organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title hydrated mol­ecular salt, C5H8N3+·C7H5O6S·H2O, the ion pairs and water mol­ecules are connected by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, thereby forming a three-dimensional network. There is an intra­molecular O—H⋯O hydrogen bond in the 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion, which generates an S(6) ring motif.

Related literature

For background to 5-sulfosalicylic acid and related compounds, see: Marzotto et al. (2001[Marzotto, A., Clemente, D. A., Gerola, T. & Valle, G. (2001). Polyhedron, 20, 1079-1087.]); Onoda et al. (2001[Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.]); Baskar Raj et al. (2003[Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H5O6S·H2O

  • Mr = 345.33

  • Monoclinic, C c

  • a = 7.0407 (7) Å

  • b = 15.5775 (16) Å

  • c = 13.6244 (12) Å

  • β = 101.491 (2)°

  • V = 1464.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.36 × 0.31 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.981

  • 6890 measured reflections

  • 3880 independent reflections

  • 3645 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.03

  • 3880 reflections

  • 268 parameters

  • 2 restraints

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1770 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.91 (3) 1.95 (3) 2.806 (3) 158 (3)
N2—H1N2⋯O1i 0.90 (3) 2.48 (3) 3.222 (2) 140 (2)
N2—H1N2⋯O1Wi 0.90 (3) 2.28 (3) 3.060 (3) 145 (2)
N2—H2N2⋯O2ii 0.86 (3) 2.10 (3) 2.963 (2) 177 (3)
N3—H1N3⋯O2ii 0.89 (3) 2.10 (3) 2.970 (3) 168 (3)
N3—H2N3⋯O4iii 0.92 (3) 2.08 (3) 2.980 (3) 167 (3)
O1—H1O1⋯O6 1.03 (3) 1.75 (3) 2.625 (2) 141 (2)
O5—H1O5⋯O3iv 0.84 (3) 1.87 (3) 2.655 (2) 155 (3)
O1W—H1W1⋯O3v 0.89 (3) 1.94 (3) 2.757 (3) 151 (2)
O1W—H2W1⋯O4iii 0.98 (6) 1.89 (6) 2.838 (3) 162 (4)
C7—H7⋯O3vi 0.95 (3) 2.56 (3) 3.477 (2) 163 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

5-sulfosalicylic acid, (5-SSA), has been known for a long time to possess anti-inflammatory activity. When it forms complexes with metals, its biological activity is greatly enhanced (Marzotto et al., 2001). Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Onoda et al., 2001). Such interactions can be utilized for designing supramolecular architectures (Baskar Raj et al., 2003). With the aim of gaining more insight into hydrogen-bonding interactions involving 5-SSA and pyridine derivatives, we report here the molecular and supramolecular structure of the title compound.

The asymmetric unit of (I) contains a 2,3-diaminopyridinium cation, a sulfosalicylate anion and a water molecule (Fig. 1). The 2,3-di aminopyridinium cation is planar, with a maximum deviation of 0.015 (2) Å for atom C1. The dihedral angle between the pyridine (N1/C–C5) and the benzene (C6–C11) ring is 6.09 (9)°. The protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 124. 4(2)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges. There is an intramolecular O—H···O hydrogen bond in the 3-carboxy-4-hydroxy benzenesulfonate anion, which generates an S(6) (Bernstein et al., 1995) ring motif.

In the crystal (Fig. 2), the ion-pairs and water molecules are connected via N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network.

Related literature top

For background to 5-sulfosalicylic acid and related compounds, see: Marzotto et al. (2001); Onoda et al. (2001); Baskar Raj et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (52 mg, Aldrich) and 5-sulfosalicylic acid (54. 5 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Brown plates of the title compound appeared from the mother liquor after a few days.

Refinement top

All hydrogen atoms were located from a difference Fourier maps and refined freely [N–H = 0.86 (3)–0.92 (3) Å; O–H = 0.90 (3)– 1.02 (3) Å and C–H = 0.91 (4)–1.06 (3) Å]. 1770 Friedel pairs were used to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Intramolecular hydrogen bonds shown by dashed lines.
[Figure 2] Fig. 2. The crystal packing of title compound (I).
2,3-Diaminopyridinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C5H8N3+·C7H5O6S·H2OF(000) = 720
Mr = 345.33Dx = 1.566 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3903 reflections
a = 7.0407 (7) Åθ = 3.0–32.4°
b = 15.5775 (16) ŵ = 0.26 mm1
c = 13.6244 (12) ÅT = 100 K
β = 101.491 (2)°Plate, brown
V = 1464.3 (2) Å30.36 × 0.31 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
3880 independent reflections
Radiation source: fine-focus sealed tube3645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.910, Tmax = 0.981k = 2021
6890 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3880 reflectionsΔρmax = 0.33 e Å3
268 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 1770 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C5H8N3+·C7H5O6S·H2OV = 1464.3 (2) Å3
Mr = 345.33Z = 4
Monoclinic, CcMo Kα radiation
a = 7.0407 (7) ŵ = 0.26 mm1
b = 15.5775 (16) ÅT = 100 K
c = 13.6244 (12) Å0.36 × 0.31 × 0.08 mm
β = 101.491 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
3880 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3645 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.981Rint = 0.025
6890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.087Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.19 e Å3
3880 reflectionsAbsolute structure: Flack (1983), 1770 Friedel pairs
268 parametersAbsolute structure parameter: 0.02 (5)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9025 (3)0.36254 (11)0.04106 (15)0.0419 (4)
N20.7986 (3)0.24446 (13)0.14072 (14)0.0438 (4)
N30.7871 (3)0.14977 (13)0.03470 (16)0.0482 (4)
C10.8513 (2)0.27950 (12)0.04911 (15)0.0328 (3)
C20.8521 (2)0.23206 (13)0.04046 (14)0.0349 (4)
C30.9159 (3)0.27470 (17)0.12994 (16)0.0465 (4)
C40.9699 (3)0.36114 (19)0.1331 (2)0.0551 (6)
C50.9615 (3)0.40443 (15)0.0472 (2)0.0516 (5)
S10.36330 (5)0.48126 (2)0.18842 (3)0.02841 (9)
O10.4248 (2)0.23706 (10)0.14554 (10)0.0430 (3)
O20.2649 (2)0.55517 (9)0.15649 (10)0.0430 (3)
O30.5610 (2)0.50245 (9)0.19835 (11)0.0408 (3)
O40.2514 (2)0.44146 (9)0.27754 (10)0.0402 (3)
O50.2302 (2)0.15275 (9)0.14779 (11)0.0444 (3)
O60.2779 (3)0.11944 (10)0.01427 (12)0.0484 (4)
C60.4112 (2)0.28932 (11)0.06627 (12)0.0305 (3)
C70.4712 (3)0.37427 (12)0.08458 (13)0.0337 (3)
C80.4596 (2)0.43146 (11)0.00715 (13)0.0312 (3)
C90.3843 (2)0.40512 (10)0.09102 (11)0.0253 (3)
C100.3256 (2)0.32121 (10)0.11074 (12)0.0258 (3)
C110.3407 (2)0.26183 (10)0.03244 (12)0.0264 (3)
C120.2809 (2)0.17180 (11)0.05209 (13)0.0306 (3)
O1W0.3732 (3)0.08650 (11)0.25895 (15)0.0533 (4)
H30.930 (4)0.2373 (19)0.1958 (19)0.046 (7)*
H41.007 (5)0.389 (2)0.193 (3)0.069 (9)*
H51.011 (5)0.463 (2)0.039 (2)0.067 (9)*
H70.515 (4)0.3983 (18)0.149 (2)0.041 (6)*
H80.510 (4)0.4874 (19)0.021 (2)0.043 (7)*
H100.271 (3)0.3039 (15)0.1722 (17)0.025 (5)*
H1N10.899 (5)0.393 (2)0.098 (2)0.057 (8)*
H1N20.820 (4)0.277 (2)0.192 (2)0.053 (8)*
H2N20.793 (4)0.1894 (19)0.146 (2)0.042 (6)*
H1N30.763 (4)0.1187 (19)0.021 (2)0.047 (7)*
H2N30.794 (4)0.1179 (18)0.092 (2)0.044 (6)*
H1O10.354 (4)0.181 (2)0.122 (2)0.053 (7)*
H1O50.203 (5)0.100 (2)0.149 (2)0.057 (8)*
H1W10.265 (5)0.055 (2)0.250 (2)0.053 (8)*
H2W10.490 (8)0.071 (4)0.234 (4)0.110 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0392 (8)0.0377 (9)0.0515 (10)0.0004 (6)0.0154 (7)0.0051 (7)
N20.0607 (10)0.0399 (10)0.0340 (8)0.0010 (7)0.0169 (7)0.0017 (7)
N30.0721 (12)0.0387 (9)0.0373 (9)0.0017 (8)0.0194 (8)0.0054 (8)
C10.0297 (7)0.0335 (8)0.0366 (8)0.0024 (6)0.0103 (6)0.0016 (7)
C20.0330 (8)0.0385 (10)0.0352 (9)0.0044 (6)0.0116 (7)0.0007 (8)
C30.0452 (10)0.0592 (13)0.0343 (10)0.0045 (9)0.0058 (8)0.0009 (9)
C40.0444 (11)0.0639 (15)0.0538 (14)0.0043 (9)0.0017 (9)0.0239 (12)
C50.0415 (9)0.0405 (11)0.0723 (15)0.0054 (8)0.0105 (10)0.0113 (10)
S10.03858 (18)0.02089 (16)0.02544 (16)0.00344 (14)0.00561 (12)0.00076 (14)
O10.0647 (9)0.0366 (7)0.0267 (6)0.0019 (6)0.0068 (6)0.0070 (5)
O20.0621 (8)0.0302 (7)0.0362 (7)0.0129 (6)0.0085 (6)0.0010 (5)
O30.0469 (7)0.0314 (6)0.0462 (8)0.0108 (5)0.0141 (6)0.0010 (5)
O40.0577 (8)0.0349 (7)0.0264 (6)0.0101 (6)0.0043 (5)0.0034 (5)
O50.0663 (9)0.0270 (6)0.0374 (7)0.0146 (6)0.0043 (6)0.0016 (5)
O60.0745 (11)0.0289 (7)0.0416 (8)0.0115 (7)0.0114 (7)0.0064 (6)
C60.0364 (8)0.0281 (8)0.0275 (7)0.0003 (6)0.0078 (6)0.0019 (6)
C70.0417 (8)0.0323 (9)0.0256 (8)0.0013 (6)0.0031 (6)0.0057 (6)
C80.0349 (7)0.0246 (7)0.0323 (8)0.0024 (6)0.0027 (6)0.0067 (6)
C90.0303 (7)0.0209 (6)0.0250 (7)0.0012 (5)0.0060 (5)0.0000 (5)
C100.0310 (7)0.0208 (6)0.0257 (7)0.0020 (5)0.0063 (5)0.0019 (5)
C110.0298 (7)0.0220 (7)0.0285 (8)0.0008 (5)0.0083 (6)0.0001 (5)
C120.0337 (7)0.0245 (7)0.0342 (8)0.0029 (6)0.0084 (6)0.0010 (6)
O1W0.0539 (9)0.0464 (9)0.0617 (10)0.0046 (7)0.0169 (8)0.0035 (8)
Geometric parameters (Å, º) top
N1—C11.342 (3)S1—C91.7640 (16)
N1—C51.358 (3)O1—C61.341 (2)
N1—H1N10.91 (3)O1—H1O11.02 (3)
N2—C11.345 (3)O5—C121.315 (2)
N2—H1N20.90 (3)O5—H1O50.84 (4)
N2—H2N20.86 (3)O6—C121.221 (2)
N3—C21.358 (3)C6—C71.396 (3)
N3—H1N30.88 (3)C6—C111.404 (2)
N3—H2N30.92 (3)C7—C81.371 (3)
C1—C21.426 (3)C7—H70.95 (3)
C2—C31.382 (3)C8—C91.398 (2)
C3—C41.397 (4)C8—H80.95 (3)
C3—H31.06 (3)C9—C101.381 (2)
C4—C51.342 (4)C10—C111.400 (2)
C4—H40.91 (4)C10—H100.89 (2)
C5—H50.99 (4)C11—C121.473 (2)
S1—O41.4484 (14)O1W—H1W10.90 (3)
S1—O21.4542 (14)O1W—H2W10.98 (5)
S1—O31.4631 (14)
C1—N1—C5124.4 (2)O4—S1—C9107.04 (8)
C1—N1—H1N1118 (2)O2—S1—C9106.31 (8)
C5—N1—H1N1117 (2)O3—S1—C9106.41 (8)
C1—N2—H1N2115.9 (19)C6—O1—H1O1108.2 (16)
C1—N2—H2N2118.6 (18)C12—O5—H1O5105 (2)
H1N2—N2—H2N2120 (3)O1—C6—C7117.46 (16)
C2—N3—H1N3124.8 (18)O1—C6—C11122.76 (16)
C2—N3—H2N3120.1 (18)C7—C6—C11119.78 (15)
H1N3—N3—H2N3113 (3)C8—C7—C6120.59 (15)
N1—C1—N2119.15 (19)C8—C7—H7114.7 (16)
N1—C1—C2118.33 (18)C6—C7—H7124.6 (16)
N2—C1—C2122.50 (18)C7—C8—C9119.90 (15)
N3—C2—C3123.45 (19)C7—C8—H8119.0 (17)
N3—C2—C1119.73 (18)C9—C8—H8121.1 (17)
C3—C2—C1116.80 (19)C10—C9—C8120.37 (15)
C2—C3—C4121.9 (2)C10—C9—S1120.87 (12)
C2—C3—H3116.2 (16)C8—C9—S1118.76 (12)
C4—C3—H3121.7 (16)C9—C10—C11120.19 (14)
C5—C4—C3119.5 (2)C9—C10—H10121.7 (15)
C5—C4—H4120 (2)C11—C10—H10118.0 (15)
C3—C4—H4120 (2)C10—C11—C6119.14 (14)
C4—C5—N1118.9 (2)C10—C11—C12120.99 (15)
C4—C5—H5127.2 (19)C6—C11—C12119.87 (14)
N1—C5—H5113.4 (19)O6—C12—O5122.81 (16)
O4—S1—O2112.20 (9)O6—C12—C11123.21 (16)
O4—S1—O3112.80 (9)O5—C12—C11113.97 (15)
O2—S1—O3111.58 (9)H1W1—O1W—H2W1124 (4)
C5—N1—C1—N2178.76 (19)O2—S1—C9—C10129.29 (13)
C5—N1—C1—C22.2 (3)O3—S1—C9—C10111.65 (13)
N1—C1—C2—N3175.05 (18)O4—S1—C9—C8170.06 (13)
N2—C1—C2—N33.9 (3)O2—S1—C9—C849.97 (14)
N1—C1—C2—C33.3 (2)O3—S1—C9—C869.09 (14)
N2—C1—C2—C3177.74 (19)C8—C9—C10—C110.1 (2)
N3—C2—C3—C4175.7 (2)S1—C9—C10—C11179.10 (11)
C1—C2—C3—C42.5 (3)C9—C10—C11—C61.7 (2)
C2—C3—C4—C50.6 (4)C9—C10—C11—C12179.31 (14)
C3—C4—C5—N10.7 (4)O1—C6—C11—C10178.04 (16)
C1—N1—C5—C40.2 (3)C7—C6—C11—C102.2 (2)
O1—C6—C7—C8179.37 (17)O1—C6—C11—C121.0 (2)
C11—C6—C7—C80.8 (3)C7—C6—C11—C12178.81 (15)
C6—C7—C8—C91.0 (3)C10—C11—C12—O6174.36 (18)
C7—C8—C9—C101.5 (2)C6—C11—C12—O64.6 (3)
C7—C8—C9—S1177.74 (14)C10—C11—C12—O55.4 (2)
O4—S1—C9—C109.19 (15)C6—C11—C12—O5175.63 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.91 (3)1.95 (3)2.806 (3)158 (3)
N2—H1N2···O1i0.90 (3)2.48 (3)3.222 (2)140 (2)
N2—H1N2···O1Wi0.90 (3)2.28 (3)3.060 (3)145 (2)
N2—H2N2···O2ii0.86 (3)2.10 (3)2.963 (2)177 (3)
N3—H1N3···O2ii0.89 (3)2.10 (3)2.970 (3)168 (3)
N3—H2N3···O4iii0.92 (3)2.08 (3)2.980 (3)167 (3)
O1—H1O1···O61.03 (3)1.75 (3)2.625 (2)141 (2)
O5—H1O5···O3iv0.84 (3)1.87 (3)2.655 (2)155 (3)
O1W—H1W1···O3v0.89 (3)1.94 (3)2.757 (3)151 (2)
O1W—H2W1···O4iii0.98 (6)1.89 (6)2.838 (3)162 (4)
C7—H7···O3vi0.95 (3)2.56 (3)3.477 (2)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y1/2, z; (v) x1/2, y+1/2, z+1/2; (vi) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H5O6S·H2O
Mr345.33
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)7.0407 (7), 15.5775 (16), 13.6244 (12)
β (°) 101.491 (2)
V3)1464.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.36 × 0.31 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.910, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6890, 3880, 3645
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03
No. of reflections3880
No. of parameters268
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.19
Absolute structureFlack (1983), 1770 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.91 (3)1.95 (3)2.806 (3)158 (3)
N2—H1N2···O1i0.90 (3)2.48 (3)3.222 (2)140 (2)
N2—H1N2···O1Wi0.90 (3)2.28 (3)3.060 (3)145 (2)
N2—H2N2···O2ii0.86 (3)2.10 (3)2.963 (2)177 (3)
N3—H1N3···O2ii0.89 (3)2.10 (3)2.970 (3)168 (3)
N3—H2N3···O4iii0.92 (3)2.08 (3)2.980 (3)167 (3)
O1—H1O1···O61.03 (3)1.75 (3)2.625 (2)141 (2)
O5—H1O5···O3iv0.84 (3)1.87 (3)2.655 (2)155 (3)
O1W—H1W1···O3v0.89 (3)1.94 (3)2.757 (3)151 (2)
O1W—H2W1···O4iii0.98 (6)1.89 (6)2.838 (3)162 (4)
C7—H7···O3vi0.95 (3)2.56 (3)3.477 (2)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y1/2, z; (v) x1/2, y+1/2, z+1/2; (vi) x, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarzotto, A., Clemente, D. A., Gerola, T. & Valle, G. (2001). Polyhedron, 20, 1079–1087.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds