organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2855-o2856

(E)-N′-{7-Meth­­oxy­spiro­[chromeno[4,3-d]thia­zole-4,1′-cyclo­hexa­n]-2-yl}-N,N-di­methyl­acetimidamide

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics, University of Jammu, Jammu Tawi 180 006, India, bPhysics Department, Saurashtra University, Rajkot 360 005, India, and cShri M. N. Virani Science College, Rajkot 360 005, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 19 September 2011; accepted 30 September 2011; online 5 October 2011)

In the chromenothia­zole ring system of the title mol­ecule, C20H25N3O2S, the pyran ring is in a half-chair conformation. The dihedral angle between the thia­zole and benzene rings is 14.78 (6)°. The cyclo­hexane ring is in a chair conformation. The crystal structure is stabilized by weak inter­molecular C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For the biological activity of heterocyclic compounds containing nitro­gen and sulfur, see: Bishayee et al. (1997[Bishayee, A., Karmaker, R., Mandal, A., Kundu, S. N. & Chaterjee, M. (1997). Eur. J. Cancer Prev. 6, 58-70.]); Cruz et al. (1995[Cruz, T. F., Morgon, A. & Min, W. (1995). Mol. Biochem. 153, 161-166.]); Chitamber & Wereley (1997[Chitamber, C. R. & Wereley, J. P. (1997). J. Biol. Chem. 272, 12151-12157.]). For the biological activity of thiazoles, see: Pawar et al. (2009[Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). Arkivoc, xiii, 97-107.]). Schiff bases and acetamidine play an important role in many biological processes and are of great importance for the preparation of various pharmaceuticals, see: More et al. (2001[More, P. G., Bhalvankar, R. B. & Patter, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]); Sutariya et al. (2007[Sutariya, B., Raziya, S. K., Mohan, S. & Rao, S. V. S. (2007). Indian J. Chem. Sect. B, 465, 884-887.]); Murza et al. (1999[Murza, M. M., Kuvatov, Z. K. & Safarov, M. G. (1999). Chem. Heterocyl. Compd, 35, 1097-1103.]); Dong et al. (2006[Dong, Y. B., Wang, L., Ma, J. P. & Zhao, X. X. (2006). Cryst. Growth Des. 6, 2475-2485.]); Jayashree et al. (2005[Jayashree, B. S., Anuradha, D. & Venugopala, K. N. (2005). Asian J. Chem. 17, 2093-2097.]); Modi et al. (1971[Modi, J. D., Sabnis, S. S. & Deliwala, C. V. (1971). J. Med. Chem. 14, 450-451.]); Vicini et al. (2003[Vicini, P., Geronikaki, A., Incerti, M., Busonera, B. & Poni, G. (2003). Bioorg. Med. Chem. 11, 4785-4789.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25N3O2S

  • Mr = 371.49

  • Monoclinic, P 21 /n

  • a = 9.2510 (2) Å

  • b = 20.0273 (4) Å

  • c = 10.7301 (2) Å

  • β = 90.840 (2)°

  • V = 1987.78 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.892, Tmax = 1.000

  • 56290 measured reflections

  • 3482 independent reflections

  • 2835 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.02

  • 3482 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O5i 0.96 2.41 3.335 (3) 161
C6—H61⋯N1ii 0.95 (2) 2.59 (2) 3.441 (3) 149.3 (15)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Heterocyclic compounds containing nitrogen and sulfur are used for medical purposes for the treatment of different kinds of fungal and bacterial infection along with treatment of e.g. gastric ulcers and cancer (Bishayee et al., 1997; Cruz et al., 1995; Chitamber & Wereley, 1997). Thiazoles exhibit a wide range of biological activities (Pawar et al., 2009). Schiff bases and acetamidine play an important role in many biological processes. They are of great importance for the preparation of various pharmaceuticals and are used in many other areas of chemistry as starting materials. Their facile synthesis and numerous biological activities contribute greatly to their Schiff bases and acetamidine popularity (More et al., 2001; Sutariya et al., 2007; Murza et al., 1999; Dong et al., 2006; Jayashree et al., 2005; Modi et al., 1971; Vicini et al., 2003). Therefore, Schiff bases and acetamidine of amino thiazoles are expected to be biologically active. We report herein the X-ray crystallographic studies of a novel acetamidine base derived from substituted 8-methoxyspiro[chromeno[4,3-d] [1,3]thiazole-4,1-cyclohexan]-2-amine as a possible hybrid antimicrobial agent. In the title compound (Fig. 1), the methoxy substituent at the C7 atom forms the torsion angle of 178.4 (2) ° [(+) antiperiplanar conformation] with the atom set O10/C7/C8/C9. The benzopyran ring has a half-chair conformation with asymmetry parameter: ΔC2(C4—O5) = 4.49 (Duax et al., 1975). The cyclohexane ring has a chair conformation. The asymmetry parameters are: ΔCs(C4)=0.24; ΔC2(C4—C12)= 0.88. The dihedral angle between the best least squares planes through the thiazole and benzene rings is 14.75 (7)°. The stabilization of crystal packing (Fig. 2) is influenced by intermolecular C—H···N and C—H···O hydrogen bonding [C6—H61···N1 (symmetry code: x + 1/2, -y + 1/2, z - 1/2); C19—H19B···O5 (symmetry code: x - 1/2, -y + 1/2, z + 1/2)]. These interactions link the molecules into chains that run parallel to [-1 0 1].

Related literature top

For the biological activity of heterocyclic compounds containing nitrogen and sulfur, see: Bishayee et al. (1997); Cruz et al. (1995); Chitamber & Wereley (1997); Pawar et al. (2009); More et al. (2001); Sutariya et al. (2007); Murza et al. (1999); Dong et al. (2006); Jayashree et al. (2005); Modi et al. (1971); Vicini et al. (2003). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Duax & Norton (1975).

Experimental top

An ice cold solution of phosphorus oxychloride (0.85 mmol) in dry toluene(20 ml) was added to the suitable amount of acetamide (0.47 mmol), and the mixture was stirred for 30 min at room temperature. At the end of the reaction, 7-methoxyspiro[4,3-d][1,3]thiazole-4,1-cyclohexan]-2-amine (0.42 mmol) dissolved in dry toluene was added drop wise and the reaction mixture was refluxed for 6 h. The solution was then cooled, carefully poured into the ice-water, and made alkaline with 1 N NaOH solution. The organic layer was extracted with CHCl3, washed to neutrality with water, dried over sodium sulfate, filtered and then evaporated in vacuo. The crude material was purified by column chromatography on silica gel eluting with a hexane/ethyl acetate(7:3) mixture. Single crystals suitable for X-ray measurements were obtained by crystallization from CHCl3 at room temperature.

Refinement top

All H atoms (except methyl H atoms) were located in a difference Fourier map and refined freely. Methyl H atoms were positioned geometrically and refined using a riding model with C—H = 0.96 Å. The Uiso(H) values were constrained to be 1.5Ueq(C methyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular sreucture with ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules. The broken lines show weak intermolecular hydrogen bonds.
(E)-N'-{7-Methoxyspiro[chromeno[4,3-d]thiazole- 4,1'-cyclohexan]-2-yl}-N,N-dimethylacetimidamide top
Crystal data top
C20H25N3O2SF(000) = 792
Mr = 371.49Dx = 1.241 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24440 reflections
a = 9.2510 (2) Åθ = 3.5–29.0°
b = 20.0273 (4) ŵ = 0.18 mm1
c = 10.7301 (2) ÅT = 293 K
β = 90.840 (2)°Plate, light-brown
V = 1987.78 (7) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3482 independent reflections
Radiation source: fine-focus sealed tube2835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2323
Tmin = 0.892, Tmax = 1.000l = 1212
56290 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.884P]
where P = (Fo2 + 2Fc2)/3
3482 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H25N3O2SV = 1987.78 (7) Å3
Mr = 371.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2510 (2) ŵ = 0.18 mm1
b = 20.0273 (4) ÅT = 293 K
c = 10.7301 (2) Å0.3 × 0.2 × 0.1 mm
β = 90.840 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3482 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2835 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 1.000Rint = 0.041
56290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.18 e Å3
3482 reflectionsΔρmin = 0.19 e Å3
291 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33437 (18)0.18039 (8)0.41748 (15)0.0474 (4)
C20.2587 (2)0.12626 (10)0.39594 (19)0.0467 (5)
C3A0.4732 (2)0.12918 (9)0.26463 (18)0.0428 (5)
S30.33236 (6)0.07336 (3)0.28200 (5)0.05248 (19)
C40.6032 (2)0.12315 (9)0.18332 (17)0.0410 (4)
O50.64694 (14)0.19099 (6)0.14928 (11)0.0428 (3)
C5A0.65071 (19)0.23902 (8)0.24074 (16)0.0368 (4)
C60.7445 (2)0.29214 (9)0.22330 (18)0.0395 (4)
C70.7481 (2)0.34279 (9)0.3113 (2)0.0459 (5)
C80.6590 (3)0.34051 (11)0.4146 (2)0.0551 (6)
C90.5632 (3)0.28851 (11)0.4276 (2)0.0539 (5)
C9A0.5568 (2)0.23671 (9)0.34111 (17)0.0419 (4)
C9B0.4543 (2)0.18148 (9)0.34258 (17)0.0421 (4)
O100.83754 (17)0.39732 (7)0.30446 (15)0.0619 (4)
C110.9325 (3)0.40072 (13)0.2026 (3)0.0766 (8)
H11A0.99270.36170.20200.115*
H11B0.99190.43980.21040.115*
H11C0.87720.40290.12620.115*
C120.5715 (3)0.08891 (13)0.0596 (2)0.0562 (6)
C130.7053 (3)0.08381 (14)0.0209 (3)0.0693 (7)
C140.8293 (3)0.05035 (14)0.0475 (3)0.0818 (9)
C150.8642 (3)0.08530 (14)0.1699 (3)0.0693 (7)
C160.7304 (2)0.08994 (12)0.2511 (2)0.0535 (5)
N170.13926 (19)0.10532 (9)0.45830 (17)0.0537 (5)
C180.0370 (2)0.14748 (11)0.4842 (2)0.0501 (5)
C190.0168 (3)0.21331 (12)0.4193 (2)0.0657 (6)
H19A0.07940.21550.34890.099*
H19B0.04000.24890.47610.099*
H19C0.08180.21760.39150.099*
N200.06057 (19)0.12955 (11)0.56983 (19)0.0650 (5)
C210.1802 (3)0.17228 (18)0.6067 (3)0.0986 (11)
H21A0.16140.21740.58120.148*
H21B0.19000.17070.69560.148*
H21C0.26800.15690.56750.148*
C220.0438 (4)0.06674 (15)0.6362 (3)0.0923 (10)
H22A0.10230.03310.59630.139*
H22B0.07390.07230.72080.139*
H22C0.05580.05330.63520.139*
H610.803 (2)0.2918 (9)0.1512 (18)0.044 (5)*
H810.664 (2)0.3751 (11)0.477 (2)0.058 (6)*
H910.499 (3)0.2877 (11)0.494 (2)0.064 (7)*
H1610.698 (2)0.0457 (12)0.275 (2)0.061 (6)*
H1620.752 (2)0.1132 (11)0.328 (2)0.058 (6)*
H1210.537 (2)0.0441 (12)0.079 (2)0.061 (6)*
H1220.493 (3)0.1108 (13)0.017 (2)0.076 (8)*
H1310.679 (3)0.0603 (13)0.093 (3)0.076 (8)*
H1320.734 (3)0.1291 (13)0.046 (2)0.063 (7)*
H1410.913 (3)0.0497 (14)0.006 (3)0.092 (9)*
H1420.801 (3)0.0054 (16)0.064 (3)0.093 (9)*
H1510.942 (3)0.0618 (14)0.216 (3)0.092 (9)*
H1520.897 (3)0.1321 (13)0.153 (2)0.068 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0512 (10)0.0403 (9)0.0512 (10)0.0060 (8)0.0149 (8)0.0058 (7)
C20.0484 (11)0.0394 (11)0.0525 (12)0.0010 (9)0.0098 (9)0.0008 (9)
C3A0.0480 (11)0.0324 (10)0.0482 (11)0.0054 (8)0.0072 (9)0.0044 (8)
S30.0512 (3)0.0383 (3)0.0684 (4)0.0089 (2)0.0148 (3)0.0121 (2)
C40.0488 (11)0.0285 (9)0.0460 (11)0.0059 (8)0.0086 (8)0.0056 (8)
O50.0580 (8)0.0311 (7)0.0395 (7)0.0040 (6)0.0085 (6)0.0047 (5)
C5A0.0429 (10)0.0281 (9)0.0393 (10)0.0018 (7)0.0003 (8)0.0033 (7)
C60.0408 (10)0.0331 (10)0.0446 (11)0.0024 (8)0.0035 (8)0.0001 (8)
C70.0455 (11)0.0329 (10)0.0592 (12)0.0027 (8)0.0015 (9)0.0045 (9)
C80.0649 (14)0.0389 (11)0.0617 (13)0.0051 (10)0.0081 (11)0.0193 (10)
C90.0628 (14)0.0459 (12)0.0534 (12)0.0069 (10)0.0144 (11)0.0144 (10)
C9A0.0479 (11)0.0340 (10)0.0438 (10)0.0021 (8)0.0053 (8)0.0050 (8)
C9B0.0475 (11)0.0362 (10)0.0428 (10)0.0028 (8)0.0075 (8)0.0027 (8)
O100.0637 (10)0.0431 (8)0.0791 (11)0.0182 (7)0.0083 (8)0.0145 (7)
C110.0684 (16)0.0602 (15)0.102 (2)0.0289 (13)0.0216 (15)0.0149 (14)
C120.0602 (14)0.0509 (14)0.0579 (13)0.0119 (11)0.0102 (11)0.0201 (11)
C130.0826 (18)0.0614 (16)0.0645 (16)0.0119 (14)0.0242 (14)0.0268 (13)
C140.0795 (19)0.0494 (15)0.118 (3)0.0057 (14)0.0509 (19)0.0093 (15)
C150.0494 (14)0.0596 (16)0.099 (2)0.0071 (12)0.0135 (13)0.0161 (15)
C160.0531 (13)0.0411 (12)0.0665 (15)0.0008 (10)0.0051 (11)0.0067 (11)
N170.0493 (10)0.0446 (10)0.0677 (11)0.0064 (8)0.0177 (9)0.0025 (9)
C180.0402 (11)0.0526 (12)0.0575 (12)0.0095 (9)0.0004 (9)0.0127 (10)
C190.0538 (13)0.0627 (15)0.0801 (16)0.0048 (11)0.0125 (12)0.0052 (13)
N200.0440 (10)0.0762 (14)0.0753 (13)0.0106 (9)0.0150 (9)0.0155 (11)
C210.0528 (16)0.137 (3)0.106 (2)0.0069 (17)0.0207 (15)0.033 (2)
C220.092 (2)0.086 (2)0.100 (2)0.0273 (17)0.0405 (18)0.0049 (17)
Geometric parameters (Å, º) top
N1—C21.309 (3)C12—H1210.97 (2)
N1—C9B1.380 (2)C12—H1220.96 (3)
C2—N171.366 (2)C13—C141.510 (4)
C2—S31.762 (2)C13—H1310.94 (3)
C3A—C9B1.353 (3)C13—H1320.98 (2)
C3A—C41.501 (3)C14—C151.519 (4)
C3A—S31.7292 (19)C14—H1410.97 (3)
C4—O51.465 (2)C14—H1420.95 (3)
C4—C121.519 (3)C15—C161.527 (3)
C4—C161.526 (3)C15—H1510.98 (3)
O5—C5A1.374 (2)C15—H1521.00 (3)
C5A—C61.387 (3)C16—H1610.97 (2)
C5A—C9A1.394 (3)C16—H1620.97 (2)
C6—C71.386 (3)N17—C181.301 (3)
C6—H610.95 (2)C18—N201.346 (3)
C7—O101.373 (2)C18—C191.501 (3)
C7—C81.391 (3)C19—H19A0.9600
C8—C91.376 (3)C19—H19B0.9600
C8—H810.96 (2)C19—H19C0.9600
C9—C9A1.393 (3)N20—C221.452 (4)
C9—H910.94 (2)N20—C211.458 (3)
C9A—C9B1.457 (3)C21—H21A0.9600
O10—C111.414 (3)C21—H21B0.9600
C11—H11A0.9600C21—H21C0.9600
C11—H11B0.9600C22—H22A0.9600
C11—H11C0.9600C22—H22B0.9600
C12—C131.523 (3)C22—H22C0.9600
C2—N1—C9B110.04 (16)C14—C13—C12111.8 (2)
N1—C2—N17127.00 (18)C14—C13—H131111.6 (16)
N1—C2—S3114.16 (14)C12—C13—H131107.3 (16)
N17—C2—S3118.62 (15)C14—C13—H132109.5 (14)
C9B—C3A—C4122.24 (17)C12—C13—H132108.6 (14)
C9B—C3A—S3109.23 (14)H131—C13—H132108 (2)
C4—C3A—S3128.48 (14)C13—C14—C15111.5 (2)
C3A—S3—C289.18 (9)C13—C14—H141109.2 (17)
O5—C4—C3A107.26 (14)C15—C14—H141110.7 (16)
O5—C4—C12104.56 (16)C13—C14—H142107.4 (17)
C3A—C4—C12113.46 (17)C15—C14—H142109.4 (18)
O5—C4—C16108.01 (16)H141—C14—H142109 (2)
C3A—C4—C16112.13 (17)C14—C15—C16110.9 (2)
C12—C4—C16110.92 (18)C14—C15—H151110.9 (17)
C5A—O5—C4118.37 (13)C16—C15—H151109.5 (17)
O5—C5A—C6116.73 (16)C14—C15—H152109.6 (14)
O5—C5A—C9A121.25 (16)C16—C15—H152107.3 (14)
C6—C5A—C9A121.85 (16)H151—C15—H152109 (2)
C7—C6—C5A118.55 (18)C4—C16—C15112.4 (2)
C7—C6—H61123.5 (12)C4—C16—H161106.8 (13)
C5A—C6—H61117.9 (12)C15—C16—H161110.5 (13)
O10—C7—C6123.63 (18)C4—C16—H162110.4 (13)
O10—C7—C8115.69 (17)C15—C16—H162110.8 (13)
C6—C7—C8120.68 (18)H161—C16—H162105.7 (19)
C9—C8—C7119.71 (19)C18—N17—C2120.09 (18)
C9—C8—H81120.0 (13)N17—C18—N20118.0 (2)
C7—C8—H81120.3 (13)N17—C18—C19123.8 (2)
C8—C9—C9A121.1 (2)N20—C18—C19118.1 (2)
C8—C9—H91120.6 (14)C18—C19—H19A109.5
C9A—C9—H91118.2 (15)C18—C19—H19B109.5
C9—C9A—C5A118.01 (18)H19A—C19—H19B109.5
C9—C9A—C9B125.40 (18)C18—C19—H19C109.5
C5A—C9A—C9B116.51 (16)H19A—C19—H19C109.5
C3A—C9B—N1117.40 (17)H19B—C19—H19C109.5
C3A—C9B—C9A119.39 (17)C18—N20—C22119.9 (2)
N1—C9B—C9A123.18 (16)C18—N20—C21123.2 (2)
C7—O10—C11117.49 (17)C22—N20—C21116.8 (2)
O10—C11—H11A109.5N20—C21—H21A109.5
O10—C11—H11B109.5N20—C21—H21B109.5
H11A—C11—H11B109.5H21A—C21—H21B109.5
O10—C11—H11C109.5N20—C21—H21C109.5
H11A—C11—H11C109.5H21A—C21—H21C109.5
H11B—C11—H11C109.5H21B—C21—H21C109.5
C4—C12—C13112.2 (2)N20—C22—H22A109.5
C4—C12—H121106.7 (13)N20—C22—H22B109.5
C13—C12—H121109.2 (13)H22A—C22—H22B109.5
C4—C12—H122110.2 (16)N20—C22—H22C109.5
C13—C12—H122112.2 (16)H22A—C22—H22C109.5
H121—C12—H122106 (2)H22B—C22—H22C109.5
C9B—N1—C2—N17174.7 (2)C4—C3A—C9B—N1176.95 (18)
C9B—N1—C2—S30.3 (2)S3—C3A—C9B—N10.5 (2)
C9B—C3A—S3—C20.26 (16)C4—C3A—C9B—C9A5.1 (3)
C4—C3A—S3—C2176.97 (19)S3—C3A—C9B—C9A177.50 (15)
N1—C2—S3—C3A0.00 (17)C2—N1—C9B—C3A0.5 (3)
N17—C2—S3—C3A174.98 (18)C2—N1—C9B—C9A177.41 (18)
C9B—C3A—C4—O532.2 (3)C9—C9A—C9B—C3A170.1 (2)
S3—C3A—C4—O5150.85 (15)C5A—C9A—C9B—C3A13.4 (3)
C9B—C3A—C4—C12147.2 (2)C9—C9A—C9B—N112.1 (3)
S3—C3A—C4—C1235.9 (3)C5A—C9A—C9B—N1164.47 (18)
C9B—C3A—C4—C1686.2 (2)C6—C7—O10—C111.2 (3)
S3—C3A—C4—C1690.7 (2)C8—C7—O10—C11178.4 (2)
C3A—C4—O5—C5A44.4 (2)O5—C4—C12—C1363.2 (3)
C12—C4—O5—C5A165.17 (16)C3A—C4—C12—C13179.8 (2)
C16—C4—O5—C5A76.6 (2)C16—C4—C12—C1353.0 (3)
C4—O5—C5A—C6154.00 (16)C4—C12—C13—C1454.4 (3)
C4—O5—C5A—C9A30.6 (2)C12—C13—C14—C1555.2 (3)
O5—C5A—C6—C7177.88 (16)C13—C14—C15—C1655.1 (3)
C9A—C5A—C6—C72.6 (3)O5—C4—C16—C1560.5 (2)
C5A—C6—C7—O10179.29 (18)C3A—C4—C16—C15178.52 (19)
C5A—C6—C7—C80.3 (3)C12—C4—C16—C1553.5 (3)
O10—C7—C8—C9178.4 (2)C14—C15—C16—C454.7 (3)
C6—C7—C8—C92.0 (3)N1—C2—N17—C1845.0 (3)
C7—C8—C9—C9A2.1 (4)S3—C2—N17—C18140.69 (18)
C8—C9—C9A—C5A0.1 (3)C2—N17—C18—N20164.45 (19)
C8—C9—C9A—C9B176.4 (2)C2—N17—C18—C1918.9 (3)
O5—C5A—C9A—C9177.56 (18)N17—C18—N20—C224.1 (3)
C6—C5A—C9A—C92.4 (3)C19—C18—N20—C22179.0 (2)
O5—C5A—C9A—C9B0.7 (3)N17—C18—N20—C21179.9 (2)
C6—C5A—C9A—C9B174.37 (17)C19—C18—N20—C213.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O5i0.962.413.335 (3)161
C6—H61···N1ii0.95 (2)2.59 (2)3.441 (3)149.3 (15)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H25N3O2S
Mr371.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.2510 (2), 20.0273 (4), 10.7301 (2)
β (°) 90.840 (2)
V3)1987.78 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.892, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
56290, 3482, 2835
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.02
No. of reflections3482
No. of parameters291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O5i0.962.413.335 (3)161
C6—H61···N1ii0.95 (2)2.59 (2)3.441 (3)149.3 (15)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the UGC for research funding under research project F.No. 37–4154/2009 (J&K) (SR).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBishayee, A., Karmaker, R., Mandal, A., Kundu, S. N. & Chaterjee, M. (1997). Eur. J. Cancer Prev. 6, 58–70.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChitamber, C. R. & Wereley, J. P. (1997). J. Biol. Chem. 272, 12151–12157.  PubMed Web of Science Google Scholar
First citationCruz, T. F., Morgon, A. & Min, W. (1995). Mol. Biochem. 153, 161–166.  CrossRef CAS Web of Science Google Scholar
First citationDong, Y. B., Wang, L., Ma, J. P. & Zhao, X. X. (2006). Cryst. Growth Des. 6, 2475–2485.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJayashree, B. S., Anuradha, D. & Venugopala, K. N. (2005). Asian J. Chem. 17, 2093–2097.  CAS Google Scholar
First citationModi, J. D., Sabnis, S. S. & Deliwala, C. V. (1971). J. Med. Chem. 14, 450–451.  CAS PubMed Web of Science Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Patter, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationMurza, M. M., Kuvatov, Z. K. & Safarov, M. G. (1999). Chem. Heterocyl. Compd, 35, 1097–1103.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPawar, M. J., Burungale, A. B. & Karale, B. K. (2009). Arkivoc, xiii, 97–107.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutariya, B., Raziya, S. K., Mohan, S. & Rao, S. V. S. (2007). Indian J. Chem. Sect. B, 465, 884–887.  Google Scholar
First citationVicini, P., Geronikaki, A., Incerti, M., Busonera, B. & Poni, G. (2003). Bioorg. Med. Chem. 11, 4785–4789.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2855-o2856
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds