organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethane-1,2-diaminium 4,4′-sulfonyl­dibenzoate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 29 September 2011; accepted 7 October 2011; online 12 October 2011)

In the title salt, C2H10N22+·C14H8O6S2−, both the ethyl­ene­diaminium cations and the 4,4′-sulfonyl­dibenzoate dianions have crystallographic twofold rotational symmetry. They are inter­linked by aminium N—H⋯Ocarboxyl­ate hydrogen-bonding associations, giving sheets parallel to (101) and are further linked along [010], forming a three-dimensional structure.

Related literature

For the structure of 4,4′-sulfonyl­dibenzoic acid, see: Lian et al. (2007[Lian, F.-Y., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2007). Acta Cryst. E63, o2870.]). For the structures of some metal complexes of the acid, see: Bannerjee et al. (2009[Bannerjee, D., Berkowski, L. A., Kim, S.-J. & Parise, J. B. (2009). Cryst. Growth Des. 9, 4922-4926.]); Jiao (2010[Jiao, C. (2010). Acta Cryst. E66, m1405.]); Pan et al. (2007[Pan, P.-B., Zhang, L., Li, Z.-J., Cao, X.-Y. & Yao, Y.-G. (2007). Acta Cryst. C63, m270-m272.]); Wu et al. (2007[Wu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67-m69.]); Zhuang & Jin (2007[Zhuang, W.-J. & Jin, L.-P. (2007). Appl. Organomet. Chem. 20, 76-82.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·C14H8O6S2−

  • Mr = 366.39

  • Monoclinic, P 2/c

  • a = 15.2860 (8) Å

  • b = 4.8436 (2) Å

  • c = 11.9803 (6) Å

  • β = 111.812 (6)°

  • V = 823.51 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 200 K

  • 0.35 × 0.25 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.98, Tmax = 0.99

  • 5062 measured reflections

  • 1607 independent reflections

  • 1290 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.05

  • 1607 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O42i 0.89 1.87 2.760 (2) 174
N1A—H12A⋯O41ii 0.89 1.88 2.740 (2) 163
N1A—H13A⋯O42 0.89 1.93 2.798 (2) 164
Symmetry codes: (i) x, y+1, z; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structure of the diprotic acid 4,4'-sulfonyldibenzoic acid (SDBA) is known (Lian et al., 2007) and although some metal complexes with SDBA alone have been reported, e.g. with Li (Bannerjee et al., 2009), Zn (Pan et al., 2007; Zhuang & Jin, 2007) and Cd (Jiao, 2010), most structures have been with mixed ligands including this acid (Wu et al., 2007). No structures of compounds of SDBA with Lewis bases are known. Our 1:1 stoichiometric reaction of this acid with ethylenediamine gave the the title compound C2H10N22+ C14H8O6S2-, and the structure is reported here. In this structure (Fig. 1), both the ethylenediaminium cations and the 4,4'-sulfonyldibenzoate dianions have crystallographic twofold rotational symmetry. In contrast, the two substituted ring systems of the parent molecule are mirror related (Lian et al., 2007). With the present salt, the central C1—S1—C1i bond angle is 104.90 (8)Å [for symmetry code (i), see Fig. 1], while the carboxyl group (defined by atoms C4–C41–O41–O42) lies slightly out of the plane of the benzene ring [dihedral angle 19.31 (9)°]. The ethylenediamine cation is essentially planar [torsion angle N1A—C1A—C1Aii—N1Aii, 171.97 (14)°]. For symmetry code (ii), see also Fig. 1.

Intermolecular cation aminium NH···Ocarboxyl hydrogen bonds (Table 1) interlink the SDBA dianions into sheets lying in the (101) planes, as well as down the b axis, forming a three-dimensional structure (Fig. 2). The sulfonyl O atoms are involved in inter-species C—H···O associations [C2—H2···O1v, 3.200 (2) Å: symmetry code (v) -x + 2, -y + 1, -z + 1]. as well as in S—O···Cg interactions [minimum S1—O1···Cg(ring C1viii–C6viii) = 3.5409 (13) Å; S—O···Cg angle, 90.61 (5)°: symmetry code (viii) -x + 2, y + 1, -z + 3/2].

Related literature top

For the structure of 4,4'-sulfonyldibenzoic acid, see: Lian et al. (2007). For the structures of some metal complexes of the acid, see: Bannerjee et al. (2009); Jiao (2010); Pan et al. (2007); Wu et al. (2007); Zhuang & Jin (2007).

Experimental top

The title compound was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,4'-sulfonyldibenzoic acid and ethylenediamine in 50 ml of 50% ethanol–water. After evaporation of the solvent the non-crystalline product was recrystallized from a 50% methanol–isopropyl alcohol solution giving thin colourless crystal plates from which a specimen was cleaved for the X-ray analysis..

Refinement top

The aminium H atoms were located by difference Fourier methods and their positional and isotropic displacement parameters were initially refined but finally were allowed to ride on the N atom with Uiso(H) = 1.2Ueq(N). Other H atoms were included at calculated positions with C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.97 Å] and also treated as riding, with Uiso(H) = 1.2UeqC(aromatic) or 1.5UeqC(methylene).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom-numbering scheme for the title compound, with the inter-species hydrogen bond shown as a dashed line and with non-H atoms shown as 50% probability displacement ellipsoids. Both the dication and the dianion have twofold rotational symmetry [symmetry codes (i) -x + 2, y, -z + 3/2; (ii) -x + 1, y, -z + 1/2].
[Figure 2] Fig. 2. A perspective view of the three-dimensional structure looking along the b axial direction, showing hydrogen-bonding associations as dashed lines. Carbon-bound H atoms are omitted. For symmetry codes, see Table 1 and Fig. 1.
Ethane-1,2-diaminium 4,4'-sulfonyldibenzoate top
Crystal data top
C2H10N22+·C14H8O6S2F(000) = 384
Mr = 366.39Dx = 1.478 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2936 reflections
a = 15.2860 (8) Åθ = 3.5–28.6°
b = 4.8436 (2) ŵ = 0.23 mm1
c = 11.9803 (6) ÅT = 200 K
β = 111.812 (6)°Plate, colourless
V = 823.51 (8) Å30.35 × 0.25 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
1607 independent reflections
Radiation source: Enhance (Mo) X-ray source1290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 55
Tmin = 0.98, Tmax = 0.99l = 1414
5062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
1607 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C2H10N22+·C14H8O6S2V = 823.51 (8) Å3
Mr = 366.39Z = 2
Monoclinic, P2/cMo Kα radiation
a = 15.2860 (8) ŵ = 0.23 mm1
b = 4.8436 (2) ÅT = 200 K
c = 11.9803 (6) Å0.35 × 0.25 × 0.08 mm
β = 111.812 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
1607 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1290 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.024
5062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
1607 reflectionsΔρmin = 0.25 e Å3
114 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.000000.61975 (12)0.750000.0180 (2)
O11.03086 (9)0.7681 (3)0.66702 (11)0.0249 (4)
O410.63470 (9)0.2635 (3)0.51471 (11)0.0301 (4)
O420.66855 (9)0.1734 (3)0.35316 (10)0.0243 (4)
C10.90679 (11)0.3967 (3)0.66620 (15)0.0175 (5)
C20.90534 (12)0.2888 (4)0.55790 (16)0.0225 (5)
C30.83192 (12)0.1147 (4)0.49238 (15)0.0221 (5)
C40.76174 (11)0.0437 (4)0.53517 (14)0.0176 (5)
C50.76491 (13)0.1538 (4)0.64426 (16)0.0216 (5)
C60.83708 (12)0.3320 (4)0.71004 (16)0.0221 (5)
C410.68270 (12)0.1474 (3)0.46402 (15)0.0192 (5)
N1A0.61734 (10)0.3312 (3)0.23264 (13)0.0242 (5)
C1A0.51341 (13)0.3110 (4)0.19485 (16)0.0273 (6)
H20.952800.332500.529800.0270*
H30.829600.044800.419000.0260*
H50.718300.107500.673300.0260*
H60.838500.406600.782200.0260*
H11A0.637400.485700.274600.0290*
H12A0.632700.333800.167900.0290*
H13A0.644200.186300.278100.0290*
H14A0.483800.466200.143500.0330*
H15A0.491300.142500.149400.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0190 (3)0.0165 (3)0.0174 (3)0.00000.0055 (2)0.0000
O10.0270 (7)0.0217 (7)0.0255 (7)0.0024 (5)0.0091 (6)0.0053 (6)
O410.0338 (8)0.0381 (8)0.0204 (7)0.0146 (6)0.0123 (6)0.0022 (6)
O420.0310 (7)0.0265 (7)0.0153 (6)0.0061 (5)0.0086 (5)0.0033 (5)
C10.0170 (8)0.0169 (9)0.0167 (8)0.0018 (6)0.0041 (7)0.0021 (7)
C20.0214 (9)0.0292 (10)0.0195 (9)0.0025 (7)0.0107 (7)0.0014 (8)
C30.0257 (9)0.0265 (10)0.0158 (9)0.0013 (8)0.0098 (7)0.0031 (7)
C40.0177 (8)0.0187 (9)0.0148 (8)0.0021 (7)0.0041 (7)0.0028 (7)
C50.0237 (9)0.0244 (10)0.0214 (9)0.0038 (7)0.0140 (8)0.0008 (7)
C60.0268 (9)0.0244 (10)0.0169 (9)0.0014 (8)0.0103 (8)0.0037 (7)
C410.0215 (9)0.0185 (9)0.0179 (9)0.0027 (7)0.0077 (7)0.0027 (7)
N1A0.0292 (9)0.0254 (8)0.0189 (8)0.0004 (7)0.0099 (7)0.0003 (7)
C1A0.0245 (10)0.0361 (11)0.0209 (10)0.0020 (8)0.0080 (8)0.0024 (8)
Geometric parameters (Å, º) top
S1—O11.4407 (14)C2—C31.390 (3)
S1—C11.7726 (17)C3—C41.393 (3)
S1—O1i1.4407 (14)C4—C411.509 (2)
S1—C1i1.7726 (17)C4—C51.396 (2)
O41—C411.247 (2)C5—C61.392 (3)
O42—C411.270 (2)C2—H20.9300
N1A—C1A1.485 (3)C3—H30.9300
N1A—H13A0.8900C5—H50.9300
N1A—H11A0.8900C6—H60.9300
N1A—H12A0.8900C1A—C1Aii1.522 (3)
C1—C21.391 (2)C1A—H14A0.9700
C1—C61.388 (3)C1A—H15A0.9700
O1—S1—C1108.27 (8)C4—C5—C6120.77 (18)
O1—S1—O1i120.17 (9)C1—C6—C5118.97 (17)
O1—S1—C1i107.12 (8)O42—C41—C4116.17 (16)
O1i—S1—C1107.12 (8)O41—C41—O42124.21 (16)
C1—S1—C1i104.90 (8)O41—C41—C4119.61 (15)
O1i—S1—C1i108.27 (8)C3—C2—H2121.00
C1A—N1A—H11A109.00C1—C2—H2120.00
C1A—N1A—H12A110.00C2—C3—H3120.00
C1A—N1A—H13A109.00C4—C3—H3120.00
H11A—N1A—H12A109.00C4—C5—H5120.00
H11A—N1A—H13A109.00C6—C5—H5120.00
H12A—N1A—H13A109.00C5—C6—H6120.00
C2—C1—C6121.32 (16)C1—C6—H6121.00
S1—C1—C2119.21 (14)N1A—C1A—C1Aii109.76 (15)
S1—C1—C6119.47 (13)N1A—C1A—H14A110.00
C1—C2—C3118.96 (17)N1A—C1A—H15A110.00
C2—C3—C4120.83 (16)H14A—C1A—H15A108.00
C3—C4—C41120.53 (15)C1Aii—C1A—H14A110.00
C3—C4—C5119.13 (17)C1Aii—C1A—H15A110.00
C5—C4—C41120.35 (16)
O1—S1—C1—C230.61 (16)C2—C3—C4—C51.2 (3)
O1—S1—C1—C6149.72 (14)C2—C3—C4—C41179.47 (17)
O1i—S1—C1—C2161.56 (14)C3—C4—C5—C60.1 (3)
O1i—S1—C1—C618.77 (16)C41—C4—C5—C6179.47 (17)
C1i—S1—C1—C283.51 (15)C3—C4—C41—O41162.10 (17)
C1i—S1—C1—C696.15 (15)C3—C4—C41—O4219.4 (2)
S1—C1—C2—C3179.80 (14)C5—C4—C41—O4118.5 (3)
C6—C1—C2—C30.5 (3)C5—C4—C41—O42159.93 (17)
S1—C1—C6—C5179.17 (14)C4—C5—C6—C10.7 (3)
C2—C1—C6—C50.5 (3)N1A—C1A—C1Aii—N1Aii171.97 (14)
C1—C2—C3—C41.4 (3)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O42iii0.891.872.760 (2)174
N1A—H12A···O41iv0.891.882.740 (2)163
N1A—H13A···O420.891.932.798 (2)164
C2—H2···O1v0.932.513.200 (2)131
C5—H5···O42vi0.932.563.344 (2)143
C6—H6···O1i0.932.552.915 (2)104
C1A—H14A···O41vii0.972.463.384 (2)160
Symmetry codes: (i) x+2, y, z+3/2; (iii) x, y+1, z; (iv) x, y, z1/2; (v) x+2, y+1, z+1; (vi) x, y, z+1/2; (vii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H10N22+·C14H8O6S2
Mr366.39
Crystal system, space groupMonoclinic, P2/c
Temperature (K)200
a, b, c (Å)15.2860 (8), 4.8436 (2), 11.9803 (6)
β (°) 111.812 (6)
V3)823.51 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.25 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5062, 1607, 1290
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.05
No. of reflections1607
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O42i0.891.872.760 (2)174
N1A—H12A···O41ii0.891.882.740 (2)163
N1A—H13A···O420.891.932.798 (2)164
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Reseach Council and the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBannerjee, D., Berkowski, L. A., Kim, S.-J. & Parise, J. B. (2009). Cryst. Growth Des. 9, 4922–4926.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJiao, C. (2010). Acta Cryst. E66, m1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLian, F.-Y., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2007). Acta Cryst. E63, o2870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPan, P.-B., Zhang, L., Li, Z.-J., Cao, X.-Y. & Yao, Y.-G. (2007). Acta Cryst. C63, m270–m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67–m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhuang, W.-J. & Jin, L.-P. (2007). Appl. Organomet. Chem. 20, 76–82.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds