metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­[(2-phen­­oxy­pyrimidine-κN1)copper(II)](CuCu)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

The complete dinuclear mol­ecule of the title complex, [Cu2(CH3COO)4(C10H8N2O)2], is generated by a centre of inversion. The CuII atom is in a distorted octa­hedral coordination geometry defined by four O atoms derived from four bridging acetate ligands, a terminally connected pyrimidine N atom and a Cu atom.

Related literature

For structures of related examples of tetra­kis­acetato­bis­[(N-donor)copper] complexes, see: Fairuz et al. (2010a[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049-m1050.],b[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077-m1078.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C10H8N2O)2]

  • Mr = 707.64

  • Monoclinic, P 21 /n

  • a = 11.0738 (9) Å

  • b = 7.5002 (6) Å

  • c = 18.0539 (14) Å

  • β = 100.579 (1)°

  • V = 1474.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.25 × 0.24 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.637, Tmax = 0.746

  • 11124 measured reflections

  • 2581 independent reflections

  • 2249 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.175

  • S = 1.08

  • 2581 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 1.83 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.954 (4)
Cu1—O1 1.966 (4)
Cu1—O4i 1.977 (3)
Cu1—O2i 1.979 (4)
Cu1—N1 2.207 (4)
Cu1—Cu1i 2.6154 (10)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It was in connection with recent structural studies of tetrakisacetatobis[(N-donor)copper(II)] complexes (Fairuz et al., 2010a; Fairuz et al., 2010b), that the crystal structure of the title complex, (I), was investigated. The complex, Fig. 1, is centrosymmetric and features four symmetrically bridging acetate ligands and two terminally connected N atoms from the 2-phenoxypyrimidine ligands, Table 1. The Cu—Cu distance is 2.6154 (10) Å. The resulting CuNO4 donor set defines a distorted octahedral geometry. The 2-phenoxypyrimidine ligand is twisted with the dihedral angle between the pyrimidyl and benzene rings being 63.3 (3)°.

Related literature top

For structures of related examples of tetrakisacetatobis[(N-donor)copper] complexes, see: Fairuz et al. (2010a,b).

Experimental top

2-Phenoxypyrimidine (1.1 mmol) was dissolved in acetonitrile (15 ml), added to trimethyl orthoformate (10 ml) and the mixture then heated to 50°C. Copper acetate (0.5 mmol) dissolved in acetonitrile (15 ml) was added to the solution. The green precipitate that formed was collected and recrystallized from acetonitrile to give green crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95–0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C). The maximum and minimum residual electron density peaks of 1.83 and 0.55 e Å-3, respectively, were located 1.42 Å and 0.44 Å from the H6 and Cu atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The complex is centrosymmetric. The unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, 1 - z.
Tetra-µ-acetato-κ8O:O'-bis[(2- phenoxypyrimidine-κN1)copper(II)](CuCu) top
Crystal data top
[Cu2(C2H3O2)4(C10H8N2O)2]F(000) = 724
Mr = 707.64Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3884 reflections
a = 11.0738 (9) Åθ = 2.3–27.1°
b = 7.5002 (6) ŵ = 1.51 mm1
c = 18.0539 (14) ÅT = 100 K
β = 100.579 (1)°Plate, green
V = 1474.0 (2) Å30.25 × 0.24 × 0.04 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.637, Tmax = 0.746k = 88
11124 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1094P)2 + 3.359P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu2(C2H3O2)4(C10H8N2O)2]V = 1474.0 (2) Å3
Mr = 707.64Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.0738 (9) ŵ = 1.51 mm1
b = 7.5002 (6) ÅT = 100 K
c = 18.0539 (14) Å0.25 × 0.24 × 0.04 mm
β = 100.579 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2249 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.746Rint = 0.037
11124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.08Δρmax = 1.83 e Å3
2581 reflectionsΔρmin = 0.55 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41133 (5)0.58752 (7)0.52267 (3)0.0279 (3)
O10.3059 (3)0.4099 (4)0.4621 (2)0.0415 (9)
O20.4556 (3)0.2595 (5)0.4231 (2)0.0463 (9)
O30.4384 (4)0.4244 (5)0.6085 (2)0.0479 (10)
O40.5873 (3)0.2712 (5)0.5697 (2)0.0421 (9)
O50.1716 (4)0.5271 (5)0.5969 (3)0.0520 (11)
N10.2668 (3)0.7572 (5)0.5552 (2)0.0304 (8)
N20.0888 (4)0.8062 (6)0.6078 (3)0.0436 (11)
C10.5176 (4)0.3045 (6)0.6154 (3)0.0326 (10)
C20.5298 (7)0.1861 (9)0.6841 (3)0.0597 (17)
H2A0.61010.20590.71630.090*
H2B0.52280.06090.66830.090*
H2C0.46460.21460.71220.090*
C30.3455 (5)0.2911 (6)0.4241 (3)0.0331 (10)
C40.2508 (5)0.1755 (8)0.3750 (3)0.0484 (14)
H4A0.26810.04970.38720.073*
H4B0.25450.19640.32180.073*
H4C0.16870.20560.38410.073*
C50.1732 (4)0.7050 (6)0.5869 (3)0.0316 (10)
C60.2763 (5)0.9324 (7)0.5446 (3)0.0413 (13)
H60.34250.97620.52310.050*
C70.1930 (6)1.0506 (8)0.5640 (4)0.0546 (16)
H70.19981.17530.55650.065*
C80.0997 (6)0.9796 (8)0.5947 (4)0.0565 (16)
H80.03941.05820.60750.068*
C90.0924 (5)0.4472 (6)0.6393 (3)0.0374 (12)
C100.1489 (5)0.3652 (9)0.7058 (3)0.0515 (14)
H100.23480.37640.72340.062*
C110.0762 (6)0.2666 (9)0.7457 (3)0.0567 (16)
H110.11270.20930.79130.068*
C120.0480 (6)0.2509 (8)0.7200 (3)0.0487 (14)
H120.09700.18180.74730.058*
C130.1003 (5)0.3352 (8)0.6553 (3)0.0461 (13)
H130.18640.32550.63830.055*
C140.0313 (5)0.4344 (7)0.6136 (3)0.0405 (12)
H140.06900.49210.56840.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0235 (4)0.0277 (4)0.0343 (4)0.0048 (2)0.0105 (2)0.0017 (2)
O10.0300 (19)0.040 (2)0.054 (2)0.0005 (14)0.0077 (17)0.0082 (16)
O20.0293 (18)0.048 (2)0.062 (2)0.0022 (16)0.0099 (16)0.0188 (19)
O30.052 (2)0.052 (2)0.044 (2)0.0165 (18)0.0223 (19)0.0130 (17)
O40.043 (2)0.0395 (19)0.049 (2)0.0127 (16)0.0212 (17)0.0127 (16)
O50.046 (2)0.0279 (18)0.094 (3)0.0067 (16)0.045 (2)0.0048 (19)
N10.0276 (19)0.0273 (19)0.039 (2)0.0041 (15)0.0134 (16)0.0005 (17)
N20.039 (2)0.033 (2)0.064 (3)0.0047 (18)0.025 (2)0.006 (2)
C10.032 (2)0.031 (2)0.035 (2)0.005 (2)0.005 (2)0.0059 (19)
C20.067 (4)0.064 (4)0.049 (3)0.010 (3)0.013 (3)0.026 (3)
C30.035 (3)0.033 (2)0.031 (2)0.002 (2)0.005 (2)0.0073 (19)
C40.040 (3)0.048 (3)0.055 (3)0.008 (2)0.002 (3)0.006 (3)
C50.025 (2)0.029 (2)0.042 (3)0.0016 (18)0.0096 (19)0.0058 (19)
C60.038 (3)0.035 (3)0.055 (3)0.002 (2)0.020 (3)0.001 (2)
C70.068 (4)0.031 (3)0.072 (4)0.007 (3)0.033 (3)0.001 (3)
C80.059 (4)0.032 (3)0.089 (5)0.013 (3)0.041 (3)0.007 (3)
C90.035 (3)0.028 (2)0.054 (3)0.002 (2)0.023 (2)0.004 (2)
C100.036 (3)0.058 (3)0.055 (4)0.002 (3)0.006 (3)0.007 (3)
C110.074 (4)0.058 (4)0.037 (3)0.006 (3)0.007 (3)0.004 (3)
C120.055 (3)0.044 (3)0.055 (3)0.001 (3)0.032 (3)0.001 (3)
C130.028 (3)0.047 (3)0.067 (4)0.004 (2)0.019 (2)0.003 (3)
C140.035 (3)0.040 (3)0.045 (3)0.007 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Cu1—O31.954 (4)C2—H2C0.9800
Cu1—O11.966 (4)C3—C41.515 (7)
Cu1—O4i1.977 (3)C4—H4A0.9800
Cu1—O2i1.979 (4)C4—H4B0.9800
Cu1—N12.207 (4)C4—H4C0.9800
Cu1—Cu1i2.6154 (10)C6—C71.371 (8)
O1—C31.252 (6)C6—H60.9500
O2—C31.246 (6)C7—C81.367 (9)
O2—Cu1i1.979 (4)C7—H70.9500
O3—C11.246 (6)C8—H80.9500
O4—C11.254 (6)C9—C141.367 (8)
O4—Cu1i1.977 (3)C9—C101.391 (8)
O5—C51.347 (6)C10—C111.389 (9)
O5—C91.400 (6)C10—H100.9500
N1—C51.331 (6)C11—C121.373 (9)
N1—C61.335 (6)C11—H110.9500
N2—C51.312 (6)C12—C131.361 (8)
N2—C81.331 (8)C12—H120.9500
C1—C21.511 (7)C13—C141.383 (8)
C2—H2A0.9800C13—H130.9500
C2—H2B0.9800C14—H140.9500
O3—Cu1—O190.30 (18)C3—C4—H4A109.5
O3—Cu1—O4i168.58 (15)C3—C4—H4B109.5
O1—Cu1—O4i89.46 (16)H4A—C4—H4B109.5
O3—Cu1—O2i88.77 (18)C3—C4—H4C109.5
O1—Cu1—O2i168.63 (15)H4A—C4—H4C109.5
O4i—Cu1—O2i89.22 (17)H4B—C4—H4C109.5
O3—Cu1—N199.39 (15)N2—C5—N1127.3 (4)
O1—Cu1—N198.78 (15)N2—C5—O5120.4 (4)
O4i—Cu1—N191.93 (14)N1—C5—O5112.3 (4)
O2i—Cu1—N192.55 (14)N1—C6—C7121.7 (5)
O3—Cu1—Cu1i85.37 (11)N1—C6—H6119.1
O1—Cu1—Cu1i83.66 (11)C7—C6—H6119.1
O4i—Cu1—Cu1i83.26 (10)C8—C7—C6116.5 (5)
O2i—Cu1—Cu1i84.97 (11)C8—C7—H7121.8
N1—Cu1—Cu1i174.60 (11)C6—C7—H7121.8
C3—O1—Cu1123.7 (3)N2—C8—C7123.5 (5)
C3—O2—Cu1i121.6 (3)N2—C8—H8118.2
C1—O3—Cu1122.2 (3)C7—C8—H8118.2
C1—O4—Cu1i123.3 (3)C14—C9—C10121.7 (5)
C5—O5—C9121.5 (4)C14—C9—O5122.3 (5)
C5—N1—C6116.0 (4)C10—C9—O5115.7 (5)
C5—N1—Cu1127.2 (3)C11—C10—C9118.1 (5)
C6—N1—Cu1116.7 (3)C11—C10—H10120.9
C5—N2—C8114.9 (5)C9—C10—H10120.9
O3—C1—O4125.8 (4)C12—C11—C10120.7 (5)
O3—C1—C2117.5 (5)C12—C11—H11119.6
O4—C1—C2116.7 (5)C10—C11—H11119.6
C1—C2—H2A109.5C13—C12—C11119.5 (5)
C1—C2—H2B109.5C13—C12—H12120.3
H2A—C2—H2B109.5C11—C12—H12120.3
C1—C2—H2C109.5C12—C13—C14121.8 (5)
H2A—C2—H2C109.5C12—C13—H13119.1
H2B—C2—H2C109.5C14—C13—H13119.1
O2—C3—O1125.9 (5)C9—C14—C13118.2 (5)
O2—C3—C4117.1 (5)C9—C14—H14120.9
O1—C3—C4117.0 (5)C13—C14—H14120.9
O3—Cu1—O1—C387.8 (4)Cu1—O1—C3—C4174.5 (4)
O4i—Cu1—O1—C380.8 (4)C8—N2—C5—N10.3 (8)
O2i—Cu1—O1—C32.6 (11)C8—N2—C5—O5179.7 (6)
N1—Cu1—O1—C3172.6 (4)C6—N1—C5—N21.1 (8)
Cu1i—Cu1—O1—C32.5 (4)Cu1—N1—C5—N2178.4 (4)
O1—Cu1—O3—C183.2 (4)C6—N1—C5—O5178.8 (5)
O4i—Cu1—O3—C15.6 (11)Cu1—N1—C5—O51.5 (6)
O2i—Cu1—O3—C185.5 (4)C9—O5—C5—N29.6 (8)
N1—Cu1—O3—C1177.9 (4)C9—O5—C5—N1170.4 (5)
Cu1i—Cu1—O3—C10.5 (4)C5—N1—C6—C71.2 (8)
O3—Cu1—N1—C539.5 (4)Cu1—N1—C6—C7178.8 (5)
O1—Cu1—N1—C552.2 (4)N1—C6—C7—C80.0 (10)
O4i—Cu1—N1—C5142.0 (4)C5—N2—C8—C71.8 (10)
O2i—Cu1—N1—C5128.7 (4)C6—C7—C8—N21.7 (11)
O3—Cu1—N1—C6137.7 (4)C5—O5—C9—C1472.4 (7)
O1—Cu1—N1—C6130.5 (4)C5—O5—C9—C10114.0 (6)
O4i—Cu1—N1—C640.8 (4)C14—C9—C10—C110.9 (9)
O2i—Cu1—N1—C648.5 (4)O5—C9—C10—C11172.8 (5)
Cu1—O3—C1—O41.0 (8)C9—C10—C11—C120.1 (9)
Cu1—O3—C1—C2179.8 (4)C10—C11—C12—C130.9 (9)
Cu1i—O4—C1—O32.4 (7)C11—C12—C13—C141.1 (9)
Cu1i—O4—C1—C2178.7 (4)C10—C9—C14—C130.7 (8)
Cu1i—O2—C3—O15.4 (7)O5—C9—C14—C13172.5 (5)
Cu1i—O2—C3—C4174.6 (4)C12—C13—C14—C90.3 (8)
Cu1—O1—C3—O25.5 (7)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C10H8N2O)2]
Mr707.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.0738 (9), 7.5002 (6), 18.0539 (14)
β (°) 100.579 (1)
V3)1474.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.25 × 0.24 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.637, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11124, 2581, 2249
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.175, 1.08
No. of reflections2581
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O31.954 (4)Cu1—O2i1.979 (4)
Cu1—O11.966 (4)Cu1—N12.207 (4)
Cu1—O4i1.977 (3)Cu1—Cu1i2.6154 (10)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We thank the University of Malaya (grant No. RG027/09AFR) for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077–m1078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds