.99 (10)C13—C14—C15—C160.56 (18)
C1—C2—C3—C417.47 (14)C19—O3—C16—C1512.1 (2)
O2—C3—C4—C65.30 (15)C19—O3—C16—C17168.17 (13)
C2—C3—C4—C6176.76 (9)C14—C15—C16—O3178.80 (12)
O2—C3—C4—C5138.19 (11)C14—C15—C16—C171.47 (19)
C2—C3—C4—C543.87 (12)O3—C16—C17—C18178.89 (13)
O2—C3—C4—C10112.08 (12)C15—C16—C17—C181.3 (2)
C2—C3—C4—C1065.86 (11)C16—C17—C18—C130.8 (2)
C1—N1—C5—C474.32 (10)C14—C13—C18—C172.74 (19)
C11—N1—C5—C448.90 (10)C12—C13—C18—C17175.99 (12)
C3—C4—C5—N172.44 (10)C4—C6—C20—C2577.87 (14)
C6—C4—C5—N1156.42 (9)C7—C6—C20—C2543.01 (14)
C10—C4—C5—N143.66 (10)C4—C6—C20—C21103.47 (12)
C3—C4—C6—C2075.97 (12)C7—C6—C20—C21135.65 (11)
C5—C4—C6—C2051.72 (13)C25—C20—C21—C220.13 (17)
C10—C4—C6—C20162.95 (9)C6—C20—C21—C22178.61 (11)
C3—C4—C6—C7157.21 (9)C20—C21—C22—C230.42 (19)
C5—C4—C6—C775.10 (11)C26—O4—C23—C22179.62 (11)
C10—C4—C6—C736.13 (10)C26—O4—C23—C240.61 (18)
C9—N2—C7—C6123.03 (10)C21—C22—C23—O4179.83 (12)
C10—N2—C7—C611.96 (11)C21—C22—C23—C240.76 (19)
C9—N2—C7—C80.54 (13)O4—C23—C24—C25179.52 (11)
C10—N2—C7—C8134.45 (9)C22—C23—C24—C250.54 (17)
C20—C6—C7—N2158.44 (8)C23—C24—C25—C200.01 (17)
C4—C6—C7—N229.85 (10)C21—C20—C25—C240.34 (17)
C20—C6—C7—C882.24 (11)C6—C20—C25—C24178.34 (10)
C4—C6—C7—C8149.17 (9)N2—C10—C27—C2860.95 (16)
N2—C7—C8—S129.46 (10)C4—C10—C27—C2864.25 (16)
C6—C7—C8—S188.03 (10)C11—C10—C27—C28177.51 (12)
C9—S1—C8—C739.36 (8)N2—C10—C27—C36117.99 (10)
C10—N2—C9—S1100.24 (10)C4—C10—C27—C36116.81 (10)
C7—N2—C9—S130.08 (11)C11—C10—C27—C363.56 (11)
C8—S1—C9—N240.67 (9)C36—C27—C28—C291.56 (17)
C9—N2—C10—C278.80 (14)C10—C27—C28—C29177.29 (12)
C7—N2—C10—C27121.64 (10)C27—C28—C29—C301.05 (19)
C9—N2—C10—C4141.06 (9)C28—C29—C30—C310.2 (2)
C7—N2—C10—C410.62 (11)C29—C30—C31—C360.86 (18)
C9—N2—C10—C11109.00 (10)C29—C30—C31—C32179.89 (13)
C7—N2—C10—C11120.56 (9)C36—C31—C32—C330.20 (18)
C3—C4—C10—N2152.82 (8)C30—C31—C32—C33179.46 (12)
C6—C4—C10—N229.13 (10)C31—C32—C33—C340.3 (2)
C5—C4—C10—N293.66 (9)C32—C33—C34—C350.56 (19)
C3—C4—C10—C2721.66 (12)C33—C34—C35—C360.29 (17)
C6—C4—C10—C27102.03 (10)C33—C34—C35—C11179.41 (11)
C5—C4—C10—C27135.18 (9)O1—C11—C35—C3457.75 (16)
C3—C4—C10—C1191.86 (9)N1—C11—C35—C3466.69 (16)
C6—C4—C10—C11144.45 (8)C10—C11—C35—C34177.83 (12)
C5—C4—C10—C1121.66 (10)O1—C11—C35—C36123.06 (10)
C5—N1—C11—O184.67 (9)N1—C11—C35—C36112.51 (10)
C1—N1—C11—O1156.69 (8)C10—C11—C35—C362.97 (11)
C5—N1—C11—C35148.89 (9)C32—C31—C36—C350.47 (17)
C1—N1—C11—C3530.25 (12)C30—C31—C36—C35179.81 (11)
C5—N1—C11—C1033.72 (10)C32—C31—C36—C27179.65 (11)
C1—N1—C11—C1084.92 (10)C30—C31—C36—C270.31 (17)
N2—C10—C11—O10.31 (12)C34—C35—C36—C310.23 (17)
C27—C10—C11—O1125.23 (9)C11—C35—C36—C31179.08 (10)
C4—C10—C11—O1110.79 (9)C34—C35—C36—C27179.88 (10)
N2—C10—C11—N1116.76 (9)C11—C35—C36—C270.81 (13)
C27—C10—C11—N1117.70 (9)C28—C27—C36—C310.91 (17)
C4—C10—C11—N16.28 (10)C10—C27—C36—C31178.19 (10)
N2—C10—C11—C35121.64 (9)C28—C27—C36—C35178.98 (10)
C27—C10—C11—C353.90 (11)C10—C27—C36—C351.92 (13)
C4—C10—C11—C35127.88 (9)
Hydrogen-bond geometry (Å, º) top
Cg7 and Cg9 centroids of the C20–C25 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N20.86 (2)1.96 (2)2.6253 (14)133.3 (19)
C24—H24A···N1i0.952.613.4447 (15)146
C26—H26C···O1i0.982.483.4078 (17)157
C19—H19B···Cg7ii0.982.823.4652 (18)124
C26—H26B···Cg7iii0.982.873.7720 (14)154
C9—H9B···Cg9iv0.992.873.8211 (14)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC36H32N2O4S
Mr588.70
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.6287 (1), 11.8672 (2), 12.6588 (2)
α, β, γ (°)84.439 (1), 75.105 (1), 68.553 (1)
V3)1436.19 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.37 × 0.25 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.943, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
39492, 11591, 9231
Rint0.036
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.02
No. of reflections11591
No. of parameters394
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg7 and Cg9 centroids of the C20–C25 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N20.86 (2)1.96 (2)2.6253 (14)133.3 (19)
C24—H24A···N1i0.952.613.4447 (15)146
C26—H26C···O1i0.982.483.4078 (17)157
C19—H19B···Cg7ii0.982.823.4652 (18)124
C26—H26B···Cg7iii0.982.873.7720 (14)154
C9—H9B···Cg9iv0.992.873.8211 (14)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RSK, HO and ASA thank Universiti Sains Malaysia (USM) for the University Research Grant No. 203/PKIMIA/6711179 and the Ministry of Science, Technology and Innovation Grant No. 09-05-lfn-meb-004. RSK also thanks USM for the award of a post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationAicher, T. D., Balkan, B., Bell, P. A., Brand, L. J., Cheon, S. H., Deems, R. O., Fell, J. B., Fillers, W. S., Fraser, J. D., Gao, J., Knorr, D. C., Kahle, G. G., Leone, C. L., Nadelson, J., Simpson, R. & Smith, H. C. (1998). J. Med. Chem. 41, 4556–4566.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLalezari, I. & Schwartz, E. L. (1988). J. Med. Chem. 31, 1427–1429.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2881-o2882
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds