organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Fluoro­benzo­yl)-N′,N′′-bis­­(4-methyl­phen­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Villaggio S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 3 October 2011; accepted 17 October 2011; online 29 October 2011)

In the title compound, C21H21FN3O2P, the NH and P(=O) groups of the C(=O)NHP(=O) fragment are in a syn arrangement with respect to each other, as are the two amide H atoms of the two CH3–4-C6H4–NH moieties. In the crystal, mol­ecules are linked through N—H⋯O(=P) and N—H⋯O(=C) hydrogen bonds, forming R22(8) and R22(12) rings, which are arranged in chains parallel to [010].

Related literature

For hydrogen-bond patterns in phospho­ric triamides of the formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]). For different cyclic hydrogen-bond motifs, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21FN3O2P

  • Mr = 397.38

  • Monoclinic, P 21 /n

  • a = 10.2132 (5) Å

  • b = 9.8588 (4) Å

  • c = 20.2711 (9) Å

  • β = 93.621 (2)°

  • V = 2037.02 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.662, Tmax = 0.745

  • 20105 measured reflections

  • 3844 independent reflections

  • 3061 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.04

  • 3844 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.97 2.7835 (18) 157
N3—H3⋯O1ii 0.86 2.06 2.8972 (18) 165
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The possible hydrogen bond patterns in crystal structure of phosphoric triamides of the general formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 have been analyzed recently (Toghraee et al., 2011) and the hydrogen bonds strengths in these systems were discussed based on cyclic hydrogen bond motifs (Pourayoubi et al., 2011). It was concluded that the R22(8) ring motif is generated by a pair of P(O)···H–NC(O)NHP(O) hydrogen bonds between two neighboring molecules in the crystal packing of phosphoric triamides of the formula RC(O)NHP(O)[NR1R2]2 which contain a syn orientation of P(O) versus N—H. In the case of phosphoric triamides of the formula RC(O)NHP(O)[NHR1]2, crystal structure is usually composed of a chain of R22(8) and R22(12) ring motifs which alternately connected to each other. However, a few other hydrogen bond patterns were also found. The R22(8) motif is formed by two P(O)···H–NC(O)NHP(O) hydrogen bonds and the R22(12) motif by two C(O)···H–Namide hydrogen bonds. In this work, the synthesis and crystal structure of a new phosphoric triamide, P(O)[NHC(O)C6H4(3-F)][NH–C6H4–4–CH3]2, is reported. This investigation was carried out as part of a comprehensive study on the hydrogen bonds pattern in phosphoric triamides with formula RC(O)NHP(O)[NHR1]2. The phosphorus atom has a distorted tetrahedral environment (Fig. 1). Comparison of the O–P–N angles indicates that the O–P–N1 angle is smaller than ideal tetrahedral (107.02 (7)°) and the O–P–N2 and O–P–N3 angles (113.75 (7)° and 116.29 (7)°, respectively) display larger than ideal values. This probably arises due to steric repulsion involving the P(O) group. Moreover, there is no π···π interaction between the two para-methyl phenyl groups. The C(O) and P(O) groups of the C(O)NHP(O) moiety are in anti positions relative to each other, contrary to the syn orientation of P(O) and NH groups. The P(O), C(O) and P–N bond lengths and P–N–C bond angles are in the range of the expected values. In the crystal structure, molecules are linked through P(O)···H–NC(O)NHP(O) and C( O)···H–Namide hydrogen bonds (Table 1), to give a linear chain running along the b axis.

Related literature top

For hydrogen-bond patterns in phosphoric triamides of the formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011). For different cyclic hydrogen-bond motifs, see: Pourayoubi et al. (2011).

Experimental top

Synthesis of 3-F–C6H4C(O)NHP(O)Cl2 A mixture of phosphorus pentachloride (3.773 g, 18.12 mmol) and 3-fluorobenzamide (2.521 g, 18.12 mmol) were refluxed in CCl4 for 8 h, and then the resulting solution was cooled to the room temperature. Formic acid (0.834 g, 18.12 mmol) was syringed dropwise into the stirring solution in 20 min and stirred for 6 h to yield the white precipitate that was filtered and dried in vacuum.

Synthesis of the title molecule To a solution of 3-F–C6H4C(O)NHP(O)Cl2 (0.256 g, 1 mmol) in CHCl3 (20 ml), a mixture of p-toluidine (0.214 g, 2 mmol) and triethylamine (0.202 g, 2 mmol) in CHCl3 (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated in vacuum and then the resulting solid was washed with distilled water. Single crystals of title compound were obtained from a mixture of CH3OH, CH3CN and n-C6H14 after slow evaporation at room temperature. IR (KBr, cm-1): 3355 (NH), 3313 (NH), 3081 (NH), 2921, 1651 (CO), 1615, 1588, 1513, 1440, 1386, 1267, 1235, 1210, 961, 870, 861, 817, 751.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93-0.96Å; N—H = 0.86Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are given at the 50% probability level.
N-(3-Fluorobenzoyl)-N',N''-bis(4-methylphenyl)phosphoric triamide top
Crystal data top
C21H21FN3O2PF(000) = 832
Mr = 397.38Dx = 1.296 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6910 reflections
a = 10.2132 (5) Åθ = 2.3–25.1°
b = 9.8588 (4) ŵ = 0.17 mm1
c = 20.2711 (9) ÅT = 296 K
β = 93.621 (2)°Cubic, colorless
V = 2037.02 (16) Å30.25 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3844 independent reflections
Radiation source: fine-focus sealed tube3061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.7°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.662, Tmax = 0.745k = 1211
20105 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.6292P]
where P = (Fo2 + 2Fc2)/3
3844 reflections(Δ/σ)max = 0.003
255 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C21H21FN3O2PV = 2037.02 (16) Å3
Mr = 397.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2132 (5) ŵ = 0.17 mm1
b = 9.8588 (4) ÅT = 296 K
c = 20.2711 (9) Å0.25 × 0.22 × 0.14 mm
β = 93.621 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3844 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3061 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.745Rint = 0.030
20105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
3844 reflectionsΔρmin = 0.35 e Å3
255 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.55273 (4)0.28199 (4)0.97803 (2)0.03501 (15)
F10.00592 (13)0.50210 (15)1.10740 (8)0.0863 (5)
O10.32311 (13)0.10156 (12)0.97315 (7)0.0522 (4)
O20.62121 (12)0.41249 (11)0.97696 (6)0.0424 (3)
N10.39319 (14)0.31600 (13)0.98654 (7)0.0384 (4)
H10.36990.39940.99010.046*
N20.56968 (16)0.18952 (15)0.91224 (7)0.0457 (4)
H20.55940.10320.91490.055*
N30.59807 (15)0.17934 (14)1.03822 (7)0.0407 (4)
H30.62440.10011.02730.049*
C10.0244 (2)0.3949 (2)1.06744 (11)0.0523 (5)
C20.14869 (18)0.36985 (19)1.04838 (10)0.0462 (5)
H2A0.21850.42591.06210.055*
C30.16722 (17)0.25899 (17)1.00822 (9)0.0381 (4)
C40.29931 (18)0.21885 (16)0.98807 (9)0.0375 (4)
C50.60112 (19)0.24700 (18)0.85011 (9)0.0439 (4)
C60.7180 (2)0.3164 (2)0.84531 (11)0.0558 (5)
H60.77630.32560.88220.067*
C70.7477 (3)0.3719 (3)0.78558 (12)0.0684 (7)
H70.82580.41960.78310.082*
C80.6657 (3)0.3589 (2)0.72965 (11)0.0726 (7)
C90.7009 (4)0.4217 (3)0.66478 (14)0.1173 (13)
H9A0.78070.38180.65120.176*
H9B0.71300.51760.67050.176*
H9C0.63140.40530.63160.176*
C100.06158 (19)0.1775 (2)0.98825 (10)0.0492 (5)
H100.07410.10250.96160.059*
C110.0622 (2)0.2074 (2)1.00776 (12)0.0601 (6)
H110.13290.15310.99360.072*
C120.0815 (2)0.3170 (2)1.04808 (12)0.0591 (6)
H120.16450.33741.06170.071*
C130.59854 (18)0.20754 (18)1.10666 (9)0.0410 (4)
C140.6514 (2)0.1138 (2)1.15103 (10)0.0577 (5)
H140.68530.03311.13570.069*
C150.6545 (3)0.1384 (3)1.21817 (12)0.0753 (7)
H150.69030.07351.24730.090*
C160.6059 (3)0.2569 (3)1.24288 (11)0.0699 (7)
C170.5550 (3)0.3505 (3)1.19855 (12)0.0721 (7)
H170.52250.43171.21420.087*
C180.5505 (2)0.3279 (2)1.13088 (11)0.0609 (6)
H180.51540.39331.10190.073*
C190.6086 (4)0.2837 (4)1.31697 (12)0.1036 (11)
H19A0.61720.37941.32500.155*
H19B0.68180.23701.33860.155*
H19C0.52860.25171.33400.155*
C200.5180 (2)0.2333 (2)0.79481 (11)0.0633 (6)
H200.43920.18690.79740.076*
C210.5505 (3)0.2879 (3)0.73502 (11)0.0772 (8)
H210.49360.27660.69780.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0371 (3)0.0248 (2)0.0440 (3)0.00215 (18)0.00981 (19)0.00342 (18)
F10.0618 (9)0.0742 (9)0.1262 (13)0.0042 (7)0.0322 (8)0.0372 (9)
O10.0543 (8)0.0277 (6)0.0757 (9)0.0005 (6)0.0121 (7)0.0088 (6)
O20.0414 (7)0.0284 (6)0.0589 (8)0.0007 (5)0.0146 (6)0.0053 (6)
N10.0370 (8)0.0245 (7)0.0543 (9)0.0032 (6)0.0083 (7)0.0023 (6)
N20.0605 (10)0.0281 (7)0.0503 (9)0.0020 (7)0.0171 (8)0.0054 (7)
N30.0478 (9)0.0273 (7)0.0477 (9)0.0088 (6)0.0078 (7)0.0044 (6)
C10.0467 (11)0.0432 (11)0.0681 (13)0.0050 (9)0.0131 (10)0.0026 (10)
C20.0386 (10)0.0372 (10)0.0634 (12)0.0022 (8)0.0082 (9)0.0043 (9)
C30.0394 (10)0.0312 (8)0.0441 (10)0.0004 (7)0.0050 (8)0.0047 (7)
C40.0427 (10)0.0277 (8)0.0424 (9)0.0009 (7)0.0040 (8)0.0001 (7)
C50.0524 (11)0.0362 (9)0.0443 (10)0.0017 (8)0.0137 (9)0.0071 (8)
C60.0523 (12)0.0636 (13)0.0527 (12)0.0067 (10)0.0117 (10)0.0048 (10)
C70.0773 (16)0.0674 (15)0.0634 (15)0.0214 (13)0.0275 (13)0.0077 (12)
C80.113 (2)0.0568 (13)0.0499 (13)0.0161 (14)0.0230 (14)0.0076 (11)
C90.200 (4)0.098 (2)0.0569 (16)0.045 (3)0.036 (2)0.0000 (16)
C100.0486 (12)0.0433 (10)0.0556 (12)0.0079 (9)0.0027 (9)0.0022 (9)
C110.0420 (12)0.0631 (14)0.0747 (15)0.0108 (10)0.0004 (10)0.0009 (12)
C120.0368 (11)0.0619 (13)0.0796 (15)0.0015 (10)0.0108 (10)0.0076 (12)
C130.0419 (10)0.0363 (9)0.0450 (10)0.0035 (8)0.0052 (8)0.0018 (8)
C140.0731 (15)0.0432 (11)0.0556 (13)0.0021 (10)0.0059 (11)0.0006 (9)
C150.110 (2)0.0598 (14)0.0541 (14)0.0110 (14)0.0124 (13)0.0081 (12)
C160.0890 (18)0.0740 (16)0.0471 (12)0.0304 (14)0.0079 (12)0.0068 (12)
C170.0956 (19)0.0633 (14)0.0590 (14)0.0005 (14)0.0174 (13)0.0187 (12)
C180.0824 (16)0.0496 (12)0.0512 (12)0.0142 (11)0.0073 (11)0.0072 (10)
C190.148 (3)0.116 (2)0.0475 (14)0.048 (2)0.0094 (16)0.0108 (15)
C200.0697 (15)0.0617 (14)0.0588 (13)0.0191 (12)0.0068 (11)0.0095 (11)
C210.107 (2)0.0759 (17)0.0473 (13)0.0201 (16)0.0021 (13)0.0073 (12)
Geometric parameters (Å, º) top
P1—O21.4652 (12)C9—H9A0.9600
P1—N31.6297 (15)C9—H9B0.9600
P1—N21.6336 (15)C9—H9C0.9600
P1—N11.6830 (14)C10—C111.380 (3)
F1—C11.352 (2)C10—H100.9300
O1—C41.224 (2)C11—C121.377 (3)
N1—C41.357 (2)C11—H110.9300
N1—H10.8600C12—H120.9300
N2—C51.436 (2)C13—C141.376 (3)
N2—H20.8600C13—C181.386 (3)
N3—C131.415 (2)C14—C151.381 (3)
N3—H30.8600C14—H140.9300
C1—C121.364 (3)C15—C161.376 (4)
C1—C21.373 (3)C15—H150.9300
C2—C31.383 (3)C16—C171.367 (4)
C2—H2A0.9300C16—C191.523 (3)
C3—C101.385 (3)C17—C181.388 (3)
C3—C41.488 (2)C17—H170.9300
C5—C201.369 (3)C18—H180.9300
C5—C61.385 (3)C19—H19A0.9600
C6—C71.380 (3)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—C81.373 (4)C20—C211.386 (3)
C7—H70.9300C20—H200.9300
C8—C211.378 (4)C21—H210.9300
C8—C91.517 (3)
O2—P1—N3116.29 (8)C8—C9—H9C109.5
O2—P1—N2113.75 (7)H9A—C9—H9C109.5
N3—P1—N2103.00 (8)H9B—C9—H9C109.5
O2—P1—N1107.02 (7)C11—C10—C3120.22 (19)
N3—P1—N1106.15 (7)C11—C10—H10119.9
N2—P1—N1110.37 (8)C3—C10—H10119.9
C4—N1—P1123.49 (12)C12—C11—C10120.4 (2)
C4—N1—H1118.3C12—C11—H11119.8
P1—N1—H1118.3C10—C11—H11119.8
C5—N2—P1122.47 (12)C1—C12—C11118.13 (19)
C5—N2—H2118.8C1—C12—H12120.9
P1—N2—H2118.8C11—C12—H12120.9
C13—N3—P1126.55 (12)C14—C13—C18118.45 (19)
C13—N3—H3116.7C14—C13—N3119.09 (17)
P1—N3—H3116.7C18—C13—N3122.44 (17)
F1—C1—C12118.31 (18)C13—C14—C15120.7 (2)
F1—C1—C2118.40 (19)C13—C14—H14119.7
C12—C1—C2123.3 (2)C15—C14—H14119.7
C1—C2—C3118.11 (18)C16—C15—C14121.4 (2)
C1—C2—H2A120.9C16—C15—H15119.3
C3—C2—H2A120.9C14—C15—H15119.3
C2—C3—C10119.83 (17)C17—C16—C15117.7 (2)
C2—C3—C4122.14 (16)C17—C16—C19120.9 (3)
C10—C3—C4117.95 (16)C15—C16—C19121.4 (3)
O1—C4—N1120.64 (16)C16—C17—C18121.9 (2)
O1—C4—C3121.13 (16)C16—C17—H17119.0
N1—C4—C3118.22 (14)C18—C17—H17119.0
C20—C5—C6118.93 (19)C13—C18—C17119.8 (2)
C20—C5—N2121.18 (18)C13—C18—H18120.1
C6—C5—N2119.89 (18)C17—C18—H18120.1
C7—C6—C5119.7 (2)C16—C19—H19A109.5
C7—C6—H6120.1C16—C19—H19B109.5
C5—C6—H6120.1H19A—C19—H19B109.5
C8—C7—C6122.1 (2)C16—C19—H19C109.5
C8—C7—H7119.0H19A—C19—H19C109.5
C6—C7—H7119.0H19B—C19—H19C109.5
C7—C8—C21117.5 (2)C5—C20—C21120.5 (2)
C7—C8—C9120.8 (3)C5—C20—H20119.8
C21—C8—C9121.7 (3)C21—C20—H20119.8
C8—C9—H9A109.5C8—C21—C20121.3 (2)
C8—C9—H9B109.5C8—C21—H21119.4
H9A—C9—H9B109.5C20—C21—H21119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.972.7835 (18)157
N3—H3···O1ii0.862.062.8972 (18)165
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC21H21FN3O2P
Mr397.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.2132 (5), 9.8588 (4), 20.2711 (9)
β (°) 93.621 (2)
V3)2037.02 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.25 × 0.22 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.662, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
20105, 3844, 3061
Rint0.030
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.04
No. of reflections3844
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX (Dolomanov et al., 2003), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.972.7835 (18)157.0
N3—H3···O1ii0.862.062.8972 (18)164.6
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds