metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(methanol-κO)bis­­(quinoline-2-carboxyl­ato-κ2N,O)nickel(II)

aDepartment of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Republic of Korea, cDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDeaprtment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 28 September 2011; accepted 6 October 2011; online 12 October 2011)

In the title complex, [Ni(C10H6NO2)2(CH3OH)2], the NiII ion lies on an inversion center and is coordinated by two quinoline-2-carboxyl­ate ligands in the equatorial sites and two axial methanol ligands, forming a distorted octa­hedral environment. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds into a two-dimensional network parallel to (10[\overline{1}]).

Related literature

For inter­actions of metal ions with amino acids, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]); Stoumpos et al. (2009[Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307-317.]). For related structures, see: Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Song et al. (2009[Song, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495-m1496.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.], 2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.], 2010[Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61-m62.]); Kim et al. (2011[Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3-m4.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H6NO2)2(CH4O)2]

  • Mr = 467.11

  • Monoclinic, P 21 /n

  • a = 10.411 (2) Å

  • b = 7.3910 (15) Å

  • c = 13.556 (3) Å

  • β = 108.57 (3)°

  • V = 988.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.903

  • 5292 measured reflections

  • 1929 independent reflections

  • 1666 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.07

  • 1929 reflections

  • 146 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.86 (1) 1.81 (1) 2.655 (2) 167 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, and various acids is of great importance in biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004; Stoumpos, et al., 2009). As models to examine the interaction, we have intensively studied the interaction of transition metal ions with various acids such as benzoic acid, fulvic acids and humic acids and have reported a variety of structures of copper(II), cadmium(II), and zinc(II) benzoates with quinoxaline,6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Song, et al., 2009; Yu, et al., 2008,2009,2010; Kim, et al., 2011). In this work, we have employed nickel(II) chloride as a building block and quinaldic acid as a ligand. We report herin the structure of the title complex.

In the crystal structure of the title compound, [Ni(C10H6NO2)2(CH3OH)2], the NiII ion occupies a crystallographic inversion center. Two quinoline-2-carboxylate ligands coordinate the NiII ion in the equatorial sites and two methanol ligands coordinate the NiII ion in axial sites to form a distorted octahedral environment (Fig. 1). In the crystal, molecules are linked via O—H···O hydrogen bonds to form a two-dimensional network parallel to [1 0 -1].

Related literature top

For interactions of metal ions with amino acids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004); Stoumpos et al. (2009). For related structures, see: Lee et al. (2008); Park et al. (2008); Shin et al. (2009); Song et al. (2009); Yu et al. (2008, 2009, 2010); Kim et al. (2011).

Experimental top

Quinaldic acid (17.7 mg, 0.1 mmol) and NH4OH (13.9 ml, 0.1 mmol) were dissolved in 4 ml methanol and carefully layered with 4 ml methanol solution of nickel(II) chloride hexahydrate (11.9 mg, 0.05 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in two weeks.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93-0.96Å. They were included in the refinement in a riding-motion approximation with Uiso(H)= 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The positions of O—H atoms of the methanol ligands were refined with O—H restraints (0.86 Å) and Uiso(H)= 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x+2, -y, -z+1).
Bis(methanol-κO)bis(quinoline-2-carboxylato- κ2N,O)nickel(II) top
Crystal data top
[Ni(C10H6NO2)2(CH4O)2]F(000) = 484
Mr = 467.11Dx = 1.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3640 reflections
a = 10.411 (2) Åθ = 2.6–28.1°
b = 7.3910 (15) ŵ = 1.03 mm1
c = 13.556 (3) ÅT = 293 K
β = 108.57 (3)°Rod, colorless
V = 988.8 (3) Å30.40 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1929 independent reflections
Radiation source: fine-focus sealed tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.884, Tmax = 0.903k = 99
5292 measured reflectionsl = 916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2296P]
where P = (Fo2 + 2Fc2)/3
1929 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
[Ni(C10H6NO2)2(CH4O)2]V = 988.8 (3) Å3
Mr = 467.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.411 (2) ŵ = 1.03 mm1
b = 7.3910 (15) ÅT = 293 K
c = 13.556 (3) Å0.40 × 0.10 × 0.10 mm
β = 108.57 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1929 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1666 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.903Rint = 0.018
5292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
1929 reflectionsΔρmin = 0.31 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.50000.02463 (12)
N10.79816 (13)0.10618 (19)0.48009 (11)0.0270 (3)
O10.94209 (12)0.07175 (19)0.35013 (9)0.0314 (3)
O20.78467 (15)0.2090 (2)0.22280 (11)0.0530 (4)
O30.91781 (13)0.25715 (18)0.45429 (10)0.0362 (3)
H3O0.8599 (16)0.259 (3)0.3928 (7)0.043*
C10.72490 (17)0.1223 (2)0.54860 (13)0.0296 (4)
C20.77500 (19)0.0457 (3)0.64897 (15)0.0360 (4)
H20.85890.01160.66980.043*
C30.7003 (2)0.0554 (3)0.71576 (16)0.0427 (5)
H30.73310.00200.78110.051*
C40.5748 (2)0.1451 (3)0.68685 (17)0.0453 (5)
H40.52570.15140.73330.054*
C50.5250 (2)0.2221 (3)0.59184 (17)0.0429 (5)
H50.44250.28260.57400.051*
C60.59717 (18)0.2118 (2)0.51872 (15)0.0347 (4)
C70.54761 (19)0.2841 (3)0.41796 (17)0.0414 (5)
H70.46530.34550.39710.050*
C80.61990 (19)0.2645 (3)0.35068 (15)0.0385 (4)
H80.58710.31010.28330.046*
C90.74535 (17)0.1737 (2)0.38513 (14)0.0300 (4)
C100.82890 (17)0.1504 (3)0.31228 (14)0.0315 (4)
C110.8677 (2)0.3714 (3)0.51879 (17)0.0481 (5)
H11A0.94240.41960.57400.072*
H11B0.81670.46900.47790.072*
H11C0.81020.30250.54780.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02223 (18)0.03058 (19)0.01837 (18)0.00163 (12)0.00265 (12)0.00029 (12)
N10.0236 (7)0.0301 (8)0.0250 (7)0.0008 (6)0.0045 (6)0.0006 (6)
O10.0268 (6)0.0448 (7)0.0206 (6)0.0047 (6)0.0045 (5)0.0017 (6)
O20.0390 (7)0.0871 (12)0.0295 (7)0.0141 (8)0.0060 (6)0.0189 (8)
O30.0352 (7)0.0369 (7)0.0291 (7)0.0050 (6)0.0000 (5)0.0025 (6)
C10.0267 (8)0.0299 (9)0.0320 (10)0.0015 (7)0.0089 (7)0.0048 (7)
C20.0307 (9)0.0458 (11)0.0317 (10)0.0052 (8)0.0105 (8)0.0009 (8)
C30.0430 (11)0.0562 (12)0.0317 (10)0.0024 (10)0.0158 (9)0.0019 (9)
C40.0414 (11)0.0561 (13)0.0459 (12)0.0013 (10)0.0246 (10)0.0108 (10)
C50.0323 (10)0.0456 (12)0.0539 (13)0.0064 (9)0.0182 (9)0.0057 (10)
C60.0292 (9)0.0328 (10)0.0419 (11)0.0019 (8)0.0110 (8)0.0035 (8)
C70.0288 (9)0.0418 (11)0.0511 (12)0.0112 (8)0.0094 (9)0.0063 (9)
C80.0304 (9)0.0429 (11)0.0366 (10)0.0061 (8)0.0027 (8)0.0114 (9)
C90.0249 (8)0.0317 (9)0.0302 (9)0.0013 (7)0.0043 (7)0.0015 (8)
C100.0275 (8)0.0384 (10)0.0241 (9)0.0002 (8)0.0017 (7)0.0025 (8)
C110.0544 (13)0.0428 (12)0.0447 (12)0.0066 (10)0.0124 (10)0.0000 (10)
Geometric parameters (Å, º) top
Ni1—O1i1.9979 (12)C3—C41.405 (3)
Ni1—O11.9980 (12)C3—H30.9300
Ni1—O3i2.0954 (13)C4—C51.351 (3)
Ni1—O32.0954 (13)C4—H40.9300
Ni1—N12.1779 (14)C5—C61.423 (3)
Ni1—N1i2.1779 (14)C5—H50.9300
N1—C91.326 (2)C6—C71.403 (3)
N1—C11.382 (2)C7—C81.363 (3)
O1—C101.267 (2)C7—H70.9300
O2—C101.231 (2)C8—C91.409 (3)
O3—C111.429 (3)C8—H80.9300
O3—H3O0.859 (2)C9—C101.519 (3)
C1—C21.411 (3)C11—H11A0.9600
C1—C61.424 (2)C11—H11B0.9600
C2—C31.371 (3)C11—H11C0.9600
C2—H20.9300
O1i—Ni1—O1180.0C2—C3—H3119.5
O1i—Ni1—O3i88.71 (6)C4—C3—H3119.5
O1—Ni1—O3i91.29 (6)C5—C4—C3120.31 (19)
O1i—Ni1—O391.29 (6)C5—C4—H4119.8
O1—Ni1—O388.71 (6)C3—C4—H4119.8
O3i—Ni1—O3180.00 (7)C4—C5—C6120.93 (18)
O1i—Ni1—N1100.86 (6)C4—C5—H5119.5
O1—Ni1—N179.14 (6)C6—C5—H5119.5
O3i—Ni1—N189.82 (5)C7—C6—C5123.07 (17)
O3—Ni1—N190.18 (5)C7—C6—C1118.33 (17)
O1i—Ni1—N1i79.14 (6)C5—C6—C1118.60 (17)
O1—Ni1—N1i100.86 (6)C8—C7—C6120.06 (17)
O3i—Ni1—N1i90.18 (5)C8—C7—H7120.0
O3—Ni1—N1i89.82 (5)C6—C7—H7120.0
N1—Ni1—N1i180.0C7—C8—C9118.69 (18)
C9—N1—C1118.24 (14)C7—C8—H8120.7
C9—N1—Ni1109.96 (11)C9—C8—H8120.7
C1—N1—Ni1131.69 (11)N1—C9—C8123.71 (17)
C10—O1—Ni1118.31 (11)N1—C9—C10116.25 (15)
C11—O3—Ni1123.34 (12)C8—C9—C10120.04 (16)
C11—O3—H3O107.6 (15)O2—C10—O1124.64 (18)
Ni1—O3—H3O113.5 (15)O2—C10—C9119.26 (16)
N1—C1—C2119.98 (15)O1—C10—C9116.09 (15)
N1—C1—C6120.95 (16)O3—C11—H11A109.5
C2—C1—C6119.06 (17)O3—C11—H11B109.5
C3—C2—C1120.16 (18)H11A—C11—H11B109.5
C3—C2—H2119.9O3—C11—H11C109.5
C1—C2—H2119.9H11A—C11—H11C109.5
C2—C3—C4120.9 (2)H11B—C11—H11C109.5
O1i—Ni1—N1—C9175.65 (12)C2—C3—C4—C50.6 (3)
O1—Ni1—N1—C94.35 (12)C3—C4—C5—C61.0 (3)
O3i—Ni1—N1—C987.00 (12)C4—C5—C6—C7177.7 (2)
O3—Ni1—N1—C993.00 (12)C4—C5—C6—C11.5 (3)
O1i—Ni1—N1—C10.27 (16)N1—C1—C6—C70.3 (3)
O1—Ni1—N1—C1179.73 (16)C2—C1—C6—C7178.75 (18)
O3i—Ni1—N1—C188.92 (15)N1—C1—C6—C5179.02 (16)
O3—Ni1—N1—C191.08 (15)C2—C1—C6—C50.5 (3)
O3i—Ni1—O1—C1085.58 (14)C5—C6—C7—C8177.88 (19)
O3—Ni1—O1—C1094.42 (14)C1—C6—C7—C81.4 (3)
N1—Ni1—O1—C103.98 (13)C6—C7—C8—C91.1 (3)
N1i—Ni1—O1—C10176.02 (13)C1—N1—C9—C81.4 (3)
O1i—Ni1—O3—C1127.49 (15)Ni1—N1—C9—C8175.15 (15)
O1—Ni1—O3—C11152.51 (15)C1—N1—C9—C10179.23 (14)
N1—Ni1—O3—C1173.38 (15)Ni1—N1—C9—C104.23 (18)
N1i—Ni1—O3—C11106.62 (15)C7—C8—C9—N10.3 (3)
C9—N1—C1—C2177.39 (17)C7—C8—C9—C10179.64 (18)
Ni1—N1—C1—C27.0 (2)Ni1—O1—C10—O2176.36 (16)
C9—N1—C1—C61.1 (2)Ni1—O1—C10—C92.9 (2)
Ni1—N1—C1—C6174.56 (12)N1—C9—C10—O2179.42 (18)
N1—C1—C2—C3177.54 (18)C8—C9—C10—O21.2 (3)
C6—C1—C2—C31.0 (3)N1—C9—C10—O11.3 (2)
C1—C2—C3—C41.5 (3)C8—C9—C10—O1178.12 (17)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2ii0.86 (1)1.81 (1)2.655 (2)167 (2)
Symmetry code: (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C10H6NO2)2(CH4O)2]
Mr467.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.411 (2), 7.3910 (15), 13.556 (3)
β (°) 108.57 (3)
V3)988.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.884, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
5292, 1929, 1666
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.07
No. of reflections1929
No. of parameters146
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.859 (11)1.810 (12)2.655 (2)167.2 (18)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

Financial support from the Forest Science & Technology Projects (S121011L080120) and the Cooperative Research Program for Agricultural Science & Technology Developments (20070301–036-019–02) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationKim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495–m1496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317.  Web of Science CSD CrossRef Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds