organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Cyano-4-{7-[1-(2-hy­dr­oxy­eth­yl)-3,3-di­methyl­indolin-2-yl­­idene]hepta-1,3,5-trien­yl}-5,5-di­methyl-2,5-di­hydro­furan-2-yl­­idene)malono­nitrile

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand 5010
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 18 September 2011; accepted 12 October 2011; online 22 October 2011)

The title compound, C29H28N4O2, excluding the hydroxyethyl and methyl groups, is slightly twisted from planarity so that the terminating indol-2-yl­idene and furan-2-yl­idene moiety planes subtend a dihedral angle of 6.27 (8)°. A small inwards fold in the polymethine atom chain is consistent with centrosymmetric dimer formation via O—H⋯N(cyano) hydrogen bonds. In the crystal, the mol­ecules pack in layers approximately parallel to the (10[\overline{1}]) plane via pairs of O—H⋯N and C—H⋯N(cyano) inter­actions.

Related literature

For general background to NLO chromophores containing an indoline donor with a 2-(3-cyano-4,5,5-trimethyl-5H-furan-2-yl­idene)-malontrile unit, see Gainsford et al. (2007[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o195-o198.], 2009[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2009). Acta Cryst. E65, o1315.]). For closely related structures, see Bhuiyan et al. (2011[Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 1-12.]). For hydrogen-motifs see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28N4O2

  • Mr = 464.55

  • Triclinic, [P \overline 1]

  • a = 9.3157 (4) Å

  • b = 10.5376 (4) Å

  • c = 13.4474 (6) Å

  • α = 101.338 (2)°

  • β = 100.087 (2)°

  • γ = 100.570 (2)°

  • V = 1241.42 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 124 K

  • 0.57 × 0.38 × 0.18 mm

Data collection
  • Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.642, Tmax = 0.746

  • 34665 measured reflections

  • 7739 independent reflections

  • 5982 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.02

  • 7739 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N1i 0.87 (2) 2.14 (2) 2.993 (2) 166.8 (16)
C26—H26B⋯N2ii 0.99 2.44 3.254 (3) 139
C29—H29C⋯N1iii 0.98 2.72 3.670 (2) 164
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y-1, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.] and Mercury.

Supporting information


Comment top

This report stems from our studies on new NLO chromophores containing an indoline donor with a well known moiety (2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malontrile) (Gainsford et al., 2007, 2008, 2009). It presents the structural details which were referred to in a previous paper containing the synthesis and optical properties of the title compound (6 in Bhuiyan et al., 2011).

The asymmetric unit of the title compound (I) is shown in Figure 1. The furan-2-ylidene ring (C4–C7, O1) is planar while the component planar rings of the indol-2-ylidene are at 1.94 (6)° to each other similar to the 1.95 (11)° found for 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro-indol-2-ylidene] -penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene)-malononitrile (Bhuiyan et al., 2011). The indol-2-ylidene plane (N4, C16–C23) makes an angle of 6.27 (8)° to the plane through the polymethine chain atoms (C11–C15). At this point in the polymethine chain (C15) there is a small "fold" which allows the major hydrogen bond link which binds centrosymmetrically related molecules to form a dimer (Table 1, entry 1). So whereas the dihedral angle magnitudes along the polymethine chain are close to 180 ° (176–179 °), that for C14–C15–C16–C17 is 170.58 (10)°. Thus the plane formed by the C16, C17 & C18 atoms makes an angle of 6.819 (13) ° to the preceding polymethine chain plane atoms (C4–C15) and 0.03 (11)° to the mean indoline plane. With this twist/fold combination in the polymethine chain, the indoline and furan-2-ylidene ring planes subtend 6.27 (8)°. These minor deviations from planarity appear consistent with the cell packing (noted below), the electronically delocalized planar nature of the polymethine chain and the indoline ring substituents.

The molecules are packed into layers parallel to the (1,0,-1) plane via OH···N1(cyano), motif R22(38), and CH···N2(cyano), motif C(17) attractions (Bernstein et al., 1995). The nitrogen N1 can be considered to be a bifurcated acceptor via a weaker supportive (methyl)C –H···N1(cyano) interaction (Table 1, Fig 2).

Related literature top

For general background to NLO chromophores containing an indoline donor with a 2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malontrile unit, see Gainsford et al. (2007, 2008, 2009). For closely related structures, see Bhuiyan et al. (2011). For hydrogen-motifs see: Bernstein et al. (1995).

Experimental top

See details of compound 6 in Bhuiyan et al.(2011). Single crystals were grown by slow ether diffusion into a dichloromethane solution of the compound.

Refinement top

A total of 7 reflections within 2θ 50° were omitted as outliers (Δ(F2)/e.s.d. > 5.0), 1 being partially screened by the backstop.

The hydroxyl proton H2O was located on a difference map and refined with isotropic U(H) = 1.2Ueq(O2). The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95, 0.99 Å and with U(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram (Mercury, Macrae et al.,(2006)) of the unit cell showing binding interactions (dotted lines). Only hydrogen atoms involved in binding interactions are shown (all binding atoms shown as balls). Symmetry: (i) 1 + x, 1 + y, 1 + z (ii) -x, 1 - y, 1 - z (iii) 2 - x,2 - y,2 - z
2-(3-Cyano-4-{7-[1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene]hepta- 1,3,5-trienyl}-5,5-dimethyl-2,5-dihydrofuran-2-ylidene)malononitrile top
Crystal data top
C29H28N4O2Z = 2
Mr = 464.55F(000) = 492
Triclinic, P1Dx = 1.243 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3157 (4) ÅCell parameters from 9900 reflections
b = 10.5376 (4) Åθ = 2.3–31.0°
c = 13.4474 (6) ŵ = 0.08 mm1
α = 101.338 (2)°T = 124 K
β = 100.087 (2)°Triangular, green
γ = 100.570 (2)°0.57 × 0.38 × 0.18 mm
V = 1241.42 (9) Å3
Data collection top
Nonius APEXII CCD area-detector
diffractometer
7739 independent reflections
Radiation source: fine-focus sealed tube5982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.192 pixels mm-1θmax = 31.0°, θmin = 1.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1515
Tmin = 0.642, Tmax = 0.746l = 1919
34665 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.2125P]
where P = (Fo2 + 2Fc2)/3
7739 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C29H28N4O2γ = 100.570 (2)°
Mr = 464.55V = 1241.42 (9) Å3
Triclinic, P1Z = 2
a = 9.3157 (4) ÅMo Kα radiation
b = 10.5376 (4) ŵ = 0.08 mm1
c = 13.4474 (6) ÅT = 124 K
α = 101.338 (2)°0.57 × 0.38 × 0.18 mm
β = 100.087 (2)°
Data collection top
Nonius APEXII CCD area-detector
diffractometer
7739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
5982 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.746Rint = 0.034
34665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
7739 reflectionsΔρmin = 0.20 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71795 (8)0.82289 (7)0.92717 (6)0.02507 (16)
O20.35065 (10)0.26989 (9)0.19623 (8)0.0373 (2)
H2O0.4383 (19)0.2514 (16)0.1842 (13)0.045*
N10.66590 (15)1.24644 (11)0.87339 (10)0.0448 (3)
N20.93528 (13)1.09871 (10)1.10997 (9)0.0392 (3)
N30.45206 (12)0.98613 (11)0.66154 (9)0.0366 (2)
N40.02761 (10)0.24219 (8)0.24132 (7)0.02330 (18)
C10.70116 (13)1.15797 (11)0.90100 (9)0.0303 (2)
C20.74324 (12)1.04986 (10)0.93699 (9)0.0257 (2)
C30.84953 (13)1.07704 (10)1.03239 (9)0.0284 (2)
C40.55395 (11)0.72345 (10)0.76525 (8)0.02158 (19)
C50.64214 (11)0.69063 (9)0.85922 (8)0.0221 (2)
C60.67975 (11)0.91863 (10)0.88274 (8)0.0227 (2)
C70.57921 (12)0.86372 (10)0.78615 (8)0.0231 (2)
C80.54462 (13)0.62225 (11)0.92134 (9)0.0296 (2)
H8A0.60780.61260.98460.044*
H8B0.48960.53430.87930.044*
H8C0.47350.67570.94030.044*
C90.76526 (13)0.62185 (12)0.83557 (10)0.0331 (3)
H9A0.82860.67360.79980.050*
H9B0.72100.53280.79090.050*
H9C0.82600.61460.90060.050*
C100.51171 (12)0.93438 (10)0.71858 (9)0.0260 (2)
C110.46959 (12)0.63644 (10)0.67482 (8)0.0242 (2)
H110.42630.67450.62180.029*
C120.44121 (11)0.49721 (10)0.65314 (8)0.0236 (2)
H120.47730.45660.70670.028*
C130.36367 (11)0.41618 (10)0.55813 (8)0.0236 (2)
H130.32890.45670.50420.028*
C140.33368 (11)0.27742 (10)0.53722 (8)0.0231 (2)
H140.37190.23760.59060.028*
C150.25179 (11)0.19435 (10)0.44357 (8)0.0237 (2)
H150.21830.23250.38790.028*
C160.21690 (11)0.05615 (10)0.42834 (8)0.0239 (2)
H160.26310.01790.48020.029*
C170.11797 (12)0.02769 (10)0.34110 (8)0.0245 (2)
H170.07620.01140.28830.029*
C180.07525 (11)0.16581 (10)0.32523 (8)0.02182 (19)
C190.13282 (11)0.25464 (10)0.39245 (8)0.02175 (19)
C200.03818 (11)0.38962 (10)0.33335 (8)0.0231 (2)
C210.02942 (13)0.51323 (11)0.35538 (9)0.0282 (2)
H210.08810.52300.41750.034*
C220.06712 (13)0.62311 (11)0.28469 (10)0.0310 (2)
H220.07360.70880.29850.037*
C230.15338 (13)0.60900 (11)0.19486 (10)0.0313 (2)
H230.21720.68560.14730.038*
C240.14916 (12)0.48553 (11)0.17230 (9)0.0291 (2)
H240.20960.47540.11100.035*
C250.05204 (11)0.37760 (10)0.24393 (8)0.0236 (2)
C260.11143 (12)0.19416 (10)0.15981 (8)0.0255 (2)
H26A0.14090.26450.09460.031*
H26B0.04620.11620.14720.031*
C270.25032 (13)0.15534 (11)0.18821 (10)0.0303 (2)
H27A0.22260.08830.25530.036*
H27B0.29920.11580.13430.036*
C280.10768 (13)0.22202 (12)0.50358 (9)0.0312 (2)
H28A0.00180.22280.50110.047*
H28B0.16880.13390.54070.047*
H28C0.13650.28860.53990.047*
C290.29911 (11)0.25018 (11)0.39367 (9)0.0274 (2)
H29A0.33050.31810.42730.041*
H29B0.35930.16230.43230.041*
H29C0.31340.26730.32220.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0285 (4)0.0173 (3)0.0231 (4)0.0011 (3)0.0028 (3)0.0013 (3)
O20.0313 (4)0.0392 (5)0.0459 (5)0.0108 (4)0.0072 (4)0.0191 (4)
N10.0584 (7)0.0291 (5)0.0429 (7)0.0147 (5)0.0008 (5)0.0053 (5)
N20.0450 (6)0.0222 (4)0.0384 (6)0.0009 (4)0.0083 (5)0.0012 (4)
N30.0394 (5)0.0324 (5)0.0355 (6)0.0090 (4)0.0001 (4)0.0090 (4)
N40.0228 (4)0.0189 (4)0.0235 (4)0.0038 (3)0.0027 (3)0.0018 (3)
C10.0355 (6)0.0228 (5)0.0280 (6)0.0067 (4)0.0021 (4)0.0003 (4)
C20.0282 (5)0.0187 (4)0.0254 (5)0.0033 (4)0.0005 (4)0.0005 (4)
C30.0322 (5)0.0161 (4)0.0312 (6)0.0021 (4)0.0012 (4)0.0009 (4)
C40.0229 (4)0.0192 (4)0.0200 (5)0.0020 (3)0.0038 (4)0.0020 (3)
C50.0236 (4)0.0168 (4)0.0208 (5)0.0002 (3)0.0009 (4)0.0007 (3)
C60.0240 (4)0.0189 (4)0.0229 (5)0.0032 (4)0.0037 (4)0.0020 (4)
C70.0259 (5)0.0195 (4)0.0210 (5)0.0037 (4)0.0023 (4)0.0018 (4)
C80.0312 (5)0.0296 (5)0.0231 (5)0.0034 (4)0.0020 (4)0.0074 (4)
C90.0277 (5)0.0281 (5)0.0380 (6)0.0076 (4)0.0015 (5)0.0010 (5)
C100.0287 (5)0.0213 (4)0.0244 (5)0.0041 (4)0.0028 (4)0.0013 (4)
C110.0267 (5)0.0213 (4)0.0206 (5)0.0027 (4)0.0018 (4)0.0015 (4)
C120.0235 (4)0.0214 (4)0.0218 (5)0.0014 (4)0.0017 (4)0.0018 (4)
C130.0224 (4)0.0216 (4)0.0225 (5)0.0032 (4)0.0000 (4)0.0010 (4)
C140.0199 (4)0.0214 (4)0.0238 (5)0.0023 (3)0.0012 (4)0.0014 (4)
C150.0215 (4)0.0211 (4)0.0247 (5)0.0034 (4)0.0014 (4)0.0011 (4)
C160.0215 (4)0.0216 (4)0.0248 (5)0.0040 (4)0.0011 (4)0.0007 (4)
C170.0244 (5)0.0198 (4)0.0248 (5)0.0035 (4)0.0005 (4)0.0014 (4)
C180.0192 (4)0.0207 (4)0.0223 (5)0.0042 (3)0.0005 (3)0.0014 (4)
C190.0195 (4)0.0224 (4)0.0214 (5)0.0043 (3)0.0008 (3)0.0043 (4)
C200.0210 (4)0.0215 (4)0.0260 (5)0.0052 (4)0.0042 (4)0.0042 (4)
C210.0292 (5)0.0261 (5)0.0316 (6)0.0089 (4)0.0064 (4)0.0095 (4)
C220.0326 (5)0.0218 (5)0.0400 (6)0.0063 (4)0.0111 (5)0.0077 (4)
C230.0280 (5)0.0210 (5)0.0394 (6)0.0022 (4)0.0045 (5)0.0003 (4)
C240.0265 (5)0.0226 (5)0.0317 (6)0.0035 (4)0.0018 (4)0.0005 (4)
C250.0218 (4)0.0187 (4)0.0275 (5)0.0041 (4)0.0019 (4)0.0028 (4)
C260.0273 (5)0.0232 (5)0.0223 (5)0.0050 (4)0.0025 (4)0.0046 (4)
C270.0292 (5)0.0281 (5)0.0315 (6)0.0090 (4)0.0008 (4)0.0069 (4)
C280.0317 (5)0.0339 (6)0.0253 (5)0.0035 (4)0.0070 (4)0.0040 (4)
C290.0205 (4)0.0302 (5)0.0316 (6)0.0067 (4)0.0033 (4)0.0085 (4)
Geometric parameters (Å, º) top
O1—C61.3400 (13)C14—H140.9500
O1—C51.4793 (12)C15—C161.3980 (14)
O2—C271.4194 (14)C15—H150.9500
O2—H2O0.869 (17)C16—C171.3861 (14)
N1—C11.1491 (16)C16—H160.9500
N2—C31.1515 (16)C17—C181.3993 (14)
N3—C101.1493 (15)C17—H170.9500
N4—C181.3492 (13)C18—C191.5258 (14)
N4—C251.4115 (13)C19—C201.5106 (14)
N4—C261.4596 (13)C19—C281.5351 (15)
C1—C21.4142 (16)C19—C291.5383 (14)
C2—C61.3952 (14)C20—C211.3829 (14)
C2—C31.4195 (16)C20—C251.3831 (15)
C4—C111.3783 (14)C21—C221.3924 (16)
C4—C71.4160 (14)C21—H210.9500
C4—C51.5178 (14)C22—C231.3790 (18)
C5—C91.5114 (16)C22—H220.9500
C5—C81.5182 (14)C23—C241.3881 (16)
C6—C71.4066 (14)C23—H230.9500
C7—C101.4189 (15)C24—C251.3880 (14)
C8—H8A0.9800C24—H240.9500
C8—H8B0.9800C26—C271.5142 (16)
C8—H8C0.9800C26—H26A0.9900
C9—H9A0.9800C26—H26B0.9900
C9—H9B0.9800C27—H27A0.9900
C9—H9C0.9800C27—H27B0.9900
C11—C121.4036 (14)C28—H28A0.9800
C11—H110.9500C28—H28B0.9800
C12—C131.3801 (14)C28—H28C0.9800
C12—H120.9500C29—H29A0.9800
C13—C141.3986 (14)C29—H29B0.9800
C13—H130.9500C29—H29C0.9800
C14—C151.3854 (14)
C6—O1—C5110.13 (8)C15—C16—H16118.5
C27—O2—H2O104.6 (11)C16—C17—C18124.68 (10)
C18—N4—C25111.32 (9)C16—C17—H17117.7
C18—N4—C26125.79 (9)C18—C17—H17117.7
C25—N4—C26122.80 (8)N4—C18—C17122.27 (10)
N1—C1—C2178.71 (14)N4—C18—C19109.07 (8)
C6—C2—C1121.63 (10)C17—C18—C19128.64 (9)
C6—C2—C3119.86 (10)C20—C19—C18101.24 (8)
C1—C2—C3118.48 (9)C20—C19—C28110.34 (8)
N2—C3—C2179.68 (14)C18—C19—C28113.67 (9)
C11—C4—C7125.61 (10)C20—C19—C29110.24 (9)
C11—C4—C5127.83 (9)C18—C19—C29110.21 (8)
C7—C4—C5106.52 (8)C28—C19—C29110.77 (9)
O1—C5—C9106.02 (8)C21—C20—C25119.45 (10)
O1—C5—C4103.28 (7)C21—C20—C19131.01 (10)
C9—C5—C4113.74 (9)C25—C20—C19109.53 (9)
O1—C5—C8105.87 (8)C20—C21—C22118.71 (11)
C9—C5—C8113.07 (9)C20—C21—H21120.6
C4—C5—C8113.70 (9)C22—C21—H21120.6
O1—C6—C2117.20 (9)C23—C22—C21120.74 (10)
O1—C6—C7110.88 (8)C23—C22—H22119.6
C2—C6—C7131.91 (10)C21—C22—H22119.6
C6—C7—C4109.13 (9)C22—C23—C24121.58 (10)
C6—C7—C10126.75 (9)C22—C23—H23119.2
C4—C7—C10124.12 (9)C24—C23—H23119.2
C5—C8—H8A109.5C25—C24—C23116.57 (11)
C5—C8—H8B109.5C25—C24—H24121.7
H8A—C8—H8B109.5C23—C24—H24121.7
C5—C8—H8C109.5C20—C25—C24122.91 (10)
H8A—C8—H8C109.5C20—C25—N4108.74 (9)
H8B—C8—H8C109.5C24—C25—N4128.34 (10)
C5—C9—H9A109.5N4—C26—C27112.10 (9)
C5—C9—H9B109.5N4—C26—H26A109.2
H9A—C9—H9B109.5C27—C26—H26A109.2
C5—C9—H9C109.5N4—C26—H26B109.2
H9A—C9—H9C109.5C27—C26—H26B109.2
H9B—C9—H9C109.5H26A—C26—H26B107.9
N3—C10—C7176.75 (12)O2—C27—C26109.27 (9)
C4—C11—C12126.54 (10)O2—C27—H27A109.8
C4—C11—H11116.7C26—C27—H27A109.8
C12—C11—H11116.7O2—C27—H27B109.8
C13—C12—C11123.42 (10)C26—C27—H27B109.8
C13—C12—H12118.3H27A—C27—H27B108.3
C11—C12—H12118.3C19—C28—H28A109.5
C12—C13—C14123.30 (10)C19—C28—H28B109.5
C12—C13—H13118.4H28A—C28—H28B109.5
C14—C13—H13118.4C19—C28—H28C109.5
C15—C14—C13124.16 (10)H28A—C28—H28C109.5
C15—C14—H14117.9H28B—C28—H28C109.5
C13—C14—H14117.9C19—C29—H29A109.5
C14—C15—C16122.12 (10)C19—C29—H29B109.5
C14—C15—H15118.9H29A—C29—H29B109.5
C16—C15—H15118.9C19—C29—H29C109.5
C17—C16—C15123.03 (10)H29A—C29—H29C109.5
C17—C16—H16118.5H29B—C29—H29C109.5
C6—O1—C5—C9120.90 (9)C26—N4—C18—C19178.39 (9)
C6—O1—C5—C41.02 (10)C16—C17—C18—N4176.41 (10)
C6—O1—C5—C8118.74 (9)C16—C17—C18—C194.91 (18)
C11—C4—C5—O1175.76 (10)N4—C18—C19—C202.72 (11)
C7—C4—C5—O12.02 (10)C17—C18—C19—C20178.46 (10)
C11—C4—C5—C961.33 (14)N4—C18—C19—C28121.01 (10)
C7—C4—C5—C9116.45 (10)C17—C18—C19—C2860.16 (14)
C11—C4—C5—C870.00 (14)N4—C18—C19—C29113.96 (10)
C7—C4—C5—C8112.22 (10)C17—C18—C19—C2964.86 (14)
C5—O1—C6—C2179.48 (9)C18—C19—C20—C21176.50 (11)
C5—O1—C6—C70.39 (11)C28—C19—C20—C2155.82 (15)
C1—C2—C6—O1174.82 (10)C29—C19—C20—C2166.84 (14)
C3—C2—C6—O13.24 (15)C18—C19—C20—C252.87 (11)
C1—C2—C6—C75.35 (19)C28—C19—C20—C25123.54 (10)
C3—C2—C6—C7176.59 (11)C29—C19—C20—C25113.79 (10)
O1—C6—C7—C41.78 (12)C25—C20—C21—C222.05 (16)
C2—C6—C7—C4178.06 (11)C19—C20—C21—C22178.64 (10)
O1—C6—C7—C10178.17 (10)C20—C21—C22—C230.56 (17)
C2—C6—C7—C102.00 (19)C21—C22—C23—C241.00 (18)
C11—C4—C7—C6175.50 (10)C22—C23—C24—C250.98 (17)
C5—C4—C7—C62.34 (11)C21—C20—C25—C242.12 (16)
C11—C4—C7—C104.55 (17)C19—C20—C25—C24178.43 (10)
C5—C4—C7—C10177.60 (10)C21—C20—C25—N4177.37 (9)
C7—C4—C11—C12178.93 (10)C19—C20—C25—N42.08 (12)
C5—C4—C11—C123.69 (18)C23—C24—C25—C200.58 (17)
C4—C11—C12—C13175.59 (10)C23—C24—C25—N4178.81 (11)
C11—C12—C13—C14179.04 (10)C18—N4—C25—C200.23 (12)
C12—C13—C14—C15177.74 (10)C26—N4—C25—C20176.59 (9)
C13—C14—C15—C16176.01 (10)C18—N4—C25—C24179.69 (11)
C14—C15—C16—C17170.58 (10)C26—N4—C25—C242.87 (17)
C15—C16—C17—C18177.05 (10)C18—N4—C26—C2785.16 (12)
C25—N4—C18—C17179.40 (10)C25—N4—C26—C2791.18 (12)
C26—N4—C18—C172.69 (16)N4—C26—C27—O264.57 (12)
C25—N4—C18—C191.69 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N1i0.87 (2)2.14 (2)2.993 (2)166.8 (16)
C26—H26B···N2ii0.992.443.254 (3)139
C29—H29C···N1iii0.982.723.670 (2)164
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC29H28N4O2
Mr464.55
Crystal system, space groupTriclinic, P1
Temperature (K)124
a, b, c (Å)9.3157 (4), 10.5376 (4), 13.4474 (6)
α, β, γ (°)101.338 (2), 100.087 (2), 100.570 (2)
V3)1241.42 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.38 × 0.18
Data collection
DiffractometerNonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.642, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
34665, 7739, 5982
Rint0.034
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.02
No. of reflections7739
No. of parameters323
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N1i0.87 (2)2.14 (2)2.993 (2)166.8 (16)
C26—H26B···N2ii0.992.443.254 (3)139
C29—H29C···N1iii0.982.723.670 (2)164
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 1–12.  Web of Science CrossRef Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o195–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2009). Acta Cryst. E65, o1315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds