organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2885-o2886

(2E)-2-(4-Fluoro­benzyl­­idene)hydrazinecarboxamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Section, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 3 October 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, C8H8FN3O, the semicarbazide group is close to being planar, with a maximum deviation of 0.020 (1) Å, and subtends a dihedral angle of 16.63 (9)° with its attached fluoro­benzene ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming layers lying parallel to the bc plane.

Related literature

For background to semicarbazides and semicarbazones, see: Dogan et al. (1999[Dogan, H. N., Duran, A. & Yemni, E. (1999). Drug Metab. Drug Interact. 15, 187-195.]); Pandeya & Dimmock (1993[Pandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659-666.]); Pandeya et al. (1998[Pandeya, S. N., Misra, V., Singh, P. N. & Rupainwar, D. C. (1998). Pharmacology, 37, 17-22.]); Sriram et al. (2004[Sriram, D., Yogeeswari, P. & Thirumurugan, R. S. (2004). Bioorg. Med. Chem. Lett. 14, 3923-3924.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609-613.]); For further synthetic details, see: Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591-o1592.],b[Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619-o1620.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8FN3O

  • Mr = 181.17

  • Monoclinic, P 21 /c

  • a = 16.522 (2) Å

  • b = 4.4381 (6) Å

  • c = 11.9457 (15) Å

  • β = 103.478 (3)°

  • V = 851.80 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.72 × 0.18 × 0.12 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.987

  • 8746 measured reflections

  • 2418 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.209

  • S = 1.00

  • 2418 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1i 0.88 (2) 2.07 (2) 2.8954 (19) 158 (2)
N2—H1N2⋯O1ii 0.92 (2) 2.00 (2) 2.9155 (19) 179 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The semicarbazides, which are the raw material of semicarbazones, have been known to possess biological activities against many of the most common species of bacteria (Dogan et al., 1999). Semicarbazones are of much interest due to their wide spectrum of antibacterial activities (Pandeya & Dimmock, 1993). Recently some workers have reviewed the bioactivity of semicarbazones and they have exhibited anticonvulsant (Pandeya et al., 1998; Yogeeswari et al., 2004) and antitubercular (Sriram et al., 2004) properties. Accordingly and by considering the biological potential of semicarbazones, herein, we have synthesized the title compound to study its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The semicarbazone group (O1/N1–N3/C8) is essentially planar with maximum deviation of 0.020 (1) Å for atom N2. This plane makes dihedral angle of 16.63 (9)° with its terminal benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2009a,b).

In the crystal structure (Fig. 2), the molecules are interconnected by N3—H1N3···O1 and N2—H1N2···O1 hydrogen bonds (Table 1) forming two-dimensional networks parallel to bc plane.

Related literature top

For background to semicarbazides and semicarbazones, see: Dogan et al. (1999); Pandeya & Dimmock (1993); Pandeya et al. (1998); Sriram et al. (2004); Yogeeswari et al. (2004); For further synthetic details, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a,b). For reference bond lengths, see: Allen et al. (1987).

Experimental top

Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly recrystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, 4-fluorobenzaldehyde (0.896 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound crystallizes out on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol to yield colourless needles. Yield: 0.98 g, 75.38%. M.p.: 506–508 K.

Refinement top

Atoms H1N2, H1N3 and H2N3 were located in a difference map and refined freely [N—H = 0.90 (2), 0.87 (2) and 0.91 (2) Å respectively]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
(2E)-2-(4-Fluorobenzylidene)hydrazinecarboxamide top
Crystal data top
C8H8FN3OF(000) = 376
Mr = 181.17Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2666 reflections
a = 16.522 (2) Åθ = 2.5–29.4°
b = 4.4381 (6) ŵ = 0.11 mm1
c = 11.9457 (15) ÅT = 296 K
β = 103.478 (3)°Needle, colourless
V = 851.80 (19) Å30.72 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
2418 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 29.9°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2323
Tmin = 0.923, Tmax = 0.987k = 66
8746 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1446P)2 + 0.0418P]
where P = (Fo2 + 2Fc2)/3
2418 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H8FN3OV = 851.80 (19) Å3
Mr = 181.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.522 (2) ŵ = 0.11 mm1
b = 4.4381 (6) ÅT = 296 K
c = 11.9457 (15) Å0.72 × 0.18 × 0.12 mm
β = 103.478 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
2418 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1657 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.987Rint = 0.024
8746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.31 e Å3
2418 reflectionsΔρmin = 0.21 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.51936 (9)1.2636 (4)1.15848 (18)0.1170 (6)
O11.01013 (7)0.7059 (3)0.87156 (9)0.0508 (3)
N10.83497 (7)0.8821 (3)0.97516 (10)0.0448 (3)
N20.90494 (8)0.7354 (3)0.96093 (11)0.0470 (3)
N30.91237 (8)1.0690 (3)0.81619 (11)0.0493 (4)
C10.71134 (11)0.8578 (5)1.18840 (15)0.0637 (5)
H1A0.74610.73331.24130.076*
C20.63885 (11)0.9701 (6)1.21288 (16)0.0705 (5)
H2A0.62440.92171.28140.085*
C30.58977 (12)1.1518 (5)1.1342 (2)0.0740 (6)
C40.60851 (13)1.2285 (6)1.0325 (2)0.0855 (7)
H4A0.57351.35430.98050.103*
C50.68021 (11)1.1161 (5)1.00849 (17)0.0669 (5)
H5A0.69371.16620.93940.080*
C60.73235 (9)0.9300 (4)1.08559 (13)0.0493 (4)
C70.80796 (9)0.8014 (4)1.06141 (13)0.0504 (4)
H7A0.83710.65601.11090.060*
C80.94581 (8)0.8362 (3)0.88136 (11)0.0405 (3)
H1N30.9423 (12)1.145 (5)0.7725 (18)0.064 (5)*
H1N20.9306 (12)0.599 (5)1.0133 (16)0.061 (5)*
H2N30.8717 (14)1.181 (5)0.8357 (19)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0854 (10)0.1393 (14)0.1524 (15)0.0374 (9)0.0807 (10)0.0080 (10)
O10.0544 (6)0.0586 (7)0.0499 (6)0.0023 (4)0.0334 (5)0.0022 (4)
N10.0447 (6)0.0544 (7)0.0417 (6)0.0019 (5)0.0228 (5)0.0006 (5)
N20.0490 (7)0.0566 (7)0.0446 (7)0.0073 (5)0.0296 (5)0.0048 (5)
N30.0569 (7)0.0541 (7)0.0457 (7)0.0004 (5)0.0299 (6)0.0032 (5)
C10.0563 (9)0.0936 (13)0.0502 (9)0.0081 (8)0.0304 (7)0.0076 (8)
C20.0662 (10)0.0974 (15)0.0620 (10)0.0021 (9)0.0438 (9)0.0068 (10)
C30.0558 (10)0.0863 (14)0.0938 (15)0.0098 (8)0.0457 (10)0.0057 (11)
C40.0695 (12)0.1019 (16)0.0965 (17)0.0321 (11)0.0423 (12)0.0232 (13)
C50.0631 (10)0.0820 (12)0.0656 (11)0.0196 (8)0.0353 (8)0.0179 (9)
C60.0457 (7)0.0643 (9)0.0448 (7)0.0019 (6)0.0244 (6)0.0001 (6)
C70.0482 (8)0.0673 (9)0.0425 (8)0.0090 (6)0.0245 (6)0.0085 (6)
C80.0461 (7)0.0452 (7)0.0361 (6)0.0067 (5)0.0215 (5)0.0085 (5)
Geometric parameters (Å, º) top
F1—C31.3568 (19)C1—H1A0.9300
O1—C81.2393 (16)C2—C31.355 (3)
N1—C71.2661 (18)C2—H2A0.9300
N1—N21.3714 (16)C3—C41.365 (3)
N2—C81.3634 (17)C4—C51.376 (2)
N2—H1N20.90 (2)C4—H4A0.9300
N3—C81.3333 (18)C5—C61.379 (2)
N3—H1N30.87 (2)C5—H5A0.9300
N3—H2N30.91 (2)C6—C71.4621 (19)
C1—C21.390 (2)C7—H7A0.9300
C1—C61.389 (2)
C7—N1—N2115.71 (12)C3—C4—C5118.7 (2)
C8—N2—N1119.96 (12)C3—C4—H4A120.6
C8—N2—H1N2118.4 (12)C5—C4—H4A120.6
N1—N2—H1N2120.3 (12)C4—C5—C6120.79 (17)
C8—N3—H1N3115.9 (13)C4—C5—H5A119.6
C8—N3—H2N3120.3 (14)C6—C5—H5A119.6
H1N3—N3—H2N3120 (2)C5—C6—C1118.85 (14)
C2—C1—C6120.56 (17)C5—C6—C7122.08 (14)
C2—C1—H1A119.7C1—C6—C7119.06 (15)
C6—C1—H1A119.7N1—C7—C6121.99 (14)
C3—C2—C1118.24 (16)N1—C7—H7A119.0
C3—C2—H2A120.9C6—C7—H7A119.0
C1—C2—H2A120.9O1—C8—N3123.66 (12)
F1—C3—C2118.27 (19)O1—C8—N2119.18 (13)
F1—C3—C4118.9 (2)N3—C8—N2117.15 (12)
C2—C3—C4122.86 (16)
C7—N1—N2—C8170.19 (13)C4—C5—C6—C7178.57 (19)
C6—C1—C2—C30.3 (3)C2—C1—C6—C50.3 (3)
C1—C2—C3—F1179.4 (2)C2—C1—C6—C7178.40 (17)
C1—C2—C3—C40.0 (4)N2—N1—C7—C6177.87 (13)
F1—C3—C4—C5179.6 (2)C5—C6—C7—N18.7 (3)
C2—C3—C4—C50.2 (4)C1—C6—C7—N1172.65 (16)
C3—C4—C5—C60.1 (4)N1—N2—C8—O1178.19 (12)
C4—C5—C6—C10.1 (3)N1—N2—C8—N33.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.88 (2)2.07 (2)2.8954 (19)158 (2)
N2—H1N2···O1ii0.92 (2)2.00 (2)2.9155 (19)179 (2)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H8FN3O
Mr181.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.522 (2), 4.4381 (6), 11.9457 (15)
β (°) 103.478 (3)
V3)851.80 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.72 × 0.18 × 0.12
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.923, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8746, 2418, 1657
Rint0.024
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.209, 1.00
No. of reflections2418
No. of parameters130
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.88 (2)2.07 (2)2.8954 (19)158 (2)
N2—H1N2···O1ii0.92 (2)2.00 (2)2.9155 (19)179 (2)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Structure Determination of kDa Outer Membrane Proteins From S. typhi by X-ray Protein Crystallography Grant (No. 1001/PSKBP/8630013). AMI thanks Professor Sandeep Sanchethi, Director, National Institute of Technology-Karnataka, India, for providing research facilities and the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDogan, H. N., Duran, A. & Yemni, E. (1999). Drug Metab. Drug Interact. 15, 187–195.  CAS Google Scholar
First citationFun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619–o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.  Google Scholar
First citationPandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659–666.  CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Misra, V., Singh, P. N. & Rupainwar, D. C. (1998). Pharmacology, 37, 17–22.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Thirumurugan, R. S. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2885-o2886
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds