organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Fluoro­anilinium 4-methyl­benzene­sulfonate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 August 2011; accepted 5 October 2011; online 12 October 2011)

In the crystal structure of the title salt, C6H7FN+·C7H7O3S, the components are linked into chains along [010] via N—H⋯O hydrogen bonds. Further stabilization is is provided by weak ππ stacking inter­actions, with a centroid–centroid distance of 3.7156 (12) Å.

Related literature

For mol­ecular salts as solid forms in pharmaceutical formulations, see: Stahl & Wermuth (2002[Stahl, P. H. & Wermuth, C. G. (2002). Editors. Handbook of Pharmaceutical Salts: Properties, Selection and Use. Chichester, England: Wiley-VCH.]). For related structures, see: Chanawanno et al. (2009[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Anal. Sci. 25, 127-128.]); Chantrapromma et al. (2010[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975-o1976.]); Collier et al. (2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]); Fun et al. (2010[Fun, H.-K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o1053-o1054.]); Li et al. (2005[Li, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811-o813.]); Lin (2010[Lin, J. R. (2010). Acta Cryst. E66, o1557.]); Tabatabaee & Noozari (2011[Tabatabaee, M. & Noozari, N. (2011). Acta Cryst. E67, o1457.]); Wu et al. (2009[Wu, T.-Q., Xia, L., Hu, A.-X. & Ye, J. (2009). Acta Cryst. E65, o368.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7FN+·C7H7O3S

  • Mr = 283.31

  • Monoclinic, P 21 /n

  • a = 14.5385 (7) Å

  • b = 6.4939 (3) Å

  • c = 14.5522 (7) Å

  • β = 91.429 (4)°

  • V = 1373.47 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.25 mm−1

  • T = 173 K

  • 0.40 × 0.10 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.466, Tmax = 0.858

  • 8663 measured reflections

  • 2642 independent reflections

  • 2076 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.05

  • 2642 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NB⋯O3i 0.91 1.89 2.784 (2) 166
N1—H1NA⋯O1ii 0.91 1.82 2.725 (2) 171
N1—H1NC⋯O2 0.91 1.85 2.745 (2) 167
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The importance of molecular salts as solid forms in pharmaceutical formulations is well known (Stahl & Wermuth, 2002). A variety of pharmaceutical drugs are prepared as salts of benzenesulfonic acid and are known as besylates. Benzenesulfonic acid is also used as an acidic catalyst in esterification and dehydration reactions. In the title compound, the proton of the sulfonic group of sulfonic acid has been transferred to the N atom of the 3-fluoroaniline molecule, leading to the formation of the molecular complex, (I). Crystal structures of some benzenesulfonate derivatives, viz., 2,4,6-triamino-1,3,5-triazin-1-ium 4-methylbenzenesulfonate monohydrate (Li et al., 2005), ephedrine besylate (Collier et al., 2006), 2-ethyl-6-methylanilinium 4-methylbenzenesulfonate (Wu et al., 2009), 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate (Chanawanno et al., 2009), 2-aminopyrimidin-1-ium 4-methylbenzenesulfonate (Tabatabaee & Noozari, 2011), 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate monohydrate (Lin, 2010), 1-methyl-2-[(E)-2-(2-thienyl)etheny] quinolinium 4-bromobenzenesulfonate (Fun et al., 2010) and (E)-2-[4-(dimethylamino)styryl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate (Chantrapromma et al., 2010) have been reported. In view of the importance of benzenesulphonic acid, we report herein the crystal structure of the title compound (I).

In the crystal structure of the title salt, C6H7FN+, C7H7O3S-, (Fig. 1) N—H···O hydrogen bonds link the components into one-dimensional chains along [010] (Fig. 2). Further stabilization is is provided by weak ππ stacking interactions with a centroid to centroid distance of 3.7156 (12)Å.

Related literature top

For molecular salts as solid forms in pharmaceutical formulations, see: Stahl & Wermuth (2002). For related structures, see: Chanawanno et al. (2009); Chantrapromma et al. (2010); Collier et al. (2006); Fun et al. (2010); Li et al. (2005); Lin (2010); Tabatabaee & Noozari (2011); Wu et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-methylbenzenesulfonic acid monohydrate (1 g, 5.25 mmol) was added to a stirred solution of 3-fluoroaniline (0.58 g, 5.25 mmol ) in methanol (10 mL). Resulting mixture was stirred at 323 K for 10 minutes and cooled to room temperature to obtain the title compound (I), Fig. 1. The single crystal was grown from methanol by slow evaporation method (m.p.: 533 K).

Refinement top

H1NA, H1NB and H1NC were intially located in a difference Fourier map. These and all of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.91Å (NH), 0.95Å (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.20 (CH, NH) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds. Only H atoms involved in hydrogen bonds are shown.
3-Fluoroanilinium 4-methylbenzenesulfonate top
Crystal data top
C6H7FN+·C7H7O3SF(000) = 592
Mr = 283.31Dx = 1.370 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 2843 reflections
a = 14.5385 (7) Åθ = 4.2–71.3°
b = 6.4939 (3) ŵ = 2.25 mm1
c = 14.5522 (7) ÅT = 173 K
β = 91.429 (4)°Rod, colorless
V = 1373.47 (11) Å30.40 × 0.10 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2642 independent reflections
Radiation source: Enhance (Cu) X-ray Source2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1500 pixels mm-1θmax = 71.5°, θmin = 4.3°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 77
Tmin = 0.466, Tmax = 0.858l = 1317
8663 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.2763P]
where P = (Fo2 + 2Fc2)/3
2642 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C6H7FN+·C7H7O3SV = 1373.47 (11) Å3
Mr = 283.31Z = 4
Monoclinic, P21/nCu Kα radiation
a = 14.5385 (7) ŵ = 2.25 mm1
b = 6.4939 (3) ÅT = 173 K
c = 14.5522 (7) Å0.40 × 0.10 × 0.07 mm
β = 91.429 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2642 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2076 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.858Rint = 0.030
8663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
2642 reflectionsΔρmin = 0.34 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84338 (3)0.25122 (6)0.46398 (3)0.03256 (17)
F10.93374 (13)1.1392 (2)0.84280 (10)0.0794 (5)
O10.79440 (10)0.0607 (2)0.48237 (9)0.0439 (4)
O20.79079 (9)0.4330 (2)0.48854 (9)0.0412 (3)
O30.93526 (10)0.2539 (2)0.50709 (9)0.0416 (3)
N10.88997 (11)0.7501 (2)0.56685 (11)0.0366 (4)
H1NC0.86100.63320.54750.044*
H1NB0.95040.74390.55240.044*
H1NA0.86340.86110.53870.044*
C10.85900 (13)0.2623 (3)0.34404 (12)0.0338 (4)
C20.83246 (14)0.1018 (4)0.28787 (14)0.0462 (5)
H2A0.80420.01650.31320.055*
C30.84700 (15)0.1129 (4)0.19455 (15)0.0559 (6)
H3A0.82910.00070.15620.067*
C40.88712 (14)0.2840 (4)0.15601 (14)0.0527 (6)
C50.91260 (15)0.4458 (4)0.21321 (15)0.0510 (6)
H5A0.93980.56520.18760.061*
C60.89915 (14)0.4368 (3)0.30711 (14)0.0439 (5)
H6A0.91720.54850.34570.053*
C70.90233 (19)0.2933 (5)0.05369 (16)0.0751 (9)
H7A0.84980.23050.02080.113*
H7B0.95860.21800.03930.113*
H7C0.90840.43720.03460.113*
C80.90357 (16)0.9645 (3)0.80119 (15)0.0486 (5)
C90.91293 (14)0.9489 (3)0.70742 (13)0.0410 (5)
H9A0.93951.05660.67270.049*
C100.88200 (13)0.7699 (3)0.66649 (13)0.0349 (4)
C110.84357 (14)0.6132 (3)0.71594 (14)0.0461 (5)
H11A0.82320.49060.68620.055*
C120.83496 (15)0.6368 (4)0.81015 (15)0.0529 (6)
H12A0.80810.52970.84500.064*
C130.86476 (15)0.8130 (4)0.85343 (14)0.0506 (5)
H13A0.85870.82990.91780.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (3)0.0375 (3)0.0283 (3)0.00209 (16)0.00377 (18)0.00070 (17)
F10.1225 (14)0.0660 (10)0.0500 (8)0.0095 (9)0.0073 (8)0.0225 (7)
O10.0454 (8)0.0452 (8)0.0413 (7)0.0080 (6)0.0032 (6)0.0051 (6)
O20.0413 (8)0.0467 (8)0.0359 (7)0.0036 (6)0.0064 (6)0.0057 (6)
O30.0361 (8)0.0580 (9)0.0309 (7)0.0023 (6)0.0018 (6)0.0006 (6)
N10.0354 (9)0.0401 (8)0.0345 (8)0.0007 (6)0.0065 (7)0.0015 (6)
C10.0289 (9)0.0441 (10)0.0286 (9)0.0011 (7)0.0028 (7)0.0005 (7)
C20.0391 (11)0.0579 (12)0.0416 (11)0.0123 (9)0.0038 (9)0.0111 (9)
C30.0408 (12)0.0859 (17)0.0411 (11)0.0093 (11)0.0022 (9)0.0214 (11)
C40.0326 (11)0.0932 (18)0.0324 (11)0.0096 (11)0.0018 (9)0.0031 (11)
C50.0454 (13)0.0633 (14)0.0448 (12)0.0046 (10)0.0098 (10)0.0135 (10)
C60.0460 (12)0.0467 (11)0.0393 (10)0.0014 (9)0.0062 (9)0.0007 (9)
C70.0528 (15)0.139 (3)0.0339 (12)0.0110 (16)0.0056 (11)0.0037 (14)
C80.0513 (13)0.0533 (12)0.0415 (11)0.0046 (10)0.0039 (9)0.0089 (9)
C90.0455 (12)0.0405 (10)0.0375 (10)0.0011 (8)0.0073 (8)0.0006 (8)
C100.0283 (9)0.0433 (10)0.0334 (9)0.0024 (7)0.0067 (7)0.0001 (7)
C110.0401 (11)0.0542 (12)0.0440 (11)0.0093 (9)0.0037 (9)0.0036 (9)
C120.0404 (12)0.0742 (16)0.0447 (12)0.0089 (11)0.0100 (9)0.0139 (11)
C130.0400 (11)0.0786 (15)0.0338 (10)0.0085 (11)0.0091 (9)0.0028 (10)
Geometric parameters (Å, º) top
S1—O11.4555 (14)C5—C61.386 (3)
S1—O21.4561 (14)C5—H5A0.9500
S1—O31.4615 (15)C6—H6A0.9500
S1—C11.7671 (18)C7—H7A0.9800
F1—C81.354 (3)C7—H7B0.9800
N1—C101.463 (2)C7—H7C0.9800
N1—H1NC0.9100C8—C131.373 (3)
N1—H1NB0.9100C8—C91.378 (3)
N1—H1NA0.9100C9—C101.376 (3)
C1—C21.374 (3)C9—H9A0.9500
C1—C61.389 (3)C10—C111.373 (3)
C2—C31.381 (3)C11—C121.388 (3)
C2—H2A0.9500C11—H11A0.9500
C3—C41.381 (3)C12—C131.371 (3)
C3—H3A0.9500C12—H12A0.9500
C4—C51.385 (3)C13—H13A0.9500
C4—C71.512 (3)
O1—S1—O2112.44 (8)C5—C6—C1119.1 (2)
O1—S1—O3112.18 (8)C5—C6—H6A120.4
O2—S1—O3111.39 (8)C1—C6—H6A120.4
O1—S1—C1106.95 (8)C4—C7—H7A109.5
O2—S1—C1106.89 (8)C4—C7—H7B109.5
O3—S1—C1106.56 (8)H7A—C7—H7B109.5
C10—N1—H1NC109.5C4—C7—H7C109.5
C10—N1—H1NB109.5H7A—C7—H7C109.5
H1NC—N1—H1NB109.5H7B—C7—H7C109.5
C10—N1—H1NA109.5F1—C8—C13119.1 (2)
H1NC—N1—H1NA109.5F1—C8—C9117.7 (2)
H1NB—N1—H1NA109.5C13—C8—C9123.2 (2)
C2—C1—C6120.20 (18)C10—C9—C8116.80 (19)
C2—C1—S1121.05 (15)C10—C9—H9A121.6
C6—C1—S1118.74 (14)C8—C9—H9A121.6
C1—C2—C3119.9 (2)C11—C10—C9122.15 (19)
C1—C2—H2A120.1C11—C10—N1119.83 (17)
C3—C2—H2A120.1C9—C10—N1118.02 (16)
C4—C3—C2121.2 (2)C10—C11—C12118.9 (2)
C4—C3—H3A119.4C10—C11—H11A120.5
C2—C3—H3A119.4C12—C11—H11A120.5
C3—C4—C5118.42 (19)C13—C12—C11120.7 (2)
C3—C4—C7120.4 (2)C13—C12—H12A119.7
C5—C4—C7121.2 (2)C11—C12—H12A119.7
C4—C5—C6121.2 (2)C12—C13—C8118.23 (19)
C4—C5—H5A119.4C12—C13—H13A120.9
C6—C5—H5A119.4C8—C13—H13A120.9
O1—S1—C1—C24.3 (2)C4—C5—C6—C10.3 (3)
O2—S1—C1—C2124.97 (17)C2—C1—C6—C50.5 (3)
O3—S1—C1—C2115.82 (18)S1—C1—C6—C5179.29 (16)
O1—S1—C1—C6175.90 (15)F1—C8—C9—C10179.88 (19)
O2—S1—C1—C655.27 (17)C13—C8—C9—C100.7 (3)
O3—S1—C1—C663.94 (17)C8—C9—C10—C110.0 (3)
C6—C1—C2—C31.0 (3)C8—C9—C10—N1179.24 (17)
S1—C1—C2—C3178.81 (17)C9—C10—C11—C120.5 (3)
C1—C2—C3—C40.7 (4)N1—C10—C11—C12178.71 (18)
C2—C3—C4—C50.1 (3)C10—C11—C12—C130.4 (3)
C2—C3—C4—C7179.9 (2)C11—C12—C13—C80.3 (3)
C3—C4—C5—C60.6 (3)F1—C8—C13—C12179.7 (2)
C7—C4—C5—C6179.6 (2)C9—C8—C13—C120.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···O3i0.911.892.784 (2)166
N1—H1NA···O1ii0.911.822.725 (2)171
N1—H1NC···O20.911.852.745 (2)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H7FN+·C7H7O3S
Mr283.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)14.5385 (7), 6.4939 (3), 14.5522 (7)
β (°) 91.429 (4)
V3)1373.47 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.25
Crystal size (mm)0.40 × 0.10 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.466, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
8663, 2642, 2076
Rint0.030
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.05
No. of reflections2642
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···O3i0.911.892.784 (2)165.8
N1—H1NA···O1ii0.911.822.725 (2)171.4
N1—H1NC···O20.911.852.745 (2)167.4
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

ASP and HSY thank the UoM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Anal. Sci. 25, 127–128.  CAS Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o1053–o1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811–o813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, J. R. (2010). Acta Cryst. E66, o1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2002). Editors. Handbook of Pharmaceutical Salts: Properties, Selection and Use. Chichester, England: Wiley–VCH.  Google Scholar
First citationTabatabaee, M. & Noozari, N. (2011). Acta Cryst. E67, o1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, T.-Q., Xia, L., Hu, A.-X. & Ye, J. (2009). Acta Cryst. E65, o368.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds