organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3102-o3103

(E)-1-(2,4-Di­chloro­phen­yl)-3-(1,3-di­phenyl-1H-pyrazol-4-yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title mol­ecule, C24H16Cl2N2O, the dihedral angles between the pyrazole ring and its N- and C-bonded phenyl rings are 7.06 (10) and 53.15 (10)°, respectively. The dihedral angle between the two pendant rings is 52.32 (10)°. The mol­ecule exists in a trans conformation with respect to the acyclic C=C bond. In the crystal, inversion dimers occur in which each mol­ecule is linked to the other by two C—H⋯O hydrogen bonds to the same acceptor O atom. There are also short Cl⋯Cl contacts [3.3492 (9) Å] and C—H⋯π inter­actions.

Related literature

For general background to and the biological activity of pyrazoles, see: Patel et al. (2004[Patel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058-7065.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Vijesh et al. (2010[Vijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460-5464.]); Sharma et al. (2010[Sharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650-2655.]); Rostom et al. (2003[Rostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38, 959-974.]); Ghorab et al. (2010[Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.]); Amnekar & Bhusari (2010[Amnekar, N. D. & Bhusari, K. P. (2010). Eur. J. Med. Chem. 45, 149-159.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16Cl2N2O

  • Mr = 419.29

  • Triclinic, [P \overline 1]

  • a = 9.6185 (8) Å

  • b = 10.6596 (9) Å

  • c = 11.8537 (10) Å

  • α = 67.377 (2)°

  • β = 75.777 (1)°

  • γ = 69.934 (2)°

  • V = 1044.64 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.31 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.973

  • 22059 measured reflections

  • 6053 independent reflections

  • 3980 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.134

  • S = 1.04

  • 6053 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C19–C24 and C13–C18 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.30 3.230 (2) 174
C20—H20A⋯O1i 0.93 2.59 3.509 (3) 168
C2—H2ACg1ii 0.93 2.75 3.585 (2) 149
C23—H23ACg2iii 0.93 2.90 3.655 (2) 140
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles are novel class of heterocyclic compounds possessing wide variety of application in the agrochemical and pharmaceutical industries (Patel et al., 2004). Derivatives of pyrazoles are found to show good antibacterial (Isloor et al., 2009; Vijesh et al., 2010), anti-inflammatory (Sharma et al., 2010), analgesic (Rostom et al., 2003), anticancer, radioprotective (Ghorab et al., 2010) and anti-convulsant activity (Amnekar & Bhusari, 2010). Prompted by the diverse activities of pyrazole derivatives, we have synthesized the title compound to study its crystal structure.

In the title molecule (Fig. 1), the phenyl (C1-C6) ring and the two benzene (C13-C18 and C19-C24) rings form dihedral angles of 64.29 (9), 53.15 (10) and 7.06 (10)°, respectively, with the pyrazole ring (N1/N2/C10-C12). The phenyl ring also forms dihedral angles of 65.06 (10) and 67.80 (10)° with the two benzene rings (C13-C18 and C19-C24), respectively. The benzene rings form a dihedral angle of 52.32 (10)°. The title molecule exists in trans conformation with respect to the acyclic C8C9 bond [bond length = 1.330 (2) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges. There is a short Cl2···Cl2 contact (symmetry code : -x, 1-y, 1-z) with distance = 3.3492 (9) Å which is shorter than the sum of van der Waals radii of the Cl atoms.

In the crystal (Fig. 2), molecules are linked into inversion dimers by intermolecular bifurcated C11–H11A···O1 and C20–H20A···O1 acceptor bonds (Table 1), generating six-membered R12(6) ring motifs (Bernstein et al., 1995). The crystal structure is further consolidated by C2–H2A···Cg1 and C23–H23A···Cg2 (Table 1) interactions, where Cg1 and Cg2 are the centroids of C19-C24 and C13-C18 benzene rings, respectively.

Related literature top

For general background to and the biological activity of pyrazoles, see: Patel et al. (2004); Isloor et al. (2009); Vijesh et al. (2010); Sharma et al. (2010); Rostom et al. (2003); Ghorab et al. (2010); Amnekar & Bhusari (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To a cold, stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol), 2,4-dichloroacetophenone (4.03 mmol) was added. The reaction mixture was stirred for 10 min. 1,3-Diphenyl-1H-pyrazole-4-carbaldehyde (4.03 mmol) was added to this solution followed by tetrahydrofuran (30 ml). The solution was further stirred for 2 h at 273 K and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with Dil. HCl. The solid that separated was filtered, washed with water, dried and crystallized from ethanol to yield colourless blocks of (I). Yield: 1.28 g, 76.19 %. M.p.: 406-408 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(E)-1-(2,4-Dichlorophenyl)-3-(1,3-diphenyl-1H- pyrazol-4-yl)prop-2-en-1-one top
Crystal data top
C24H16Cl2N2OZ = 2
Mr = 419.29F(000) = 432
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6185 (8) ÅCell parameters from 5364 reflections
b = 10.6596 (9) Åθ = 2.4–28.8°
c = 11.8537 (10) ŵ = 0.33 mm1
α = 67.377 (2)°T = 296 K
β = 75.777 (1)°Block, colourless
γ = 69.934 (2)°0.31 × 0.21 × 0.08 mm
V = 1044.64 (15) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6053 independent reflections
Radiation source: fine-focus sealed tube3980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.904, Tmax = 0.973k = 1414
22059 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1623P]
where P = (Fo2 + 2Fc2)/3
6053 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C24H16Cl2N2Oγ = 69.934 (2)°
Mr = 419.29V = 1044.64 (15) Å3
Triclinic, P1Z = 2
a = 9.6185 (8) ÅMo Kα radiation
b = 10.6596 (9) ŵ = 0.33 mm1
c = 11.8537 (10) ÅT = 296 K
α = 67.377 (2)°0.31 × 0.21 × 0.08 mm
β = 75.777 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3980 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.973Rint = 0.027
22059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
6053 reflectionsΔρmin = 0.27 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72422 (6)0.23879 (6)0.46250 (5)0.08035 (18)
Cl20.14184 (5)0.45480 (9)0.57917 (6)0.1019 (3)
O10.10827 (16)0.35212 (16)0.86276 (14)0.0787 (4)
N10.22996 (13)0.84151 (14)1.00579 (11)0.0461 (3)
N20.35901 (14)0.86410 (14)0.93127 (12)0.0496 (3)
C10.4853 (2)0.3081 (2)0.76848 (16)0.0634 (5)
H1A0.50390.29620.84590.076*
C20.6034 (2)0.2677 (2)0.68476 (17)0.0677 (5)
H2A0.70000.22860.70560.081*
C30.57655 (18)0.28591 (17)0.57036 (15)0.0537 (4)
C40.43478 (18)0.34217 (18)0.53839 (16)0.0565 (4)
H4A0.41750.35410.46060.068*
C50.31849 (17)0.38071 (18)0.62408 (16)0.0526 (4)
C60.33961 (17)0.36581 (16)0.74104 (14)0.0470 (3)
C70.21224 (19)0.40361 (18)0.83561 (15)0.0536 (4)
C80.21287 (19)0.50151 (19)0.89386 (15)0.0570 (4)
H8A0.14210.50860.96210.068*
C90.30613 (17)0.58143 (16)0.85751 (13)0.0466 (3)
H9A0.38190.56800.79370.056*
C100.30113 (16)0.68689 (16)0.90744 (13)0.0452 (3)
C110.19295 (17)0.73726 (17)0.99304 (14)0.0481 (3)
H11A0.10980.70491.03430.058*
C120.40123 (16)0.77075 (16)0.87221 (14)0.0452 (3)
C130.53890 (16)0.76264 (17)0.78363 (14)0.0478 (3)
C140.5637 (2)0.8813 (2)0.68817 (19)0.0703 (5)
H14A0.49230.96840.67840.084*
C150.6947 (3)0.8706 (3)0.6070 (2)0.0862 (7)
H15A0.70980.95050.54200.103*
C160.8019 (2)0.7449 (3)0.6209 (2)0.0785 (6)
H16A0.89020.73950.56660.094*
C170.7792 (2)0.6270 (2)0.71462 (19)0.0711 (5)
H17A0.85230.54100.72440.085*
C180.64774 (18)0.6348 (2)0.79530 (16)0.0580 (4)
H18A0.63230.55350.85800.070*
C190.15658 (16)0.92254 (17)1.08631 (14)0.0488 (4)
C200.03696 (19)0.8896 (2)1.17154 (17)0.0612 (4)
H20A0.00110.81731.17520.073*
C210.0289 (2)0.9666 (3)1.25176 (19)0.0756 (6)
H21A0.10970.94551.30970.091*
C220.0236 (2)1.0730 (3)1.2467 (2)0.0799 (6)
H22A0.02051.12281.30180.096*
C230.1411 (2)1.1064 (2)1.1603 (2)0.0755 (6)
H23A0.17571.17971.15610.091*
C240.2084 (2)1.03114 (19)1.07925 (17)0.0609 (4)
H24A0.28801.05381.02050.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0657 (3)0.0801 (3)0.0695 (3)0.0003 (2)0.0118 (2)0.0280 (3)
Cl20.0469 (3)0.1805 (7)0.1026 (4)0.0004 (3)0.0210 (3)0.0934 (5)
O10.0746 (8)0.1027 (10)0.0849 (10)0.0569 (8)0.0247 (7)0.0516 (8)
N10.0409 (6)0.0555 (7)0.0445 (7)0.0107 (5)0.0034 (5)0.0228 (6)
N20.0432 (6)0.0584 (8)0.0514 (7)0.0148 (6)0.0002 (5)0.0258 (6)
C10.0607 (10)0.0753 (11)0.0465 (9)0.0052 (9)0.0152 (8)0.0190 (8)
C20.0498 (9)0.0772 (12)0.0580 (10)0.0050 (8)0.0153 (8)0.0180 (9)
C30.0512 (8)0.0471 (8)0.0515 (9)0.0044 (7)0.0001 (7)0.0165 (7)
C40.0537 (9)0.0680 (10)0.0519 (9)0.0095 (8)0.0069 (7)0.0306 (8)
C50.0435 (8)0.0643 (10)0.0600 (9)0.0117 (7)0.0080 (7)0.0330 (8)
C60.0491 (8)0.0494 (8)0.0472 (8)0.0172 (6)0.0011 (6)0.0210 (6)
C70.0549 (9)0.0619 (9)0.0507 (9)0.0251 (8)0.0054 (7)0.0255 (7)
C80.0576 (9)0.0704 (10)0.0515 (9)0.0284 (8)0.0132 (7)0.0321 (8)
C90.0467 (8)0.0563 (9)0.0390 (7)0.0165 (7)0.0010 (6)0.0200 (6)
C100.0448 (7)0.0514 (8)0.0404 (7)0.0147 (6)0.0022 (6)0.0171 (6)
C110.0446 (7)0.0584 (9)0.0446 (8)0.0175 (7)0.0006 (6)0.0209 (7)
C120.0414 (7)0.0522 (8)0.0430 (8)0.0118 (6)0.0037 (6)0.0190 (6)
C130.0444 (8)0.0591 (9)0.0471 (8)0.0187 (7)0.0000 (6)0.0250 (7)
C140.0740 (12)0.0622 (11)0.0730 (12)0.0283 (9)0.0118 (10)0.0255 (9)
C150.0974 (16)0.0867 (15)0.0792 (14)0.0554 (13)0.0292 (12)0.0311 (12)
C160.0657 (12)0.1101 (17)0.0835 (14)0.0461 (12)0.0260 (10)0.0599 (14)
C170.0497 (9)0.0921 (14)0.0775 (13)0.0128 (9)0.0048 (9)0.0482 (12)
C180.0497 (9)0.0676 (10)0.0536 (9)0.0132 (8)0.0020 (7)0.0223 (8)
C190.0430 (7)0.0575 (9)0.0451 (8)0.0012 (6)0.0116 (6)0.0238 (7)
C200.0487 (9)0.0821 (12)0.0594 (10)0.0145 (8)0.0031 (7)0.0360 (9)
C210.0540 (10)0.1103 (17)0.0666 (12)0.0113 (10)0.0016 (9)0.0495 (12)
C220.0712 (12)0.0989 (16)0.0786 (14)0.0009 (11)0.0085 (11)0.0595 (13)
C230.0809 (13)0.0743 (12)0.0820 (14)0.0099 (10)0.0114 (11)0.0467 (11)
C240.0642 (10)0.0610 (10)0.0605 (10)0.0121 (8)0.0050 (8)0.0297 (8)
Geometric parameters (Å, º) top
Cl1—C31.7369 (16)C11—H11A0.9300
Cl2—C51.7304 (16)C12—C131.474 (2)
O1—C71.2196 (19)C13—C141.382 (2)
N1—C111.346 (2)C13—C181.385 (2)
N1—N21.3718 (17)C14—C151.385 (3)
N1—C191.4283 (19)C14—H14A0.9300
N2—C121.3282 (19)C15—C161.360 (3)
C1—C21.378 (3)C15—H15A0.9300
C1—C61.388 (2)C16—C171.362 (3)
C1—H1A0.9300C16—H16A0.9300
C2—C31.370 (3)C17—C181.384 (2)
C2—H2A0.9300C17—H17A0.9300
C3—C41.371 (2)C18—H18A0.9300
C4—C51.378 (2)C19—C241.377 (2)
C4—H4A0.9300C19—C201.379 (2)
C5—C61.391 (2)C20—C211.388 (3)
C6—C71.501 (2)C20—H20A0.9300
C7—C81.458 (2)C21—C221.368 (3)
C8—C91.330 (2)C21—H21A0.9300
C8—H8A0.9300C22—C231.371 (3)
C9—C101.441 (2)C22—H22A0.9300
C9—H9A0.9300C23—C241.384 (3)
C10—C111.385 (2)C23—H23A0.9300
C10—C121.416 (2)C24—H24A0.9300
C11—N1—N2111.74 (12)N2—C12—C13120.29 (14)
C11—N1—C19128.80 (13)C10—C12—C13127.91 (13)
N2—N1—C19119.42 (13)C14—C13—C18118.39 (15)
C12—N2—N1104.76 (12)C14—C13—C12121.32 (15)
C2—C1—C6122.13 (16)C18—C13—C12120.28 (15)
C2—C1—H1A118.9C13—C14—C15119.99 (19)
C6—C1—H1A118.9C13—C14—H14A120.0
C3—C2—C1119.06 (16)C15—C14—H14A120.0
C3—C2—H2A120.5C16—C15—C14121.0 (2)
C1—C2—H2A120.5C16—C15—H15A119.5
C2—C3—C4121.28 (15)C14—C15—H15A119.5
C2—C3—Cl1119.79 (13)C15—C16—C17119.70 (18)
C4—C3—Cl1118.92 (13)C15—C16—H16A120.1
C3—C4—C5118.53 (15)C17—C16—H16A120.1
C3—C4—H4A120.7C16—C17—C18120.23 (19)
C5—C4—H4A120.7C16—C17—H17A119.9
C4—C5—C6122.56 (14)C18—C17—H17A119.9
C4—C5—Cl2117.16 (12)C17—C18—C13120.67 (17)
C6—C5—Cl2120.25 (12)C17—C18—H18A119.7
C1—C6—C5116.43 (14)C13—C18—H18A119.7
C1—C6—C7121.05 (14)C24—C19—C20120.82 (15)
C5—C6—C7122.46 (14)C24—C19—N1119.36 (15)
O1—C7—C8120.46 (15)C20—C19—N1119.81 (15)
O1—C7—C6119.38 (15)C19—C20—C21118.66 (19)
C8—C7—C6120.16 (14)C19—C20—H20A120.7
C9—C8—C7125.46 (15)C21—C20—H20A120.7
C9—C8—H8A117.3C22—C21—C20120.8 (2)
C7—C8—H8A117.3C22—C21—H21A119.6
C8—C9—C10126.31 (14)C20—C21—H21A119.6
C8—C9—H9A116.8C21—C22—C23120.02 (19)
C10—C9—H9A116.8C21—C22—H22A120.0
C11—C10—C12104.10 (13)C23—C22—H22A120.0
C11—C10—C9128.48 (14)C22—C23—C24120.2 (2)
C12—C10—C9127.26 (13)C22—C23—H23A119.9
N1—C11—C10107.60 (13)C24—C23—H23A119.9
N1—C11—H11A126.2C19—C24—C23119.49 (18)
C10—C11—H11A126.2C19—C24—H24A120.3
N2—C12—C10111.80 (13)C23—C24—H24A120.3
C11—N1—N2—C120.17 (16)N1—N2—C12—C13179.30 (13)
C19—N1—N2—C12177.93 (12)C11—C10—C12—N20.29 (17)
C6—C1—C2—C30.5 (3)C9—C10—C12—N2175.95 (14)
C1—C2—C3—C40.6 (3)C11—C10—C12—C13179.43 (15)
C1—C2—C3—Cl1178.80 (15)C9—C10—C12—C134.9 (3)
C2—C3—C4—C50.1 (3)N2—C12—C13—C1452.8 (2)
Cl1—C3—C4—C5179.29 (13)C10—C12—C13—C14128.08 (19)
C3—C4—C5—C60.5 (3)N2—C12—C13—C18126.52 (17)
C3—C4—C5—Cl2178.65 (14)C10—C12—C13—C1852.6 (2)
C2—C1—C6—C50.1 (3)C18—C13—C14—C150.1 (3)
C2—C1—C6—C7177.56 (17)C12—C13—C14—C15179.44 (18)
C4—C5—C6—C10.7 (3)C13—C14—C15—C161.3 (4)
Cl2—C5—C6—C1178.70 (14)C14—C15—C16—C171.2 (4)
C4—C5—C6—C7178.03 (16)C15—C16—C17—C180.1 (3)
Cl2—C5—C6—C73.9 (2)C16—C17—C18—C131.3 (3)
C1—C6—C7—O1123.5 (2)C14—C13—C18—C171.2 (3)
C5—C6—C7—O153.8 (2)C12—C13—C18—C17178.17 (16)
C1—C6—C7—C856.8 (2)C11—N1—C19—C24176.03 (15)
C5—C6—C7—C8125.95 (18)N2—N1—C19—C246.2 (2)
O1—C7—C8—C9168.14 (18)C11—N1—C19—C205.2 (2)
C6—C7—C8—C911.6 (3)N2—N1—C19—C20172.51 (14)
C7—C8—C9—C10174.67 (16)C24—C19—C20—C211.1 (3)
C8—C9—C10—C117.0 (3)N1—C19—C20—C21177.64 (16)
C8—C9—C10—C12178.37 (17)C19—C20—C21—C220.0 (3)
N2—N1—C11—C100.35 (17)C20—C21—C22—C231.0 (3)
C19—N1—C11—C10177.52 (14)C21—C22—C23—C241.0 (3)
C12—C10—C11—N10.37 (16)C20—C19—C24—C231.2 (3)
C9—C10—C11—N1175.96 (14)N1—C19—C24—C23177.55 (16)
N1—N2—C12—C100.08 (16)C22—C23—C24—C190.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C13–C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.303.230 (2)174
C20—H20A···O1i0.932.593.509 (3)168
C2—H2A···Cg1ii0.932.753.585 (2)149
C23—H23A···Cg2iii0.932.903.655 (2)140
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC24H16Cl2N2O
Mr419.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6185 (8), 10.6596 (9), 11.8537 (10)
α, β, γ (°)67.377 (2), 75.777 (1), 69.934 (2)
V3)1044.64 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.31 × 0.21 × 0.08
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.904, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
22059, 6053, 3980
Rint0.027
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.134, 1.04
No. of reflections6053
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C13–C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.303.230 (2)174
C20—H20A···O1i0.932.593.509 (3)168
C2—H2A···Cg1ii0.932.753.585 (2)149
C23—H23A···Cg2iii0.932.903.655 (2)140
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmnekar, N. D. & Bhusari, K. P. (2010). Eur. J. Med. Chem. 45, 149–159.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058–7065.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38, 959–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650–2655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3102-o3103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds