metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1576-m1577

trans-(5,7,7,12,14,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene-κ4N,N′,N′′,N′′′)bis­­(nitrito-κN)cobalt(III) perchlorate hemihydrate

aDepartment of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 October 2011; accepted 15 October 2011; online 22 October 2011)

The asymmetric unit of the title CoIII complex, [Co(NO2)2(C16H32N4)]ClO4·0.5H2O, comprises two complex cations, two perchlorate anions and a water mol­ecule of crystallization. The CoIII atoms exist within distorted octa­hedral N6 geometries defined by four N atoms of the macrocycle ligand and trans-N atoms derived from the nitrite anions. Systematic variations in the Co—N bond lengths are correlated with the presence of intra­molecular N—H⋯O(nitrite) hydrogen bonds. In the crystal, water-O—H⋯O(perchlorate) hydrogen bonds, involving one of the independent perchlorate anions only, lead to supra­molecular chains along the b-axis direction. The three-dimensional architecture is consolidated by numerous C—H⋯O inter­actions. The crystal studied was a non-merohedral, racemic twin.

Related literature

For background to macrocycles and for related structures, see: Roy et al. (2006[Roy, T. G., Hazari, S. K. S., Dey, B. K., Sutradhar, R., Dey, L., Anowar, N. & Tiekink, E. R. T. (2006). J. Coord. Chem. 59, 351-362.]); Hazari et al. (2008[Hazari, S. K. S., Roy, T. G., Hazari, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]). For the synthesis, see: Curtis & Hay (1966[Curtis, N. F. & Hay, R. W. (1966). Chem. Commun. pp. 524-525.]); Bembi et al. (1984[Bembi, R., Bhardwaj, V. K., Singh, R., Teneja, K. & Aftab, S. (1984). Inorg. Chem. 23, 4153-4157.]). For additional geometric analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO2)2(C16H32N4)]ClO4·0.5H2O

  • Mr = 539.87

  • Monoclinic, P 21

  • a = 15.7241 (5) Å

  • b = 6.8989 (2) Å

  • c = 20.6600 (8) Å

  • β = 97.196 (3)°

  • V = 2223.52 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.35 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.794, Tmax = 1.000

  • 16801 measured reflections

  • 13634 independent reflections

  • 12641 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.135

  • S = 1.07

  • 13634 reflections

  • 599 parameters

  • 67 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 8210 Friedel pairs

  • Flack parameter: 0.509 (17)

Table 1
Selected bond lengths (Å)

Co1—N1 1.933 (4)
Co1—N2 1.977 (4)
Co1—N3 1.930 (4)
Co1—N4 1.982 (3)
Co1—N5 1.992 (4)
Co1—N6 1.926 (4)
Co2—N7 1.937 (4)
Co2—N8 1.959 (4)
Co2—N9 1.933 (4)
Co2—N10 1.970 (3)
Co2—N11 1.937 (4)
Co2—N12 2.009 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.88 2.02 2.718 (5) 135
N4—H4⋯O1 0.88 2.02 2.718 (5) 135
N8—H8⋯O7 0.88 2.04 2.744 (5) 136
N10—H10⋯O8 0.88 2.03 2.732 (5) 136
O1W—H1W⋯O9 0.85 2.24 2.907 (7) 135
O1W—H2W⋯O10i 0.85 2.34 2.988 (7) 134
C1—H1A⋯O6 0.99 2.46 3.428 (6) 166
C6—H6B⋯O13ii 0.99 2.45 3.426 (6) 169
C8—H8A⋯O2i 0.98 2.53 3.352 (6) 141
C8—H8C⋯O7iii 0.98 2.58 3.549 (6) 169
C9—H9A⋯O1i 0.99 2.53 3.441 (6) 153
C10—H10A⋯O1Wi 0.99 2.59 3.115 (8) 114
C10—H10A⋯O10i 0.99 2.59 3.256 (6) 125
C16—H16A⋯O3iv 0.98 2.46 3.384 (6) 157
C16—H16B⋯O6 0.98 2.53 3.329 (6) 138
C17—H17B⋯O7i 0.99 2.59 3.426 (6) 142
C18—H18B⋯O10v 0.99 2.53 3.230 (6) 128
C20—H20A⋯O12vi 0.98 2.57 3.424 (7) 145
C21—H21B⋯O12vii 0.98 2.57 3.535 (6) 167
C24—H24A⋯O6iv 0.98 2.53 3.401 (6) 148
C25—H25B⋯O3iv 0.99 2.47 3.421 (6) 161
C26—H26B⋯O15 0.99 2.37 3.262 (6) 149
C28—H28B⋯O14i 0.98 2.56 3.264 (6) 129
C32—H32B⋯O14viii 0.98 2.45 3.384 (6) 159
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{3\over 2}}, -z+1]; (iii) x+1, y-1, z; (iv) x, y+1, z; (v) x-1, y-1, z; (vi) x-1, y, z; (vii) [-x+1, y-{\script{1\over 2}}, -z]; (viii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title complex, (I), was investigated as a part of continuing studies into the biocidal potential and structural properties of macrocyclic metal complexes (Roy et al. 2006; Hazari et al., 2008).

The asymmetric unit of (I) comprises two independent complex cations, two perchlorate anions and a water molecule of crystallization, Fig. 1. The CoIII atom is coordinated by the four nitrogen atoms of the macrocycle and two nitrogen atoms derived from the nitrite anions. The resulting N6 coordination geometry is based on an octahedron. The Co—N distances span a relatively narrow range, i.e. 1.926 (4) to 2.009 (4) Å, Table 1. The shortest and longest Co—N distances involve Co—N(nitrite) bonds, and it is notable that one Co—N(nitrite) bond is systematically longer than the other in each complex cation. This feature of the bonding is readily explained by the presence of intramolecular N—H···O(nitrite) hydrogen bonds, Table 2. In each complex cation, one nitrite group (i.e. N5- and N12-) is orientated to optimize the formation of N—H···O hydrogen bonds as each nitrite-O atom is aligned with an amine-H atom, which lie to the same side of the CoN4 plane. The relative lengthening of the Co—N5, N12 bonds compensates for the weakening of the respective N—O bonds. Only small differences in the molecular structures are manifested: the r.m.s. deviations in bond distances and angles are 0.0132 Å and 0.928°, respectively (Spek, 2009). In terms of conformations, a small difference in the relative orientations in the nitrite anions is noted. Thus, for the Co1 complex, the dihedral angle formed between these is 55.1 (4)° which compares to 62.6 (4)° in the Co2 complex.

In the crystal packing, the water molecule of solvation bridges two Cl1-perchlorate anions, forming donor O—H···O interactions, Table 2. The result of this hydrogen bonding is the formation of supramolecular chains along the b axis comprising alternating water molecules and Cl-perchlorate anions. The water-O atom exists in a pocket of C-bound hydrogen atoms and the closest C—H···O(water) contact is weak, Table 2. The remaining intermolecular interactions are of the type C—H···O, Table 2, which serve to consolidate the three-dimensional architecture, Fig. 2. Globally, the crystal structure comprises layers of complex molecules in the ab plane comprising alternating rows of Co1- and Co2-containing complex molecules. Interspersing layers of complex cations are alternating layers comprising the Cl1-perchlorate anions and water molecules or Cl2-perchlorate anions.

Related literature top

For background to macrocycles and for related structures, see: Roy et al. (2006); Hazari et al. (2008). For the synthesis, see: Curtis et al. (1966); Bembi et al. (1984). For additional geometric analysis, see: Spek (2009).

Experimental top

The macrocycle, L, (Curtis & Hay, 1966) and precursor complex (Bembi et al., 1984) were prepared as described in the literature. Sodium nitrite (0.069 g, 1.0 mmol) and trans-[CoLCl2](C1O4) (0.252 g, 0.5 mmol) were suspended in methanol (20 ml). After heating the mixture on a water-bath for 15 minutes, the yellow solution was filtered while hot. The filtrate was concentrated on a water bath until crystallization commenced. After cooling, the yellow product trans-[CoL(NO2)2](ClO4) was filtered off, washed with dry ethanol, followed by diethyl ether and finally dried in vacuo. M.pt:. 495–497 K. Yield 76.2%. FT—IR (KBr, cm-1): 3120 (s, νN-H); 1649 (s, νCN); 1079, 622 (versus, νClO4); 519 (s, νCo-N); 117 5(m, νC—C); 2920 (vw, νCH); 1380 (s, νCH3); 1396 (versus, νasymNO2); 1310 (versus, νsymNO2). Orange blocks of the title hemihydrate were prepared by slow evaporation of its acetonitrile and ethanol (1:1) mixture.

Refinement top

The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.98–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(N,C). The water-H atoms were located from a difference map, fixed in these positions are refined with Uiso(H) = 1.5Uequiv(O). Several of the atoms (i.e. N4, N5, N7, C2, C5, C7, C9, C10, C11, C12 and C29) exhibited large displacement parameters and these were refined to be nearly isotropic with the ISOR command in SHELXL97 (Sheldrick, 2008). The crystal is a non-merohedral, racemic twin. The two twin domains were separated by the diffractometer software and the intensities were integrated simultaneously; the two domains were scaled separately. The proportion of the twin domains refined to 0.644 (1): 0.356 (1). The Flack parameter refined to 0.509 (17) from 8210 Friedel pairs, i.e. the crystal is a racemic twin.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components comprising the asymmetric unit of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents of (I) showing the alternating layers of complex cations and anions stacking along the c axis. The O—H···O (largely obscured) and C—H···O interactions are shown as blue and orange dashed lines. respectively.
trans-(5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11- diene-κ4N,N',N'',N''')bis(nitrito- κN)cobalt(III) perchlorate hemihydrate top
Crystal data top
[Co(NO2)2(C16H32N4)]ClO4·0.5H2OF(000) = 1132
Mr = 539.87Dx = 1.613 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7862 reflections
a = 15.7241 (5) Åθ = 2.2–27.5°
b = 6.8989 (2) ŵ = 0.95 mm1
c = 20.6600 (8) ÅT = 100 K
β = 97.196 (3)°Block, orange
V = 2223.52 (13) Å30.35 × 0.35 × 0.35 mm
Z = 4
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
13634 independent reflections
Radiation source: SuperNova (Mo) X-ray Source12641 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.095
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.2°
ω scanh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 88
Tmin = 0.794, Tmax = 1.000l = 2526
16801 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0839P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
13634 reflectionsΔρmax = 0.46 e Å3
599 parametersΔρmin = 0.73 e Å3
67 restraintsAbsolute structure: Flack (1983); 8210 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.509 (17)
Crystal data top
[Co(NO2)2(C16H32N4)]ClO4·0.5H2OV = 2223.52 (13) Å3
Mr = 539.87Z = 4
Monoclinic, P21Mo Kα radiation
a = 15.7241 (5) ŵ = 0.95 mm1
b = 6.8989 (2) ÅT = 100 K
c = 20.6600 (8) Å0.35 × 0.35 × 0.35 mm
β = 97.196 (3)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
13634 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
12641 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 1.000Rint = 0.095
16801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.46 e Å3
S = 1.07Δρmin = 0.73 e Å3
13634 reflectionsAbsolute structure: Flack (1983); 8210 Friedel pairs
599 parametersAbsolute structure parameter: 0.509 (17)
67 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.51998 (3)0.49995 (7)0.24819 (3)0.00692 (12)
Co20.01422 (3)0.97924 (8)0.25404 (3)0.00800 (13)
Cl10.77354 (7)1.47781 (19)0.03181 (5)0.0185 (2)
Cl20.27764 (7)1.43839 (17)0.49275 (6)0.0174 (2)
O10.6409 (2)0.7731 (5)0.21375 (16)0.0163 (7)
O20.6015 (2)0.8328 (5)0.30666 (16)0.0161 (7)
O30.3701 (2)0.2859 (5)0.24567 (17)0.0156 (7)
O40.4778 (2)0.1115 (4)0.22963 (17)0.0142 (7)
O50.0422 (2)0.5864 (4)0.23665 (17)0.0169 (7)
O60.1593 (2)0.7499 (5)0.25060 (18)0.0185 (7)
O70.1090 (2)1.2745 (5)0.21914 (17)0.0196 (8)
O80.0481 (2)1.3102 (5)0.31662 (17)0.0181 (7)
O90.7334 (3)1.2986 (6)0.00821 (19)0.0355 (10)
O100.7360 (2)1.5462 (6)0.08771 (19)0.0340 (10)
O110.7609 (3)1.6216 (6)0.0189 (2)0.0392 (11)
O120.8630 (2)1.4462 (6)0.04931 (19)0.0316 (9)
O130.2927 (2)1.6370 (5)0.47582 (18)0.0265 (9)
O140.1900 (2)1.4119 (6)0.5032 (2)0.0378 (11)
O150.2988 (3)1.3121 (6)0.44121 (19)0.0389 (11)
O160.3315 (2)1.3903 (6)0.55179 (17)0.0293 (9)
O1W0.6926 (4)0.9679 (9)0.0859 (3)0.0860 (19)
H1w0.71831.07640.08530.129*
H2w0.72600.88220.07380.129*
N10.4211 (2)0.6657 (5)0.22789 (19)0.0092 (8)
N20.5008 (2)0.5382 (5)0.34007 (17)0.0093 (8)
H20.52660.64890.35070.011*
N30.6214 (2)0.3431 (6)0.26877 (19)0.0114 (8)
N40.5454 (2)0.4761 (5)0.15697 (15)0.0072 (6)
H40.58480.56530.15410.009*
N50.5956 (2)0.7325 (5)0.25722 (19)0.0106 (8)
N60.4479 (2)0.2733 (6)0.23987 (18)0.0106 (8)
N70.0814 (2)0.8350 (6)0.28043 (19)0.0103 (8)
N80.0454 (2)0.9498 (6)0.16546 (17)0.0097 (8)
H80.08221.04630.16220.012*
N90.1049 (2)1.1387 (5)0.22762 (19)0.0116 (8)
N100.0702 (2)1.0221 (5)0.34365 (16)0.0084 (7)
H100.04921.13440.35410.010*
N110.0792 (2)0.7439 (5)0.24578 (18)0.0096 (8)
N120.0550 (2)1.2198 (5)0.26383 (19)0.0110 (8)
C10.3777 (3)0.7146 (7)0.2855 (2)0.0137 (10)
H1A0.31490.70070.27420.016*
H1B0.39000.85110.29820.016*
C20.4080 (3)0.5835 (7)0.3419 (2)0.0125 (9)
H2A0.40040.64810.38350.015*
H2B0.37410.46230.33870.015*
C30.5399 (3)0.4014 (6)0.3918 (2)0.0116 (9)
C40.5304 (3)0.4886 (8)0.4587 (2)0.0160 (9)
H4A0.47140.47030.46820.024*
H4B0.54350.62740.45840.024*
H4C0.57000.42390.49220.024*
C50.5010 (3)0.1996 (7)0.3867 (2)0.0159 (10)
H5A0.51150.14020.34530.024*
H5B0.43910.20850.38840.024*
H5C0.52730.11990.42310.024*
C60.6364 (3)0.3948 (7)0.3862 (2)0.0137 (10)
H6A0.65890.52870.39120.016*
H6B0.66460.31840.42340.016*
C70.6635 (3)0.3122 (6)0.3249 (2)0.0110 (9)
C80.7444 (3)0.1935 (7)0.3337 (2)0.0146 (10)
H8A0.73000.05600.32740.022*
H8B0.77400.21310.37780.022*
H8C0.78190.23390.30170.022*
C90.6566 (3)0.2704 (7)0.2100 (2)0.0131 (9)
H9A0.67270.13240.21640.016*
H9B0.70900.34430.20390.016*
C100.5923 (3)0.2903 (6)0.1499 (2)0.0114 (9)
H10A0.62170.29350.11030.014*
H10B0.55190.17960.14640.014*
C110.4776 (3)0.5232 (7)0.1011 (2)0.0111 (9)
C120.4050 (3)0.3767 (7)0.0921 (2)0.0151 (10)
H12A0.37650.37250.13170.023*
H12B0.42820.24820.08410.023*
H12C0.36360.41470.05490.023*
C130.5202 (3)0.5415 (7)0.0388 (2)0.0170 (10)
H13A0.56970.62860.04670.025*
H13B0.47890.59430.00370.025*
H13C0.53930.41350.02610.025*
C140.4424 (3)0.7242 (7)0.1149 (2)0.0129 (9)
H14A0.49120.81580.12020.016*
H14B0.40380.76520.07570.016*
C150.3943 (3)0.7472 (6)0.1732 (2)0.0108 (9)
C160.3156 (3)0.8708 (7)0.1635 (2)0.0163 (10)
H16A0.32060.97530.19590.024*
H16B0.26520.79140.16880.024*
H16C0.30930.92670.11960.024*
C170.1415 (3)0.7650 (7)0.2246 (2)0.0153 (10)
H17A0.19430.84470.22050.018*
H17B0.15770.62920.23250.018*
C180.1013 (3)0.7762 (7)0.1619 (2)0.0145 (10)
H18A0.06720.65800.15660.017*
H18B0.14650.78650.12410.017*
C190.0020 (3)0.9785 (8)0.10736 (19)0.0147 (9)
C200.0625 (3)0.9806 (8)0.0452 (2)0.0206 (10)
H20A0.10621.07980.04920.031*
H20B0.09000.85330.03910.031*
H20C0.03261.01010.00750.031*
C210.0677 (3)0.8187 (7)0.1013 (2)0.0188 (11)
H21A0.11250.82440.13880.028*
H21B0.09350.83690.06100.028*
H21C0.03930.69210.10040.028*
C220.0456 (3)1.1759 (7)0.1147 (2)0.0179 (11)
H22A0.07311.19960.07480.022*
H22B0.00021.27500.11560.022*
C230.1112 (3)1.2107 (6)0.1720 (2)0.0138 (10)
C240.1818 (3)1.3476 (7)0.1591 (2)0.0173 (10)
H24A0.19431.43600.19620.026*
H24B0.16351.42270.11960.026*
H24C0.23341.27340.15320.026*
C250.1684 (3)1.1964 (7)0.2841 (2)0.0139 (10)
H25A0.15771.33210.29630.017*
H25B0.22701.18890.27140.017*
C260.1619 (3)1.0651 (7)0.3419 (2)0.0190 (10)
H26A0.19410.94360.33730.023*
H26B0.18631.13010.38280.023*
C270.0498 (3)0.8906 (7)0.3978 (2)0.0181 (10)
C280.0840 (3)0.6852 (7)0.3920 (2)0.0217 (11)
H28A0.05160.62030.35450.033*
H28B0.07760.61260.43180.033*
H28C0.14480.69060.38580.033*
C290.0903 (3)0.9747 (9)0.4635 (2)0.0252 (10)
H29A0.07511.11200.46590.038*
H29B0.15280.96180.46710.038*
H29C0.06890.90390.49920.038*
C300.0460 (3)0.8849 (7)0.3975 (2)0.0186 (11)
H30A0.06561.01870.40460.022*
H30B0.05830.80690.43540.022*
C310.1002 (3)0.8057 (7)0.3377 (2)0.0148 (10)
C320.1776 (3)0.6968 (6)0.3511 (2)0.0156 (10)
H32A0.22380.71760.31530.023*
H32B0.19590.74260.39210.023*
H32C0.16410.55820.35470.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0060 (2)0.0075 (3)0.0074 (2)0.0003 (3)0.0012 (2)0.0003 (2)
Co20.0063 (2)0.0083 (3)0.0096 (3)0.0010 (3)0.0015 (2)0.0011 (3)
Cl10.0191 (5)0.0164 (5)0.0189 (5)0.0018 (5)0.0013 (4)0.0017 (5)
Cl20.0161 (5)0.0208 (6)0.0149 (5)0.0034 (4)0.0006 (4)0.0002 (5)
O10.0209 (17)0.0118 (16)0.0179 (17)0.0089 (14)0.0093 (15)0.0027 (14)
O20.0204 (18)0.0124 (15)0.0152 (17)0.0036 (14)0.0009 (14)0.0029 (14)
O30.0099 (15)0.0192 (17)0.0176 (18)0.0047 (13)0.0019 (14)0.0026 (15)
O40.0169 (16)0.0059 (15)0.0199 (18)0.0003 (12)0.0023 (14)0.0005 (13)
O50.0166 (16)0.0122 (16)0.0225 (19)0.0027 (13)0.0053 (14)0.0021 (14)
O60.0104 (16)0.0210 (17)0.0244 (19)0.0017 (13)0.0033 (15)0.0027 (17)
O70.0236 (19)0.0171 (17)0.0181 (18)0.0082 (15)0.0023 (16)0.0026 (15)
O80.0169 (17)0.0145 (17)0.0237 (19)0.0000 (14)0.0054 (14)0.0065 (15)
O90.048 (3)0.021 (2)0.034 (2)0.0139 (19)0.011 (2)0.0063 (18)
O100.0256 (19)0.044 (2)0.035 (2)0.0093 (18)0.0116 (17)0.0127 (19)
O110.052 (3)0.030 (2)0.034 (2)0.004 (2)0.001 (2)0.010 (2)
O120.0192 (17)0.034 (2)0.040 (2)0.0037 (17)0.0033 (17)0.0135 (19)
O130.029 (2)0.025 (2)0.025 (2)0.0018 (17)0.0001 (17)0.0015 (17)
O140.0163 (18)0.059 (3)0.039 (2)0.0011 (18)0.0060 (18)0.026 (2)
O150.054 (3)0.046 (2)0.019 (2)0.017 (2)0.010 (2)0.0153 (19)
O160.026 (2)0.043 (2)0.0160 (19)0.0018 (17)0.0078 (16)0.0028 (17)
O1W0.124 (5)0.053 (3)0.091 (4)0.016 (4)0.054 (4)0.002 (4)
N10.0100 (19)0.0081 (18)0.0096 (19)0.0002 (15)0.0009 (15)0.0024 (15)
N20.0088 (17)0.0118 (19)0.0079 (18)0.0022 (14)0.0038 (13)0.0020 (15)
N30.0070 (17)0.0123 (18)0.016 (2)0.0014 (15)0.0054 (16)0.0032 (16)
N40.0084 (9)0.0065 (10)0.0071 (9)0.0003 (9)0.0026 (8)0.0005 (9)
N50.0098 (11)0.0109 (11)0.0107 (11)0.0016 (8)0.0002 (8)0.0009 (9)
N60.015 (2)0.0103 (19)0.0077 (19)0.0022 (15)0.0045 (16)0.0002 (15)
N70.0086 (11)0.0098 (11)0.0122 (11)0.0001 (8)0.0003 (8)0.0001 (9)
N80.0098 (16)0.0134 (19)0.0067 (17)0.0021 (15)0.0039 (13)0.0011 (15)
N90.0057 (17)0.0112 (19)0.018 (2)0.0007 (15)0.0018 (16)0.0020 (17)
N100.0091 (16)0.0090 (18)0.0075 (16)0.0014 (14)0.0019 (13)0.0038 (14)
N110.0100 (17)0.0086 (18)0.0108 (19)0.0023 (15)0.0033 (15)0.0036 (16)
N120.0078 (17)0.010 (2)0.016 (2)0.0010 (15)0.0044 (15)0.0029 (17)
C10.011 (2)0.019 (2)0.012 (2)0.0053 (19)0.0061 (18)0.001 (2)
C20.0121 (12)0.0134 (12)0.0123 (12)0.0004 (9)0.0032 (9)0.0011 (9)
C30.015 (2)0.015 (2)0.005 (2)0.0032 (18)0.0001 (17)0.0013 (17)
C40.019 (2)0.019 (2)0.010 (2)0.002 (2)0.0004 (16)0.003 (2)
C50.0161 (13)0.0170 (13)0.0143 (13)0.0001 (9)0.0013 (9)0.0007 (9)
C60.013 (2)0.017 (2)0.010 (2)0.0035 (18)0.0040 (18)0.0019 (19)
C70.0107 (12)0.0106 (12)0.0119 (12)0.0017 (9)0.0023 (9)0.0004 (9)
C80.009 (2)0.013 (2)0.022 (3)0.0033 (18)0.0032 (19)0.002 (2)
C90.0130 (12)0.0132 (12)0.0134 (12)0.0024 (9)0.0030 (9)0.0009 (9)
C100.0120 (12)0.0111 (12)0.0113 (12)0.0004 (9)0.0027 (9)0.0015 (9)
C110.0116 (12)0.0121 (12)0.0096 (12)0.0003 (9)0.0014 (9)0.0013 (9)
C120.0148 (12)0.0168 (12)0.0138 (12)0.0014 (9)0.0028 (9)0.0006 (9)
C130.021 (2)0.022 (2)0.008 (2)0.000 (2)0.0014 (18)0.0008 (19)
C140.010 (2)0.019 (2)0.010 (2)0.0004 (19)0.0037 (18)0.0011 (19)
C150.011 (2)0.009 (2)0.012 (2)0.0004 (18)0.0019 (17)0.0016 (17)
C160.017 (2)0.014 (2)0.018 (3)0.0050 (19)0.002 (2)0.001 (2)
C170.010 (2)0.014 (2)0.022 (3)0.0051 (18)0.0009 (19)0.001 (2)
C180.010 (2)0.017 (2)0.015 (2)0.0038 (19)0.0024 (18)0.006 (2)
C190.018 (2)0.021 (2)0.0061 (18)0.002 (2)0.0058 (16)0.004 (2)
C200.029 (2)0.023 (2)0.009 (2)0.002 (3)0.0009 (18)0.000 (2)
C210.023 (3)0.024 (3)0.011 (2)0.003 (2)0.009 (2)0.005 (2)
C220.020 (3)0.016 (2)0.018 (3)0.001 (2)0.006 (2)0.007 (2)
C230.013 (2)0.006 (2)0.024 (3)0.0030 (17)0.0068 (19)0.0012 (19)
C240.016 (2)0.018 (2)0.020 (2)0.002 (2)0.007 (2)0.007 (2)
C250.010 (2)0.011 (2)0.020 (2)0.0032 (18)0.0025 (19)0.001 (2)
C260.014 (2)0.024 (3)0.018 (2)0.005 (2)0.0005 (19)0.006 (2)
C270.020 (2)0.022 (2)0.012 (2)0.008 (2)0.001 (2)0.006 (2)
C280.022 (3)0.023 (3)0.019 (3)0.001 (2)0.001 (2)0.004 (2)
C290.0260 (13)0.0268 (13)0.0225 (13)0.0002 (10)0.0021 (9)0.0010 (10)
C300.026 (3)0.017 (2)0.012 (2)0.003 (2)0.003 (2)0.001 (2)
C310.008 (2)0.014 (2)0.023 (3)0.0001 (18)0.0049 (19)0.005 (2)
C320.013 (2)0.010 (2)0.025 (3)0.0040 (18)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
Co1—N11.933 (4)C7—C81.505 (6)
Co1—N21.977 (4)C8—H8A0.9800
Co1—N31.930 (4)C8—H8B0.9800
Co1—N41.982 (3)C8—H8C0.9800
Co1—N51.992 (4)C9—C101.506 (6)
Co1—N61.926 (4)C9—H9A0.9900
Co2—N71.937 (4)C9—H9B0.9900
Co2—N81.959 (4)C10—H10A0.9900
Co2—N91.933 (4)C10—H10B0.9900
Co2—N101.970 (3)C11—C121.518 (6)
Co2—N111.937 (4)C11—C131.529 (6)
Co2—N122.009 (4)C11—C141.533 (6)
Cl1—O121.425 (4)C12—H12A0.9800
Cl1—O111.438 (4)C12—H12B0.9800
Cl1—O101.440 (4)C12—H12C0.9800
Cl1—O91.445 (4)C13—H13A0.9800
Cl2—O141.433 (4)C13—H13B0.9800
Cl2—O161.434 (4)C13—H13C0.9800
Cl2—O131.441 (4)C14—C151.508 (6)
Cl2—O151.446 (4)C14—H14A0.9900
O1—N51.246 (5)C14—H14B0.9900
O2—N51.227 (5)C15—C161.496 (6)
O3—N61.247 (5)C16—H16A0.9800
O4—N61.239 (5)C16—H16B0.9800
O5—N111.236 (5)C16—H16C0.9800
O6—N111.251 (5)C17—C181.512 (6)
O7—N121.232 (5)C17—H17A0.9900
O8—N121.250 (5)C17—H17B0.9900
O1W—H1w0.8517C18—H18A0.9900
O1W—H2w0.8497C18—H18B0.9900
N1—C151.286 (6)C19—C221.524 (7)
N1—C11.484 (5)C19—C211.526 (7)
N2—C21.497 (5)C19—C201.534 (6)
N2—C31.499 (5)C20—H20A0.9800
N2—H20.8800C20—H20B0.9800
N3—C71.279 (6)C20—H20C0.9800
N3—C91.483 (6)C21—H21A0.9800
N4—C101.495 (5)C21—H21B0.9800
N4—C111.505 (5)C21—H21C0.9800
N4—H40.8800C22—C231.489 (7)
N7—C311.272 (6)C22—H22A0.9900
N7—C171.478 (6)C22—H22B0.9900
N8—C181.483 (6)C23—C241.506 (6)
N8—C191.503 (5)C24—H24A0.9800
N8—H80.8800C24—H24B0.9800
N9—C231.267 (6)C24—H24C0.9800
N9—C251.491 (6)C25—C261.513 (7)
N10—C261.477 (5)C25—H25A0.9900
N10—C271.506 (6)C25—H25B0.9900
N10—H100.8800C26—H26A0.9900
C1—C21.504 (6)C26—H26B0.9900
C1—H1A0.9900C27—C301.507 (7)
C1—H1B0.9900C27—C281.526 (7)
C2—H2A0.9900C27—C291.538 (7)
C2—H2B0.9900C28—H28A0.9800
C3—C51.519 (6)C28—H28B0.9800
C3—C41.532 (6)C28—H28C0.9800
C3—C61.536 (6)C29—H29A0.9800
C4—H4A0.9800C29—H29B0.9800
C4—H4B0.9800C29—H29C0.9800
C4—H4C0.9800C30—C311.511 (7)
C5—H5A0.9800C30—H30A0.9900
C5—H5B0.9800C30—H30B0.9900
C5—H5C0.9800C31—C321.485 (6)
C6—C71.498 (6)C32—H32A0.9800
C6—H6A0.9900C32—H32B0.9800
C6—H6B0.9900C32—H32C0.9800
N6—Co1—N391.41 (16)N3—C9—C10111.3 (4)
N6—Co1—N190.74 (17)N3—C9—H9A109.4
N3—Co1—N1177.85 (17)C10—C9—H9A109.4
N6—Co1—N292.01 (16)N3—C9—H9B109.4
N3—Co1—N294.84 (15)C10—C9—H9B109.4
N1—Co1—N285.07 (16)H9A—C9—H9B108.0
N6—Co1—N491.97 (15)N4—C10—C9106.6 (3)
N3—Co1—N484.47 (15)N4—C10—H10A110.4
N1—Co1—N495.47 (15)C9—C10—H10A110.4
N2—Co1—N4175.98 (16)N4—C10—H10B110.4
N6—Co1—N5179.36 (17)C9—C10—H10B110.4
N3—Co1—N587.96 (16)H10A—C10—H10B108.6
N1—Co1—N589.89 (16)N4—C11—C12113.5 (4)
N2—Co1—N587.92 (16)N4—C11—C13108.7 (3)
N4—Co1—N588.10 (15)C12—C11—C13110.7 (4)
N9—Co2—N1192.08 (16)N4—C11—C14106.8 (3)
N9—Co2—N7176.13 (16)C12—C11—C14110.0 (4)
N11—Co2—N791.77 (16)C13—C11—C14106.8 (4)
N9—Co2—N894.51 (16)C11—C12—H12A109.5
N11—Co2—N891.52 (16)C11—C12—H12B109.5
N7—Co2—N884.98 (16)H12A—C12—H12B109.5
N9—Co2—N1085.49 (16)C11—C12—H12C109.5
N11—Co2—N1091.71 (15)H12A—C12—H12C109.5
N7—Co2—N1094.81 (15)H12B—C12—H12C109.5
N8—Co2—N10176.77 (15)C11—C13—H13A109.5
N9—Co2—N1289.23 (15)C11—C13—H13B109.5
N11—Co2—N12178.64 (15)H13A—C13—H13B109.5
N7—Co2—N1286.92 (16)C11—C13—H13C109.5
N8—Co2—N1288.74 (16)H13A—C13—H13C109.5
N10—Co2—N1288.03 (15)H13B—C13—H13C109.5
O12—Cl1—O11109.4 (3)C15—C14—C11118.2 (4)
O12—Cl1—O10109.7 (2)C15—C14—H14A107.8
O11—Cl1—O10109.0 (3)C11—C14—H14A107.8
O12—Cl1—O9109.3 (3)C15—C14—H14B107.8
O11—Cl1—O9109.2 (3)C11—C14—H14B107.8
O10—Cl1—O9110.2 (3)H14A—C14—H14B107.1
O14—Cl2—O16108.6 (2)N1—C15—C16122.8 (4)
O14—Cl2—O13110.4 (2)N1—C15—C14120.9 (4)
O16—Cl2—O13109.2 (2)C16—C15—C14116.3 (4)
O14—Cl2—O15110.4 (3)C15—C16—H16A109.5
O16—Cl2—O15108.7 (3)C15—C16—H16B109.5
O13—Cl2—O15109.5 (2)H16A—C16—H16B109.5
H1w—O1w—H2w107.0C15—C16—H16C109.5
C15—N1—C1118.2 (4)H16A—C16—H16C109.5
C15—N1—Co1128.0 (3)H16B—C16—H16C109.5
C1—N1—Co1113.5 (3)N7—C17—C18110.9 (4)
C2—N2—C3115.4 (3)N7—C17—H17A109.5
C2—N2—Co1108.5 (3)C18—C17—H17A109.5
C3—N2—Co1120.2 (3)N7—C17—H17B109.5
C2—N2—H2103.5C18—C17—H17B109.5
C3—N2—H2103.5H17A—C17—H17B108.1
Co1—N2—H2103.5N8—C18—C17107.9 (4)
C7—N3—C9118.8 (4)N8—C18—H18A110.1
C7—N3—Co1127.8 (3)C17—C18—H18A110.1
C9—N3—Co1113.1 (3)N8—C18—H18B110.1
C10—N4—C11114.9 (3)C17—C18—H18B110.1
C10—N4—Co1108.9 (3)H18A—C18—H18B108.4
C11—N4—Co1120.2 (2)N8—C19—C22107.5 (4)
C10—N4—H4103.5N8—C19—C21112.2 (4)
C11—N4—H4103.5C22—C19—C21110.7 (4)
Co1—N4—H4103.5N8—C19—C20109.1 (3)
O2—N5—O1118.9 (4)C22—C19—C20108.4 (4)
O2—N5—Co1120.9 (3)C21—C19—C20108.8 (4)
O1—N5—Co1120.1 (3)C19—C20—H20A109.5
O4—N6—O3118.4 (4)C19—C20—H20B109.5
O4—N6—Co1121.0 (3)H20A—C20—H20B109.5
O3—N6—Co1120.5 (3)C19—C20—H20C109.5
C31—N7—C17118.3 (4)H20A—C20—H20C109.5
C31—N7—Co2128.5 (3)H20B—C20—H20C109.5
C17—N7—Co2113.0 (3)C19—C21—H21A109.5
C18—N8—C19114.7 (4)C19—C21—H21B109.5
C18—N8—Co2110.0 (3)H21A—C21—H21B109.5
C19—N8—Co2120.4 (3)C19—C21—H21C109.5
C18—N8—H8103.1H21A—C21—H21C109.5
C19—N8—H8103.1H21B—C21—H21C109.5
Co2—N8—H8103.1C23—C22—C19118.7 (4)
C23—N9—C25119.0 (4)C23—C22—H22A107.6
C23—N9—Co2128.6 (3)C19—C22—H22A107.6
C25—N9—Co2112.1 (3)C23—C22—H22B107.6
C26—N10—C27116.0 (4)C19—C22—H22B107.6
C26—N10—Co2109.3 (3)H22A—C22—H22B107.1
C27—N10—Co2119.8 (3)N9—C23—C22122.2 (4)
C26—N10—H10103.1N9—C23—C24123.3 (4)
C27—N10—H10103.1C22—C23—C24114.4 (4)
Co2—N10—H10103.1C23—C24—H24A109.5
O5—N11—O6119.4 (4)C23—C24—H24B109.5
O5—N11—Co2120.4 (3)H24A—C24—H24B109.5
O6—N11—Co2120.1 (3)C23—C24—H24C109.5
O7—N12—O8118.5 (4)H24A—C24—H24C109.5
O7—N12—Co2120.6 (3)H24B—C24—H24C109.5
O8—N12—Co2120.8 (3)N9—C25—C26110.7 (4)
N1—C1—C2110.5 (4)N9—C25—H25A109.5
N1—C1—H1A109.5C26—C25—H25A109.5
C2—C1—H1A109.5N9—C25—H25B109.5
N1—C1—H1B109.5C26—C25—H25B109.5
C2—C1—H1B109.5H25A—C25—H25B108.1
H1A—C1—H1B108.1N10—C26—C25107.6 (4)
N2—C2—C1108.8 (3)N10—C26—H26A110.2
N2—C2—H2A109.9C25—C26—H26A110.2
C1—C2—H2A109.9N10—C26—H26B110.2
N2—C2—H2B109.9C25—C26—H26B110.2
C1—C2—H2B109.9H26A—C26—H26B108.5
H2A—C2—H2B108.3N10—C27—C30108.6 (4)
N2—C3—C5113.7 (4)N10—C27—C28113.0 (4)
N2—C3—C4108.5 (4)C30—C27—C28109.7 (4)
C5—C3—C4109.8 (4)N10—C27—C29109.0 (4)
N2—C3—C6106.6 (3)C30—C27—C29108.5 (4)
C5—C3—C6111.1 (4)C28—C27—C29108.0 (4)
C4—C3—C6106.8 (4)C27—C28—H28A109.5
C3—C4—H4A109.5C27—C28—H28B109.5
C3—C4—H4B109.5H28A—C28—H28B109.5
H4A—C4—H4B109.5C27—C28—H28C109.5
C3—C4—H4C109.5H28A—C28—H28C109.5
H4A—C4—H4C109.5H28B—C28—H28C109.5
H4B—C4—H4C109.5C27—C29—H29A109.5
C3—C5—H5A109.5C27—C29—H29B109.5
C3—C5—H5B109.5H29A—C29—H29B109.5
H5A—C5—H5B109.5C27—C29—H29C109.5
C3—C5—H5C109.5H29A—C29—H29C109.5
H5A—C5—H5C109.5H29B—C29—H29C109.5
H5B—C5—H5C109.5C27—C30—C31118.3 (4)
C7—C6—C3117.6 (4)C27—C30—H30A107.7
C7—C6—H6A107.9C31—C30—H30A107.7
C3—C6—H6A107.9C27—C30—H30B107.7
C7—C6—H6B107.9C31—C30—H30B107.7
C3—C6—H6B107.9H30A—C30—H30B107.1
H6A—C6—H6B107.2N7—C31—C32123.0 (4)
N3—C7—C6122.2 (4)N7—C31—C30122.0 (4)
N3—C7—C8122.3 (4)C32—C31—C30115.0 (4)
C6—C7—C8115.5 (4)C31—C32—H32A109.5
C7—C8—H8A109.5C31—C32—H32B109.5
C7—C8—H8B109.5H32A—C32—H32B109.5
H8A—C8—H8B109.5C31—C32—H32C109.5
C7—C8—H8C109.5H32A—C32—H32C109.5
H8A—C8—H8C109.5H32B—C32—H32C109.5
H8B—C8—H8C109.5
N6—Co1—N1—C15100.5 (4)N9—Co2—N12—O795.6 (3)
N2—Co1—N1—C15167.5 (4)N7—Co2—N12—O784.0 (3)
N4—Co1—N1—C158.5 (4)N8—Co2—N12—O71.1 (3)
N5—Co1—N1—C1579.6 (4)N10—Co2—N12—O7178.9 (3)
N6—Co1—N1—C185.4 (3)N9—Co2—N12—O888.8 (3)
N2—Co1—N1—C16.6 (3)N7—Co2—N12—O891.6 (3)
N4—Co1—N1—C1177.4 (3)N8—Co2—N12—O8176.7 (3)
N5—Co1—N1—C194.5 (3)N10—Co2—N12—O83.3 (3)
N6—Co1—N2—C264.8 (3)C15—N1—C1—C2171.1 (4)
N3—Co1—N2—C2156.4 (3)Co1—N1—C1—C214.2 (5)
N1—Co1—N2—C225.8 (3)C3—N2—C2—C1177.6 (4)
N5—Co1—N2—C2115.8 (3)Co1—N2—C2—C139.4 (4)
N6—Co1—N2—C371.1 (3)N1—C1—C2—N234.7 (5)
N3—Co1—N2—C320.5 (3)C2—N2—C3—C563.9 (5)
N1—Co1—N2—C3161.6 (3)Co1—N2—C3—C569.1 (4)
N5—Co1—N2—C3108.3 (3)C2—N2—C3—C458.5 (5)
N6—Co1—N3—C7101.9 (4)Co1—N2—C3—C4168.4 (3)
N2—Co1—N3—C79.8 (4)C2—N2—C3—C6173.3 (3)
N4—Co1—N3—C7166.2 (4)Co1—N2—C3—C653.6 (4)
N5—Co1—N3—C778.0 (4)N2—C3—C6—C764.8 (5)
N6—Co1—N3—C984.9 (3)C5—C3—C6—C759.5 (5)
N2—Co1—N3—C9177.1 (3)C4—C3—C6—C7179.2 (4)
N4—Co1—N3—C96.9 (3)C9—N3—C7—C6174.8 (4)
N5—Co1—N3—C995.2 (3)Co1—N3—C7—C62.0 (6)
N6—Co1—N4—C1063.3 (3)C9—N3—C7—C84.2 (6)
N3—Co1—N4—C1027.9 (3)Co1—N3—C7—C8177.0 (3)
N1—Co1—N4—C10154.3 (3)C3—C6—C7—N338.4 (6)
N5—Co1—N4—C10116.0 (3)C3—C6—C7—C8142.6 (4)
N6—Co1—N4—C1172.3 (3)C7—N3—C9—C10170.6 (4)
N3—Co1—N4—C11163.5 (3)Co1—N3—C9—C1015.6 (4)
N1—Co1—N4—C1118.6 (3)C11—N4—C10—C9179.9 (3)
N5—Co1—N4—C11108.4 (3)Co1—N4—C10—C941.9 (4)
N3—Co1—N5—O2101.9 (3)N3—C9—C10—N437.1 (5)
N1—Co1—N5—O278.1 (3)C10—N4—C11—C1262.9 (4)
N2—Co1—N5—O27.0 (3)Co1—N4—C11—C1270.2 (4)
N4—Co1—N5—O2173.6 (3)C10—N4—C11—C1360.8 (4)
N3—Co1—N5—O174.7 (3)Co1—N4—C11—C13166.0 (3)
N1—Co1—N5—O1105.3 (3)C10—N4—C11—C14175.7 (3)
N2—Co1—N5—O1169.6 (3)Co1—N4—C11—C1451.2 (4)
N4—Co1—N5—O19.8 (3)N4—C11—C14—C1565.6 (5)
N3—Co1—N6—O420.9 (4)C12—C11—C14—C1558.0 (5)
N1—Co1—N6—O4159.1 (4)C13—C11—C14—C15178.2 (4)
N2—Co1—N6—O4115.8 (3)C1—N1—C15—C167.1 (6)
N4—Co1—N6—O463.6 (4)Co1—N1—C15—C16179.1 (3)
N3—Co1—N6—O3158.0 (3)C1—N1—C15—C14172.1 (4)
N1—Co1—N6—O322.0 (3)Co1—N1—C15—C141.8 (6)
N2—Co1—N6—O363.1 (4)C11—C14—C15—N142.1 (6)
N4—Co1—N6—O3117.5 (3)C11—C14—C15—C16138.7 (4)
N11—Co2—N7—C3198.5 (4)C31—N7—C17—C18168.8 (4)
N8—Co2—N7—C31170.1 (4)Co2—N7—C17—C1815.4 (5)
N10—Co2—N7—C316.7 (4)C19—N8—C18—C17178.1 (4)
N12—Co2—N7—C3181.1 (4)Co2—N8—C18—C1738.7 (4)
N11—Co2—N7—C1786.2 (3)N7—C17—C18—N834.8 (5)
N8—Co2—N7—C175.2 (3)C18—N8—C19—C22172.0 (4)
N10—Co2—N7—C17178.0 (3)Co2—N8—C19—C2253.2 (4)
N12—Co2—N7—C1794.2 (3)C18—N8—C19—C2166.0 (5)
N9—Co2—N8—C18158.8 (3)Co2—N8—C19—C2168.8 (5)
N11—Co2—N8—C1866.6 (3)C18—N8—C19—C2054.6 (5)
N7—Co2—N8—C1825.1 (3)Co2—N8—C19—C20170.6 (3)
N12—Co2—N8—C18112.1 (3)N8—C19—C22—C2361.8 (5)
N9—Co2—N8—C1922.1 (4)C21—C19—C22—C2361.0 (5)
N11—Co2—N8—C1970.1 (4)C20—C19—C22—C23179.7 (4)
N7—Co2—N8—C19161.8 (4)C25—N9—C23—C22173.8 (4)
N12—Co2—N8—C19111.2 (4)Co2—N9—C23—C221.5 (7)
N11—Co2—N9—C2399.1 (4)C25—N9—C23—C242.1 (6)
N8—Co2—N9—C237.4 (4)Co2—N9—C23—C24174.4 (3)
N10—Co2—N9—C23169.3 (4)C19—C22—C23—N935.8 (6)
N12—Co2—N9—C2381.3 (4)C19—C22—C23—C24148.0 (4)
N11—Co2—N9—C2588.1 (3)C23—N9—C25—C26167.9 (4)
N8—Co2—N9—C25179.8 (3)Co2—N9—C25—C2618.6 (5)
N10—Co2—N9—C253.4 (3)C27—N10—C26—C25179.4 (4)
N12—Co2—N9—C2591.5 (3)Co2—N10—C26—C2540.4 (4)
N9—Co2—N10—C2625.1 (3)N9—C25—C26—N1038.2 (5)
N11—Co2—N10—C2666.9 (3)C26—N10—C27—C30172.4 (4)
N7—Co2—N10—C26158.8 (3)Co2—N10—C27—C3053.0 (4)
N12—Co2—N10—C26114.5 (3)C26—N10—C27—C2865.7 (5)
N9—Co2—N10—C27162.4 (3)Co2—N10—C27—C2868.9 (5)
N11—Co2—N10—C2770.5 (3)C26—N10—C27—C2954.4 (5)
N7—Co2—N10—C2721.5 (3)Co2—N10—C27—C29171.0 (3)
N12—Co2—N10—C27108.2 (3)N10—C27—C30—C3162.2 (5)
N9—Co2—N11—O5156.3 (3)C28—C27—C30—C3161.7 (5)
N7—Co2—N11—O523.3 (3)C29—C27—C30—C31179.5 (4)
N8—Co2—N11—O561.7 (3)C17—N7—C31—C322.9 (7)
N10—Co2—N11—O5118.2 (3)Co2—N7—C31—C32178.0 (3)
N9—Co2—N11—O624.7 (4)C17—N7—C31—C30175.4 (4)
N7—Co2—N11—O6155.7 (3)Co2—N7—C31—C300.3 (7)
N8—Co2—N11—O6119.3 (3)C27—C30—C31—N736.5 (7)
N10—Co2—N11—O660.8 (3)C27—C30—C31—C32145.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.882.022.718 (5)135
N4—H4···O10.882.022.718 (5)135
N8—H8···O70.882.042.744 (5)136
N10—H10···O80.882.032.732 (5)136
O1W—H1W···O90.852.242.907 (7)135
O1W—H2W···O10i0.852.342.988 (7)134
C1—H1A···O60.992.463.428 (6)166
C6—H6B···O13ii0.992.453.426 (6)169
C8—H8A···O2i0.982.533.352 (6)141
C8—H8C···O7iii0.982.583.549 (6)169
C9—H9A···O1i0.992.533.441 (6)153
C10—H10A···O1Wi0.992.593.115 (8)114
C10—H10A···O10i0.992.593.256 (6)125
C16—H16A···O3iv0.982.463.384 (6)157
C16—H16B···O60.982.533.329 (6)138
C17—H17B···O7i0.992.593.426 (6)142
C18—H18B···O10v0.992.533.230 (6)128
C20—H20A···O12vi0.982.573.424 (7)145
C21—H21B···O12vii0.982.573.535 (6)167
C24—H24A···O6iv0.982.533.401 (6)148
C25—H25B···O3iv0.992.473.421 (6)161
C26—H26B···O150.992.373.262 (6)149
C28—H28B···O14i0.982.563.264 (6)129
C32—H32B···O14viii0.982.453.384 (6)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y3/2, z+1; (iii) x+1, y1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x1, y, z; (vii) x+1, y1/2, z; (viii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Co(NO2)2(C16H32N4)]ClO4·0.5H2O
Mr539.87
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)15.7241 (5), 6.8989 (2), 20.6600 (8)
β (°) 97.196 (3)
V3)2223.52 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.35 × 0.35 × 0.35
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.794, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16801, 13634, 12641
Rint0.095
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.07
No. of reflections13634
No. of parameters599
No. of restraints67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.73
Absolute structureFlack (1983); 8210 Friedel pairs
Absolute structure parameter0.509 (17)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—N11.933 (4)Co2—N71.937 (4)
Co1—N21.977 (4)Co2—N81.959 (4)
Co1—N31.930 (4)Co2—N91.933 (4)
Co1—N41.982 (3)Co2—N101.970 (3)
Co1—N51.992 (4)Co2—N111.937 (4)
Co1—N61.926 (4)Co2—N122.009 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.882.022.718 (5)135
N4—H4···O10.882.022.718 (5)135
N8—H8···O70.882.042.744 (5)136
N10—H10···O80.882.032.732 (5)136
O1W—H1W···O90.852.242.907 (7)135
O1W—H2W···O10i0.852.342.988 (7)134
C1—H1A···O60.992.463.428 (6)166
C6—H6B···O13ii0.992.453.426 (6)169
C8—H8A···O2i0.982.533.352 (6)141
C8—H8C···O7iii0.982.583.549 (6)169
C9—H9A···O1i0.992.533.441 (6)153
C10—H10A···O1Wi0.992.593.115 (8)114
C10—H10A···O10i0.992.593.256 (6)125
C16—H16A···O3iv0.982.463.384 (6)157
C16—H16B···O60.982.533.329 (6)138
C17—H17B···O7i0.992.593.426 (6)142
C18—H18B···O10v0.992.533.230 (6)128
C20—H20A···O12vi0.982.573.424 (7)145
C21—H21B···O12vii0.982.573.535 (6)167
C24—H24A···O6iv0.982.533.401 (6)148
C25—H25B···O3iv0.992.473.421 (6)161
C26—H26B···O150.992.373.262 (6)149
C28—H28B···O14i0.982.563.264 (6)129
C32—H32B···O14viii0.982.453.384 (6)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y3/2, z+1; (iii) x+1, y1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x1, y, z; (vii) x+1, y1/2, z; (viii) x, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the University Grants Commission (UGC), Bangladesh, for the award of a research grant to TGR, and to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBembi, R., Bhardwaj, V. K., Singh, R., Teneja, K. & Aftab, S. (1984). Inorg. Chem. 23, 4153–4157.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCurtis, N. F. & Hay, R. W. (1966). Chem. Commun. pp. 524–525.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, T. G., Hazari, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Sutradhar, R., Dey, L., Anowar, N. & Tiekink, E. R. T. (2006). J. Coord. Chem. 59, 351–362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1576-m1577
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds