organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[1-(4-Hy­dr­oxy-3-meth­­oxy­benz­yl)-1H-benzimidazol-2-yl]-2-meth­­oxy­phenol

aSchool of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: blueice8250@yahoo.com.cn

(Received 17 October 2011; accepted 23 October 2011; online 29 October 2011)

In the title mol­ecule, C22H20N2O4, the dihedral angles between the benzimidazole ring system and the benzene rings are 44.26 (2) and 82.91 (2)°. Intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, O—H⋯N and O—H⋯O hydrogen bonds connect the mol­ecules into a two-dimension network parallel to (10[\overline{2}]) and weak inter­molecular C—H⋯O hydrogen bonds complete the formation of a three-dimensional network.

Related literature

For the biological appications of benzimidazole compounds, see: Santoro et al. (2000[Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. (2000). J. Am. Chem. Soc. 122, 2433-2439.]); Sundberg et al. (1977[Sundberg, R. J., Yilmaz, I. & Mente, D. C. (1977). Inorg. Chem. 16, 1470-1476.]). For related structures, see: Li et al. (2005[Li, J., Meng, X.-G. & Liao, Z.-R. (2005). Acta Cryst. E61, o3421-o3423.]); Liu et al. (2003[Liu, Y.-C., Ma, J.-F., Hu, N.-H. & Jia, H.-Q. (2003). Acta Cryst. E59, m361-m363.]); Xi et al. (2006[Xi, Y., Jiang, M., Li, J., Wang, C., Yan, J.-F. & Zhang, F.-X. (2006). Acta Chim. Sin. 64, 1183-1188.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O4

  • Mr = 376.40

  • Monoclinic, P 21 /c

  • a = 7.9717 (9) Å

  • b = 16.4327 (19) Å

  • c = 14.3560 (16) Å

  • β = 95.133 (2)°

  • V = 1873.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.983

  • 14067 measured reflections

  • 4625 independent reflections

  • 3718 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.154

  • S = 1.06

  • 4625 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.89 (2) 2.25 (2) 2.6598 (18) 108.0 (18)
O1—H1A⋯O2 0.85 (3) 2.22 (3) 2.6631 (18) 113 (2)
O4—H4A⋯N2i 0.89 (2) 1.90 (2) 2.7671 (18) 165 (2)
O1—H1A⋯O4ii 0.85 (3) 2.07 (3) 2.7934 (17) 143 (2)
C15—H15B⋯O4iii 0.97 2.59 3.402 (2) 141
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzimidazole is a common species in biological and biochemical structures (Sundberg et al., 1977; Santoro et al., 2000). Many benzimidazole derivatives have already been reported (e.g. Liu et al., 2003; Li et al., 2005; Xi et al., 2006) and the preparation of the title compound, (I), is part of our effort to contribute to this research. Herein we report the crystal structure of (I).

In the molecule (Fig. 1) the dihedral angles between the benzimidazole ring system and the benzene rings are [C8-C13] 44.26 (2)° and [C16-C21] 82.91 (2)°. All bond lengths and bond angles are as expected. In the crystal, (Fig.2) molecules are linked by O—H···N and O—H···O and weak C—H···O hydrogen bonds to form a three-dimensional network.

Related literature top

For the biological appications of benzimidazole compounds, see: Santoro et al. (2000); Sundberg et al. (1977). For related structures, see: Li et al. (2005); Liu et al. (2003); Xi et al. (2006).

Experimental top

3-Methoxy-4-hydroxyphenyl formaldehyde (10 mmol) and 1,2-diaminobenzene(5 mmol) were mixed in hot water (333 K), the resulting mixture was stirred and refluxed for 3 h at 333 K. The solution was filtered, and the resulting yellow precipitate was recystallized from methanol to obtain pure product. Yellow crystals suitable for an X-ray diffraction study were obtained by slow evaporation of methanol and dimethyl sulfoxide (1:1 v/v) for two months.

Refinement top

All H atoms were placed in idealized positions [CH(methylene)= 0.97 Å, CH(methyl)= 0.96 Å and C—H(aromatic)= 0.93 Å] and included in the refinement in a riding-motion approximation, with Uiso(H)=1.5Ueq (methyl C) and Uiso(H)=1.2Ueq (methylene and aromatic C). Hydrogen atoms bonded to oxygen atoms were located in a difference map and refined freely with Uiso(H)= 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
4-[1-(4-Hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-2-methoxyphenol top
Crystal data top
C22H20N2O4F(000) = 792
Mr = 376.40Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5118 reflections
a = 7.9717 (9) Åθ = 2.5–27.7°
b = 16.4327 (19) ŵ = 0.09 mm1
c = 14.3560 (16) ÅT = 298 K
β = 95.133 (2)°Block, yellow
V = 1873.0 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4625 independent reflections
Radiation source: fine-focus sealed tube3718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.966, Tmax = 0.983k = 2121
14067 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.3997P]
where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H20N2O4V = 1873.0 (4) Å3
Mr = 376.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9717 (9) ŵ = 0.09 mm1
b = 16.4327 (19) ÅT = 298 K
c = 14.3560 (16) Å0.20 × 0.20 × 0.20 mm
β = 95.133 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4625 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3718 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.064
14067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
4625 reflectionsΔρmin = 0.23 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6594 (2)0.37261 (10)0.41671 (11)0.0434 (4)
C20.4947 (2)0.34793 (10)0.39288 (11)0.0402 (4)
C30.3707 (3)0.40430 (12)0.36173 (13)0.0558 (5)
H30.26000.38840.34570.067*
C40.4192 (4)0.48403 (13)0.35583 (16)0.0709 (7)
H40.33970.52280.33480.085*
C50.5838 (4)0.50832 (13)0.38041 (17)0.0763 (7)
H50.61120.56310.37570.092*
C60.7085 (3)0.45372 (12)0.41172 (15)0.0635 (6)
H60.81860.47020.42850.076*
C70.63537 (19)0.23907 (9)0.43023 (10)0.0346 (3)
C80.67801 (19)0.15292 (9)0.44647 (10)0.0358 (3)
C90.6102 (2)0.09509 (10)0.38356 (11)0.0414 (4)
H90.54440.11140.33010.050*
C100.6401 (2)0.01332 (10)0.40007 (12)0.0448 (4)
H100.59530.02510.35720.054*
C110.7358 (2)0.01188 (10)0.47960 (11)0.0398 (4)
C120.8042 (2)0.04607 (10)0.54392 (11)0.0378 (4)
C130.7768 (2)0.12775 (10)0.52693 (11)0.0380 (4)
H130.82390.16620.56900.046*
C140.9622 (3)0.06781 (14)0.69039 (15)0.0690 (6)
H14A1.03870.10450.66400.104*
H14B1.02130.03740.74020.104*
H14C0.87290.09830.71450.104*
C150.9316 (2)0.29712 (12)0.45926 (12)0.0464 (4)
H15A0.98190.33900.42320.056*
H15B0.96860.24490.43710.056*
C160.9974 (2)0.30661 (9)0.56100 (11)0.0378 (4)
C171.1623 (2)0.28316 (10)0.58622 (11)0.0388 (4)
H171.22850.26390.54090.047*
C181.2289 (2)0.28829 (10)0.67832 (11)0.0378 (3)
C191.1305 (2)0.31602 (9)0.74762 (11)0.0366 (3)
C200.9677 (2)0.34072 (12)0.72206 (12)0.0474 (4)
H200.90150.36040.76720.057*
C210.9017 (2)0.33641 (12)0.62925 (13)0.0480 (4)
H210.79200.35380.61280.058*
C221.4913 (2)0.22847 (16)0.65140 (15)0.0648 (6)
H22A1.43350.18110.62610.097*
H22B1.59450.21240.68610.097*
H22C1.51590.26400.60130.097*
N10.74880 (17)0.30206 (8)0.44092 (10)0.0397 (3)
N20.48213 (17)0.26436 (8)0.40272 (9)0.0383 (3)
O10.76267 (19)0.09254 (7)0.49438 (9)0.0544 (4)
H1A0.804 (3)0.1004 (16)0.550 (2)0.082*
O20.89395 (17)0.01375 (7)0.62064 (9)0.0531 (3)
O31.38974 (16)0.26905 (11)0.71051 (9)0.0636 (4)
O41.19250 (16)0.31888 (8)0.83918 (8)0.0454 (3)
H4A1.291 (3)0.2940 (14)0.8496 (17)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0577 (10)0.0391 (9)0.0322 (8)0.0003 (7)0.0019 (7)0.0008 (6)
C20.0504 (9)0.0387 (8)0.0303 (7)0.0052 (7)0.0021 (6)0.0002 (6)
C30.0647 (12)0.0525 (11)0.0487 (10)0.0180 (9)0.0039 (9)0.0068 (8)
C40.1036 (19)0.0459 (11)0.0609 (13)0.0260 (12)0.0050 (12)0.0066 (9)
C50.128 (2)0.0345 (10)0.0656 (14)0.0008 (12)0.0037 (14)0.0063 (9)
C60.0835 (15)0.0465 (11)0.0597 (12)0.0137 (10)0.0017 (11)0.0027 (9)
C70.0386 (8)0.0384 (8)0.0260 (7)0.0014 (6)0.0018 (6)0.0012 (6)
C80.0375 (8)0.0373 (8)0.0319 (7)0.0048 (6)0.0003 (6)0.0000 (6)
C90.0462 (9)0.0437 (9)0.0324 (8)0.0032 (7)0.0064 (6)0.0004 (6)
C100.0551 (10)0.0415 (9)0.0362 (8)0.0009 (7)0.0046 (7)0.0055 (7)
C110.0469 (9)0.0351 (8)0.0375 (8)0.0044 (7)0.0043 (7)0.0005 (6)
C120.0388 (8)0.0420 (8)0.0317 (8)0.0055 (6)0.0017 (6)0.0027 (6)
C130.0409 (9)0.0385 (8)0.0337 (8)0.0038 (6)0.0030 (6)0.0031 (6)
C140.0909 (16)0.0644 (13)0.0461 (11)0.0108 (11)0.0258 (11)0.0005 (9)
C150.0391 (9)0.0624 (11)0.0371 (9)0.0039 (7)0.0004 (7)0.0058 (8)
C160.0365 (8)0.0377 (8)0.0382 (8)0.0044 (6)0.0021 (6)0.0050 (6)
C170.0375 (8)0.0442 (9)0.0349 (8)0.0002 (7)0.0043 (6)0.0060 (6)
C180.0344 (8)0.0421 (8)0.0365 (8)0.0009 (6)0.0006 (6)0.0033 (6)
C190.0401 (8)0.0342 (8)0.0353 (8)0.0015 (6)0.0018 (6)0.0065 (6)
C200.0415 (9)0.0594 (11)0.0414 (9)0.0091 (8)0.0049 (7)0.0131 (8)
C210.0344 (8)0.0615 (11)0.0469 (10)0.0080 (8)0.0029 (7)0.0096 (8)
C220.0434 (11)0.0933 (16)0.0573 (12)0.0176 (10)0.0016 (9)0.0170 (11)
N10.0397 (7)0.0421 (7)0.0359 (7)0.0014 (5)0.0052 (5)0.0024 (5)
N20.0401 (7)0.0391 (7)0.0341 (7)0.0040 (5)0.0048 (5)0.0033 (5)
O10.0800 (10)0.0352 (6)0.0460 (7)0.0036 (6)0.0051 (7)0.0024 (5)
O20.0673 (8)0.0450 (7)0.0432 (7)0.0066 (6)0.0160 (6)0.0057 (5)
O30.0439 (7)0.1088 (12)0.0369 (7)0.0244 (7)0.0025 (5)0.0126 (7)
O40.0447 (7)0.0573 (8)0.0335 (6)0.0082 (5)0.0000 (5)0.0089 (5)
Geometric parameters (Å, º) top
C1—C21.388 (2)C14—O21.411 (2)
C1—N11.389 (2)C14—H14A0.9600
C1—C61.393 (3)C14—H14B0.9600
C2—N21.385 (2)C14—H14C0.9600
C2—C31.398 (2)C15—N11.460 (2)
C3—C41.371 (3)C15—C161.515 (2)
C3—H30.9300C15—H15A0.9700
C4—C51.386 (4)C15—H15B0.9700
C4—H40.9300C16—C211.384 (2)
C5—C61.384 (3)C16—C171.386 (2)
C5—H50.9300C17—C181.383 (2)
C6—H60.9300C17—H170.9300
C7—N21.3171 (19)C18—O31.361 (2)
C7—N11.374 (2)C18—C191.397 (2)
C7—C81.470 (2)C19—O41.3630 (19)
C8—C91.387 (2)C19—C201.378 (2)
C8—C131.401 (2)C20—C211.390 (2)
C9—C101.381 (2)C20—H200.9300
C9—H90.9300C21—H210.9300
C10—C111.379 (2)C22—O31.394 (2)
C10—H100.9300C22—H22A0.9600
C11—O11.3564 (19)C22—H22B0.9600
C11—C121.402 (2)C22—H22C0.9600
C12—O21.3659 (18)O1—H1A0.85 (3)
C12—C131.378 (2)O4—H4A0.89 (2)
C13—H130.9300
C2—C1—N1105.72 (14)O2—C14—H14C109.5
C2—C1—C6122.08 (17)H14A—C14—H14C109.5
N1—C1—C6132.19 (18)H14B—C14—H14C109.5
N2—C2—C1109.87 (14)N1—C15—C16114.96 (14)
N2—C2—C3129.36 (17)N1—C15—H15A108.5
C1—C2—C3120.74 (17)C16—C15—H15A108.5
C4—C3—C2117.3 (2)N1—C15—H15B108.5
C4—C3—H3121.4C16—C15—H15B108.5
C2—C3—H3121.4H15A—C15—H15B107.5
C3—C4—C5121.7 (2)C21—C16—C17118.88 (15)
C3—C4—H4119.2C21—C16—C15123.63 (15)
C5—C4—H4119.2C17—C16—C15117.49 (15)
C6—C5—C4122.1 (2)C18—C17—C16120.46 (15)
C6—C5—H5118.9C18—C17—H17119.8
C4—C5—H5118.9C16—C17—H17119.8
C5—C6—C1116.1 (2)O3—C18—C17125.46 (15)
C5—C6—H6121.9O3—C18—C19113.94 (14)
C1—C6—H6121.9C17—C18—C19120.59 (14)
N2—C7—N1112.29 (14)O4—C19—C20119.87 (15)
N2—C7—C8123.14 (14)O4—C19—C18121.33 (14)
N1—C7—C8124.57 (14)C20—C19—C18118.80 (15)
C9—C8—C13119.48 (15)C19—C20—C21120.45 (16)
C9—C8—C7119.06 (13)C19—C20—H20119.8
C13—C8—C7121.35 (14)C21—C20—H20119.8
C10—C9—C8120.24 (14)C16—C21—C20120.77 (15)
C10—C9—H9119.9C16—C21—H21119.6
C8—C9—H9119.9C20—C21—H21119.6
C11—C10—C9120.55 (15)O3—C22—H22A109.5
C11—C10—H10119.7O3—C22—H22B109.5
C9—C10—H10119.7H22A—C22—H22B109.5
O1—C11—C10119.40 (15)O3—C22—H22C109.5
O1—C11—C12120.92 (14)H22A—C22—H22C109.5
C10—C11—C12119.67 (15)H22B—C22—H22C109.5
O2—C12—C13125.79 (14)C7—N1—C1106.44 (13)
O2—C12—C11114.31 (14)C7—N1—C15127.93 (14)
C13—C12—C11119.90 (14)C1—N1—C15124.98 (14)
C12—C13—C8120.15 (14)C7—N2—C2105.67 (13)
C12—C13—H13119.9C11—O1—H1A109.8 (18)
C8—C13—H13119.9C12—O2—C14117.93 (14)
O2—C14—H14A109.5C18—O3—C22119.05 (14)
O2—C14—H14B109.5C19—O4—H4A112.7 (16)
H14A—C14—H14B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.89 (2)2.25 (2)2.6598 (18)108.0 (18)
O1—H1A···O20.85 (3)2.22 (3)2.6631 (18)113 (2)
O4—H4A···N2i0.89 (2)1.90 (2)2.7671 (18)165 (2)
O1—H1A···O4ii0.85 (3)2.07 (3)2.7934 (17)143 (2)
C15—H15B···O4iii0.972.593.402 (2)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O4
Mr376.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.9717 (9), 16.4327 (19), 14.3560 (16)
β (°) 95.133 (2)
V3)1873.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14067, 4625, 3718
Rint0.064
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 1.06
No. of reflections4625
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.89 (2)2.25 (2)2.6598 (18)108.0 (18)
O1—H1A···O20.85 (3)2.22 (3)2.6631 (18)113 (2)
O4—H4A···N2i0.89 (2)1.90 (2)2.7671 (18)165 (2)
O1—H1A···O4ii0.85 (3)2.07 (3)2.7934 (17)143 (2)
C15—H15B···O4iii0.972.593.402 (2)141.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20092503) for financial support.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J., Meng, X.-G. & Liao, Z.-R. (2005). Acta Cryst. E61, o3421–o3423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-C., Ma, J.-F., Hu, N.-H. & Jia, H.-Q. (2003). Acta Cryst. E59, m361–m363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. (2000). J. Am. Chem. Soc. 122, 2433–2439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J., Yilmaz, I. & Mente, D. C. (1977). Inorg. Chem. 16, 1470–1476.  CSD CrossRef CAS Web of Science Google Scholar
First citationXi, Y., Jiang, M., Li, J., Wang, C., Yan, J.-F. & Zhang, F.-X. (2006). Acta Chim. Sin. 64, 1183–1188.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds