organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium thio­cyanate: monoclinic polymorph

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 29 September 2011; accepted 29 September 2011; online 5 October 2011)

The title salt, C12H24N+·NCS, represents a monoclinic polymorph of the previously reported ortho­rhom­bic form [Khawar Rauf et al. (2008[Khawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.]). Acta Cryst. E64, o366]. Two independent formula units comprise the asymmetric unit with the major difference in their mol­ecular structures relating to the relative dispositions of the cyclo­hexyl rings [dihedral angles = 79.88 (6) and 67.72 (5)°]. Further, the independent anions form distinctive patterns of hydrogen-bonding inter­actions, i.e. 2 × N—H⋯N versus N—H⋯N and N—H⋯S. The resulting supra­molecular architecture is a supra­molecular chain along the c axis based on a square-wave topology.

Related literature

For the crystal structure of the ortho­rhom­bic polymorph, see: Khawar Rauf et al. (2008[Khawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.]). For additional structure analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·NCS

  • Mr = 240.40

  • Monoclinic, P 21 /c

  • a = 8.5190 (1) Å

  • b = 37.9428 (5) Å

  • c = 8.5578 (1) Å

  • β = 93.661 (1)°

  • V = 2760.53 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.88 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.602, Tmax = 0.704

  • 16974 measured reflections

  • 5693 independent reflections

  • 5363 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.02

  • 5693 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N3 0.887 (15) 2.091 (15) 2.9696 (13) 170.6 (13)
N1—H12⋯N4i 0.960 (16) 1.900 (16) 2.8539 (13) 172.1 (13)
N2—H21⋯N3 0.911 (15) 2.068 (15) 2.9650 (12) 168.1 (13)
N2—H22⋯S2 0.895 (16) 2.475 (16) 3.3544 (9) 167.4 (13)
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title salt (I) represents a monoclinic form of the previously reported (at 123 K) orthorhombic form (Khawar Rauf et al., 2008). In the latter, one formula unit comprises the asymmetric unit whereas two independent formula units comprise the asymmetric unit in (I), Fig. 1. The differences in the structure of (I) relate to a minor variation in the orientation of the cyclohexyl groups, Fig. 2, and in the nature of the intermolecular interactions they form, see below. In terms of molecular structure, each cyclohexyl ring has a chair conformation and the r.m.s. differences for the cations are 0.0026 Å for distances and 0.530° for angles (Spek, 2009). The different orientations are probably best described by the dihedral angles formed between the least-squares planes through the pairs of rings, i.e. 79.88 (6) and 67.72 (5)°, for the N1- and N2-cations, respectively.

In terms of crystal packing, the N1-cation forms N—H···N hydrogen bonds exclusively whereas the N2-cation forms a N—H···N and a N—H···S hydrogen bond, Table 1. The result of the hydrogen bonding is the formation of a supramolecular chain with a square-wave topology along the c axis. The N1-cation bridges two N2-cations via N—H···N hydrogen bonds and the N2-cation bridges two N1-cations via the N and S atoms, Fig. 3. Chains assemble into layers in the ac plane which stack along the b axis, Fig. 4. In the orthorhombic polymorph, the thiocyanate anion bridges two cations via the N and S atoms to form a supramolecular chain.

Related literature top

For the crystal structure of the orthorhombic polymorph, see: Khawar Rauf et al. (2008). For additional structure analysis, see: Spek (2009).

Experimental top

The title compound was obtained as an unexpected product from a reaction mixture containing dicyclohexylamine, isopthaloyl dichloride and potassium thiocyanate in acetone under reflux conditions. Crystals were grown from a solution of the compound in ethylacetate / petroleum ether (1:3).

Refinement top

The H-atoms were placed in calculated positions (C—H 0.99 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The ammonium-H atoms were refined without restraint.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the ions comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An overlay diagram of the two cations in (I) emphasizing the minor variation in conformation. The red molecule illustrates the N1-containing cation.
[Figure 3] Fig. 3. A supramolecular chain in (I) mediated by N—H···N and N—H···S hydrogen bonding shown as blue and orange dashed lines, respectively. Hydrogen atoms not participating hydrogen bonding contacts have been omitted for reasons of clarity.
[Figure 4] Fig. 4. A view in projection down the c axis of the unit-cell contents of (I).
Dicyclohexylammonium thiocyanate top
Crystal data top
C12H24N+·NCSF(000) = 1056
Mr = 240.40Dx = 1.157 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 9471 reflections
a = 8.5190 (1) Åθ = 3.5–76.6°
b = 37.9428 (5) ŵ = 1.88 mm1
c = 8.5578 (1) ÅT = 100 K
β = 93.661 (1)°Prism, colourless
V = 2760.53 (6) Å30.30 × 0.30 × 0.20 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5693 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5363 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 75.0°, θmin = 5.2°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 4547
Tmin = 0.602, Tmax = 0.704l = 910
16974 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.9255P]
where P = (Fo2 + 2Fc2)/3
5693 reflections(Δ/σ)max = 0.002
305 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H24N+·NCSV = 2760.53 (6) Å3
Mr = 240.40Z = 8
Monoclinic, P21/cCu Kα radiation
a = 8.5190 (1) ŵ = 1.88 mm1
b = 37.9428 (5) ÅT = 100 K
c = 8.5578 (1) Å0.30 × 0.30 × 0.20 mm
β = 93.661 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5693 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5363 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.704Rint = 0.020
16974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
5693 reflectionsΔρmin = 0.25 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09309 (3)0.325069 (7)0.66579 (3)0.02219 (8)
S20.73345 (3)0.424830 (7)0.97466 (3)0.02176 (8)
N10.24296 (10)0.37649 (2)0.18494 (11)0.01476 (18)
N20.59395 (10)0.38563 (2)0.64295 (10)0.01326 (17)
N30.25785 (10)0.38031 (2)0.53216 (10)0.01739 (19)
N40.57319 (11)0.37474 (3)1.14655 (11)0.0213 (2)
C10.18788 (12)0.41052 (3)0.10828 (12)0.0154 (2)
H10.07280.41340.12150.018*
C20.21502 (14)0.41008 (3)0.06624 (12)0.0192 (2)
H2A0.14870.39160.11870.023*
H2B0.32650.40430.08100.023*
C30.17461 (15)0.44596 (3)0.14073 (13)0.0231 (2)
H3A0.20050.44560.25190.028*
H3B0.06020.45020.13770.028*
C40.26455 (16)0.47591 (3)0.05596 (14)0.0251 (2)
H4A0.37870.47300.06730.030*
H4B0.23190.49870.10380.030*
C50.23223 (15)0.47606 (3)0.11732 (13)0.0233 (2)
H5A0.29400.49510.17140.028*
H5B0.11930.48090.12880.028*
C60.27613 (13)0.44066 (3)0.19307 (12)0.0178 (2)
H6A0.25020.44100.30420.021*
H6B0.39080.43680.18980.021*
C70.16086 (12)0.34292 (3)0.13194 (12)0.0166 (2)
H70.16400.34090.01570.020*
C80.01021 (13)0.34341 (3)0.17372 (14)0.0212 (2)
H8A0.06610.36320.11890.025*
H8B0.01530.34700.28780.025*
C90.08997 (14)0.30851 (3)0.12608 (16)0.0269 (3)
H9A0.19960.30870.15810.032*
H9B0.09330.30600.01080.032*
C100.00232 (15)0.27727 (3)0.20182 (17)0.0279 (3)
H10A0.05370.25510.16550.033*
H10B0.00720.27860.31690.033*
C110.16942 (15)0.27704 (3)0.16025 (16)0.0275 (3)
H11A0.17450.27340.04610.033*
H11B0.22530.25720.21470.033*
C120.25028 (13)0.31181 (3)0.20785 (14)0.0205 (2)
H12A0.25440.31430.32320.025*
H12B0.35950.31170.17480.025*
C130.66417 (12)0.40923 (3)0.52378 (12)0.0133 (2)
H130.63820.39930.41700.016*
C140.58766 (12)0.44545 (3)0.53387 (12)0.0156 (2)
H14A0.60650.45500.64110.019*
H14B0.47260.44340.51100.019*
C150.65691 (13)0.47051 (3)0.41591 (13)0.0184 (2)
H15A0.63200.46170.30830.022*
H15B0.60890.49410.42450.022*
C160.83523 (13)0.47332 (3)0.44655 (13)0.0198 (2)
H16A0.87850.48910.36780.024*
H16B0.86000.48360.55150.024*
C170.91103 (13)0.43707 (3)0.43778 (13)0.0197 (2)
H17A1.02570.43920.46250.024*
H17B0.89460.42790.32970.024*
C180.84242 (12)0.41101 (3)0.55173 (13)0.0173 (2)
H18A0.88810.38730.53700.021*
H18B0.87010.41860.66070.021*
C190.64807 (12)0.34769 (3)0.65169 (12)0.0141 (2)
H190.76220.34700.68720.017*
C200.62609 (13)0.33067 (3)0.49062 (12)0.0164 (2)
H20A0.69620.34220.41820.020*
H20B0.51610.33400.44850.020*
C210.66374 (14)0.29126 (3)0.50033 (13)0.0200 (2)
H21A0.64320.28040.39580.024*
H21B0.77670.28810.53190.024*
C220.56472 (14)0.27271 (3)0.61790 (13)0.0215 (2)
H22A0.45210.27420.58210.026*
H22B0.59410.24750.62440.026*
C230.59016 (14)0.28959 (3)0.77911 (13)0.0207 (2)
H23A0.70070.28600.81890.025*
H23B0.52140.27800.85260.025*
C240.55370 (13)0.32905 (3)0.77289 (12)0.0176 (2)
H24A0.44000.33250.74620.021*
H24B0.57910.33960.87730.021*
C250.18777 (12)0.35743 (3)0.58834 (12)0.0165 (2)
C260.64060 (12)0.39560 (3)1.07589 (12)0.0161 (2)
H110.2359 (16)0.3784 (4)0.2875 (18)0.021 (3)*
H120.3529 (19)0.3737 (4)0.1698 (17)0.028 (4)*
H210.4878 (18)0.3857 (4)0.6218 (16)0.021 (3)*
H220.6162 (18)0.3952 (4)0.7374 (18)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01980 (14)0.01931 (14)0.02743 (15)0.00320 (10)0.00126 (11)0.00326 (10)
S20.02543 (15)0.02238 (14)0.01734 (14)0.00632 (10)0.00034 (10)0.00057 (10)
N10.0141 (4)0.0151 (4)0.0149 (4)0.0022 (3)0.0002 (3)0.0004 (3)
N20.0136 (4)0.0112 (4)0.0149 (4)0.0000 (3)0.0004 (3)0.0006 (3)
N30.0156 (4)0.0193 (4)0.0171 (4)0.0009 (3)0.0003 (3)0.0006 (3)
N40.0176 (4)0.0264 (5)0.0197 (5)0.0008 (4)0.0010 (4)0.0001 (4)
C10.0149 (5)0.0152 (5)0.0158 (5)0.0008 (4)0.0000 (4)0.0001 (4)
C20.0250 (5)0.0176 (5)0.0149 (5)0.0016 (4)0.0008 (4)0.0009 (4)
C30.0318 (6)0.0196 (5)0.0173 (5)0.0018 (5)0.0031 (5)0.0022 (4)
C40.0354 (7)0.0179 (5)0.0218 (6)0.0054 (5)0.0003 (5)0.0033 (4)
C50.0318 (6)0.0155 (5)0.0224 (6)0.0023 (4)0.0001 (5)0.0018 (4)
C60.0203 (5)0.0165 (5)0.0164 (5)0.0028 (4)0.0001 (4)0.0022 (4)
C70.0168 (5)0.0153 (5)0.0175 (5)0.0037 (4)0.0001 (4)0.0018 (4)
C80.0144 (5)0.0176 (5)0.0312 (6)0.0019 (4)0.0018 (4)0.0001 (4)
C90.0189 (5)0.0239 (6)0.0374 (7)0.0073 (5)0.0032 (5)0.0024 (5)
C100.0249 (6)0.0164 (5)0.0425 (7)0.0068 (5)0.0036 (5)0.0021 (5)
C110.0256 (6)0.0160 (5)0.0414 (7)0.0015 (5)0.0058 (5)0.0056 (5)
C120.0162 (5)0.0165 (5)0.0288 (6)0.0001 (4)0.0016 (4)0.0008 (4)
C130.0142 (5)0.0119 (5)0.0137 (5)0.0009 (4)0.0013 (4)0.0003 (4)
C140.0144 (5)0.0122 (5)0.0204 (5)0.0002 (4)0.0013 (4)0.0005 (4)
C150.0172 (5)0.0141 (5)0.0238 (5)0.0007 (4)0.0005 (4)0.0041 (4)
C160.0181 (5)0.0187 (5)0.0225 (5)0.0059 (4)0.0008 (4)0.0026 (4)
C170.0138 (5)0.0241 (6)0.0215 (5)0.0010 (4)0.0034 (4)0.0029 (4)
C180.0136 (5)0.0177 (5)0.0205 (5)0.0013 (4)0.0012 (4)0.0021 (4)
C190.0144 (5)0.0098 (5)0.0176 (5)0.0007 (4)0.0019 (4)0.0000 (4)
C200.0206 (5)0.0130 (5)0.0158 (5)0.0007 (4)0.0017 (4)0.0005 (4)
C210.0265 (6)0.0122 (5)0.0214 (5)0.0003 (4)0.0024 (4)0.0029 (4)
C220.0304 (6)0.0127 (5)0.0211 (5)0.0034 (4)0.0009 (5)0.0002 (4)
C230.0300 (6)0.0137 (5)0.0181 (5)0.0001 (4)0.0019 (4)0.0029 (4)
C240.0231 (5)0.0146 (5)0.0149 (5)0.0004 (4)0.0004 (4)0.0012 (4)
C250.0133 (5)0.0196 (5)0.0161 (5)0.0035 (4)0.0021 (4)0.0024 (4)
C260.0132 (5)0.0207 (5)0.0142 (5)0.0026 (4)0.0015 (4)0.0040 (4)
Geometric parameters (Å, º) top
S1—C251.6327 (11)C10—H10B0.9900
S2—C261.6412 (11)C11—C121.5314 (15)
N1—C71.5087 (13)C11—H11A0.9900
N1—C11.5097 (13)C11—H11B0.9900
N1—H110.887 (15)C12—H12A0.9900
N1—H120.960 (16)C12—H12B0.9900
N2—C131.5090 (13)C13—C181.5236 (14)
N2—C191.5120 (12)C13—C141.5260 (13)
N2—H210.911 (15)C13—H131.0000
N2—H220.895 (16)C14—C151.5319 (14)
N3—C251.1738 (15)C14—H14A0.9900
N4—C261.1690 (15)C14—H14B0.9900
C1—C21.5259 (14)C15—C161.5287 (15)
C1—C61.5264 (14)C15—H15A0.9900
C1—H11.0000C15—H15B0.9900
C2—C31.5329 (15)C16—C171.5235 (16)
C2—H2A0.9900C16—H16A0.9900
C2—H2B0.9900C16—H16B0.9900
C3—C41.5278 (16)C17—C181.5305 (14)
C3—H3A0.9900C17—H17A0.9900
C3—H3B0.9900C17—H17B0.9900
C4—C51.5255 (16)C18—H18A0.9900
C4—H4A0.9900C18—H18B0.9900
C4—H4B0.9900C19—C201.5230 (14)
C5—C61.5274 (15)C19—C241.5262 (14)
C5—H5A0.9900C19—H191.0000
C5—H5B0.9900C20—C211.5303 (14)
C6—H6A0.9900C20—H20A0.9900
C6—H6B0.9900C20—H20B0.9900
C7—C81.5227 (15)C21—C221.5257 (15)
C7—C121.5273 (15)C21—H21A0.9900
C7—H71.0000C21—H21B0.9900
C8—C91.5317 (15)C22—C231.5240 (15)
C8—H8A0.9900C22—H22A0.9900
C8—H8B0.9900C22—H22B0.9900
C9—C101.5235 (17)C23—C241.5290 (14)
C9—H9A0.9900C23—H23A0.9900
C9—H9B0.9900C23—H23B0.9900
C10—C111.5277 (17)C24—H24A0.9900
C10—H10A0.9900C24—H24B0.9900
C7—N1—C1117.79 (8)C7—C12—H12A109.6
C7—N1—H11108.0 (9)C11—C12—H12A109.6
C1—N1—H11108.7 (9)C7—C12—H12B109.6
C7—N1—H12107.6 (9)C11—C12—H12B109.6
C1—N1—H12108.4 (9)H12A—C12—H12B108.1
H11—N1—H12105.8 (13)N2—C13—C18110.76 (8)
C13—N2—C19117.74 (8)N2—C13—C14107.88 (8)
C13—N2—H21107.2 (9)C18—C13—C14112.09 (8)
C19—N2—H21107.9 (9)N2—C13—H13108.7
C13—N2—H22107.4 (10)C18—C13—H13108.7
C19—N2—H22107.2 (10)C14—C13—H13108.7
H21—N2—H22109.2 (13)C13—C14—C15109.75 (8)
N1—C1—C2110.71 (8)C13—C14—H14A109.7
N1—C1—C6107.72 (8)C15—C14—H14A109.7
C2—C1—C6111.89 (9)C13—C14—H14B109.7
N1—C1—H1108.8C15—C14—H14B109.7
C2—C1—H1108.8H14A—C14—H14B108.2
C6—C1—H1108.8C16—C15—C14110.52 (9)
C1—C2—C3110.68 (9)C16—C15—H15A109.5
C1—C2—H2A109.5C14—C15—H15A109.5
C3—C2—H2A109.5C16—C15—H15B109.5
C1—C2—H2B109.5C14—C15—H15B109.5
C3—C2—H2B109.5H15A—C15—H15B108.1
H2A—C2—H2B108.1C17—C16—C15110.38 (9)
C4—C3—C2111.76 (9)C17—C16—H16A109.6
C4—C3—H3A109.3C15—C16—H16A109.6
C2—C3—H3A109.3C17—C16—H16B109.6
C4—C3—H3B109.3C15—C16—H16B109.6
C2—C3—H3B109.3H16A—C16—H16B108.1
H3A—C3—H3B107.9C16—C17—C18111.81 (9)
C5—C4—C3110.38 (10)C16—C17—H17A109.3
C5—C4—H4A109.6C18—C17—H17A109.3
C3—C4—H4A109.6C16—C17—H17B109.3
C5—C4—H4B109.6C18—C17—H17B109.3
C3—C4—H4B109.6H17A—C17—H17B107.9
H4A—C4—H4B108.1C13—C18—C17110.24 (9)
C6—C5—C4110.78 (9)C13—C18—H18A109.6
C6—C5—H5A109.5C17—C18—H18A109.6
C4—C5—H5A109.5C13—C18—H18B109.6
C6—C5—H5B109.5C17—C18—H18B109.6
C4—C5—H5B109.5H18A—C18—H18B108.1
H5A—C5—H5B108.1N2—C19—C20109.85 (8)
C5—C6—C1110.93 (9)N2—C19—C24107.63 (8)
C5—C6—H6A109.5C20—C19—C24112.26 (8)
C1—C6—H6A109.5N2—C19—H19109.0
C5—C6—H6B109.5C20—C19—H19109.0
C1—C6—H6B109.5C24—C19—H19109.0
H6A—C6—H6B108.0C19—C20—C21110.61 (9)
N1—C7—C8110.57 (9)C19—C20—H20A109.5
N1—C7—C12108.39 (8)C21—C20—H20A109.5
C8—C7—C12111.61 (9)C19—C20—H20B109.5
N1—C7—H7108.7C21—C20—H20B109.5
C8—C7—H7108.7H20A—C20—H20B108.1
C12—C7—H7108.7C22—C21—C20111.33 (9)
C7—C8—C9110.00 (9)C22—C21—H21A109.4
C7—C8—H8A109.7C20—C21—H21A109.4
C9—C8—H8A109.7C22—C21—H21B109.4
C7—C8—H8B109.7C20—C21—H21B109.4
C9—C8—H8B109.7H21A—C21—H21B108.0
H8A—C8—H8B108.2C23—C22—C21110.51 (9)
C10—C9—C8111.25 (10)C23—C22—H22A109.5
C10—C9—H9A109.4C21—C22—H22A109.5
C8—C9—H9A109.4C23—C22—H22B109.5
C10—C9—H9B109.4C21—C22—H22B109.5
C8—C9—H9B109.4H22A—C22—H22B108.1
H9A—C9—H9B108.0C22—C23—C24111.30 (9)
C9—C10—C11110.86 (10)C22—C23—H23A109.4
C9—C10—H10A109.5C24—C23—H23A109.4
C11—C10—H10A109.5C22—C23—H23B109.4
C9—C10—H10B109.5C24—C23—H23B109.4
C11—C10—H10B109.5H23A—C23—H23B108.0
H10A—C10—H10B108.1C19—C24—C23111.28 (9)
C10—C11—C12110.75 (10)C19—C24—H24A109.4
C10—C11—H11A109.5C23—C24—H24A109.4
C12—C11—H11A109.5C19—C24—H24B109.4
C10—C11—H11B109.5C23—C24—H24B109.4
C12—C11—H11B109.5H24A—C24—H24B108.0
H11A—C11—H11B108.1N3—C25—S1178.87 (10)
C7—C12—C11110.43 (9)N4—C26—S2179.22 (10)
C7—N1—C1—C263.27 (11)C19—N2—C13—C1858.85 (11)
C7—N1—C1—C6174.10 (9)C19—N2—C13—C14178.14 (8)
N1—C1—C2—C3174.30 (9)N2—C13—C14—C15179.34 (8)
C6—C1—C2—C354.13 (12)C18—C13—C14—C1557.15 (11)
C1—C2—C3—C454.77 (13)C13—C14—C15—C1657.84 (11)
C2—C3—C4—C556.51 (14)C14—C15—C16—C1757.81 (12)
C3—C4—C5—C657.23 (13)C15—C16—C17—C1856.46 (12)
C4—C5—C6—C156.84 (13)N2—C13—C18—C17175.91 (8)
N1—C1—C6—C5177.42 (9)C14—C13—C18—C1755.37 (11)
C2—C1—C6—C555.53 (12)C16—C17—C18—C1354.81 (12)
C1—N1—C7—C865.18 (12)C13—N2—C19—C2054.20 (11)
C1—N1—C7—C12172.18 (9)C13—N2—C19—C24176.70 (8)
N1—C7—C8—C9177.40 (9)N2—C19—C20—C21174.01 (8)
C12—C7—C8—C956.65 (13)C24—C19—C20—C2154.29 (12)
C7—C8—C9—C1056.46 (14)C19—C20—C21—C2255.96 (12)
C8—C9—C10—C1156.77 (14)C20—C21—C22—C2357.26 (12)
C9—C10—C11—C1256.41 (15)C21—C22—C23—C2456.46 (13)
N1—C7—C12—C11178.84 (9)N2—C19—C24—C23174.89 (8)
C8—C7—C12—C1156.83 (12)C20—C19—C24—C2353.89 (12)
C10—C11—C12—C756.15 (14)C22—C23—C24—C1954.72 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N30.887 (15)2.091 (15)2.9696 (13)170.6 (13)
N1—H12···N4i0.960 (16)1.900 (16)2.8539 (13)172.1 (13)
N2—H21···N30.911 (15)2.068 (15)2.9650 (12)168.1 (13)
N2—H22···S20.895 (16)2.475 (16)3.3544 (9)167.4 (13)
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC12H24N+·NCS
Mr240.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.5190 (1), 37.9428 (5), 8.5578 (1)
β (°) 93.661 (1)
V3)2760.53 (6)
Z8
Radiation typeCu Kα
µ (mm1)1.88
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.602, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
16974, 5693, 5363
Rint0.020
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.02
No. of reflections5693
No. of parameters305
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N30.887 (15)2.091 (15)2.9696 (13)170.6 (13)
N1—H12···N4i0.960 (16)1.900 (16)2.8539 (13)172.1 (13)
N2—H21···N30.911 (15)2.068 (15)2.9650 (12)168.1 (13)
N2—H22···S20.895 (16)2.475 (16)3.3544 (9)167.4 (13)
Symmetry code: (i) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks the NITT for a fellowship. The authors thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds